metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-[1,2-Bis(pyridin-4-yl)ethane-κN]tricarbon­yl(1,10-phenanthroline-κ2N,N′)rhenium(I) hexa­fluorido­phosphate aceto­nitrile monosolvate

aInstituto de Química – UFU, Uberlândia–MG, Brazil, and bInstituto de Física de São Carlos – USP, 13500-970–São Carlos, SP, Brazil
*Correspondence e-mail: silvana@ufu.br

(Received 9 June 2014; accepted 16 June 2014; online 25 June 2014)

The asymmetric unit of the title compound, [Re(C12H8N2)(C12H12N2)(CO)3]PF6.·CH3CN, contains one cation, one hexa­fluorido­phosphate anion and one aceto­nitrile solvent mol­ecule. The ReI ion is coordinated by two N atoms from the 1,10-phenanthroline ligand and one N atom from the 1,2-bis­(pyridin-4-yl)ethane ligand [mean Re—N = 2.191 (15) Å] and by three carbonyl ligands [mean Re—C = 1.926 (3) Å] in a distorted octa­hedral geometry. The electrostatic forces and weak C—H⋯F(O) hydrogen bonds pack cations and anions into the crystal with voids of 82 Å3, which are filled by solvent mol­ecules. The crystal packing exhibits short inter­molecular O⋯O distance of 2.795 (5) Å between two cations related by inversion.

Keywords: crystal structure.

Related literature

For photophysical and photochemical properties of rhenium(I)–polypyridyl complexes, see: Li et al. (2012[Li, X., Chi, H.-J., Lu, G.-H., Xiao, G.-Y., Dong, Y., Zhang, D.-Y., Zhang, Z.-Q. & Hu, Z.-Z. (2012). Org. Electron. 13, 3138-3144.]); Mizoguchi et al. (2009[Mizoguchi, S. K., Patrocinio, A. O. T. & Murakami Iha, N. Y. (2009). Synth. Met. 159, 2315-2317.]); Patrocinio et al. (2010[Patrocinio, A. O. T., Brennaman, M. K., Meyer, T. J. & Murakami Iha, N. Y. (2010). J. Phys. Chem. A, 114, 12129-12137.], 2013[Patrocinio, A. O. T., Frin, K. P. M. & Murakami Iha, N. Y. (2013). Inorg. Chem. 52, 5889-5896.]); Thorp-Greenwood et al. (2012[Thorp-Greenwood, F. L., Coogan, M. P., Mishra, L., Kumari, N., Rai, G. & Saripella, S. (2012). New J. Chem. 36, 64-72.]). For similar compounds and their crystal structures, see: Ranjan et al. (2003[Ranjan, S., Lin, S.-Y., Hwang, K.-C., Chi, Y., Ching, W.-L. & Liu, C.-S. (2003). Inorg. Chem. 42, 1248-1255.]); Wenger et al. (2004[Wenger, O. S., Henling, L. M., Day, M. W., Winkler, J. R. & Gray, H. B. (2004). Inorg. Chem. 43, 2043-2048.]); Ide et al. (1995[Ide, S., Karacan, N. & Tufan, Y. (1995). Acta Cryst. C51, 2304-2305.]). For details of the synthetic procedure, see: Patrocinio et al. (2010[Patrocinio, A. O. T., Brennaman, M. K., Meyer, T. J. & Murakami Iha, N. Y. (2010). J. Phys. Chem. A, 114, 12129-12137.]); Patrocinio & Murakami Iha (2008[Patrocinio, A. O. T. & Murakami Iha, N. Y. (2008). Inorg. Chem. 47, 10851-10857.]); Argazzi et al. (2001[Argazzi, R., Bertolasi, E., Chiorboli, C., Bignozzi, C. A., Itokazu, M. K. & Murakami Iha, N. Y. (2001). Inorg. Chem. 40, 6885-6891.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C12H8N2)(C12H12N2)(CO)3]PF6·C2H3N

  • Mr = 820.69

  • Monoclinic, P 21 /n

  • a = 10.5992 (2) Å

  • b = 16.1201 (3) Å

  • c = 17.3449 (2) Å

  • β = 100.879 (1)°

  • V = 2910.29 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.31 mm−1

  • T = 100 K

  • 0.29 × 0.20 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppen et al., 1965[Coppens P., Leiserowitz L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.386, Tmax = 0.613

  • 35034 measured reflections

  • 6066 independent reflections

  • 5415 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.09

  • 6066 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −2.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F4 0.93 2.47 3.377 (6) 166
C16—H16⋯F6 0.93 2.38 3.180 (6) 145
C11—H11⋯F5i 0.93 2.55 3.327 (6) 142
C12—H12⋯F1i 0.93 2.55 3.355 (6) 145
C5—H5⋯F1ii 0.93 2.52 3.382 (6) 154
C19—H19⋯F4iii 0.93 2.49 3.150 (6) 128
C20—H20⋯F5iii 0.93 2.45 3.317 (6) 154
C21—H21A⋯F5iv 0.97 2.53 3.486 (6) 168
C22—H22B⋯O1v 0.97 2.53 3.211 (8) 127
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Rhenium(I) polypyridyl complexes exhibit very interesting photophysical and photochemical properties which can be exploited in the development of different photochemical molecular devices. Interesting examples can be found in the literature such as light emitting devices (Li et al., 2012; Mizoguchi et al., 2009), photoswitches (Patrocinio et al., 2010, 2013), DNA sensors (Thorp-Greenwood et al., 2012), among others. In this article, we describe the crystal structure of a ReI polypyridyl complex having 1,2-bis(pyridin-4-yl)ethane (bpa) as ancillary ligand. This complex can be conveniently used as luminescent material and also as a construction unit for binuclear complex in intramolecular energy transfer studies.

The asymmetric unit in the title compound consists of the complex cation [Re(CO)3(phen)(bpa)]+ (phen = 1,10-phenanthroline), PF6- anion and one acetonitrile solvent molecule (Fig. 1). The ReI center has a distorted octahedral environment. It is coordinated by three carbonyl groups arranged in a facial fashion [mean Re–C distance of 1.926 (6) Å], two nitrogen atoms from phen ligand [mean Re–N distance of 2.183 (4) Å] and one nitrogen atom from bpa ligand [Re–N distance of 2.208 (4) Å]. The Re–C and Re–N distances were comparable to those of related systems (Ranjan et al., 2003; Wenger et al., 2004). The bidentate bite angle N–Re–N is 76.0 (2)°. The ReI lies -0.055 (4) Å from the least-squares plane of 1,10-phenanthroline. In the bpa ligand, the bond distance C21–C22 is 1.526 (8) Å. The C21 ethane carbon atom is nearly coplanar with N3-pyridyl moiety. The C21–C22–C23–C24 and C21–C22–C23–C27 torsion angles are 102.5 (7)° and -75.2 (8)°, respectively. These angles in the free bpa ligand are 78.0 (3)° and -99.5 (3)°, respectively (Ide et al., 1995). The bond lengths in the structure of the free bpa ligand are shorter than those observed in the ligand coordinated to the metallic center. The PF6- anion adopts an octahedral geometry with P–F distances varied from 1.587 (4) to 1.612 (3) Å. The components of the structure are connected into a three-dimensional architecture by electrostatic forces and C—H···F and C—H···O hydrogen bonds (Table 1).

Related literature top

For photophysical and photochemical properties of rhenium(I)–polypyridyl complexes, see: Li et al. (2012); Mizoguchi et al. (2009); Patrocinio et al. (2010, 2013); Thorp-Greenwood et al. (2012). For similar compounds and their crystal structures, see: Ranjan et al. (2003); Wenger et al. (2004); Ide et al. (1995). For details of the synthetic procedure, see: Patrocinio et al. (2010); Patrocinio & Murakami Iha (2008); Argazzi et al. (2001).

Experimental top

The fac-[Re(CO)3(phen)(bpa)]PF6 compound (phen = 1,10-phenanthroline, bpa = 1,2-bis(4-pyridyl)ethane) was prepared following the procedures described earlier (Patrocinio et al., 2010; Patrocinio & Murakami Iha, 2008; Argazzi et al., 2001). Briefly, [ClRe(CO)5] and an excess of the polipyridyl ligand were refluxed in toluene for 5–7 h to yield a yellow solid, fac-[ClRe(CO)3(NN)]. The product was collected by filtration and recrystallized from CH2Cl2 by slow addition of n-pentane. Then, the fac-[ClRe(CO)3(NN)] complexes were suspended in argon-saturated CH2Cl2 and trifluoromethanesulfonic acid was added to reaction mixture to yield the respective intermediates fac-[Re(CO)3(NN)(CF3SO3)], which were precipitated by slow addition of ethyl ether. Finally, an excess of the bpa ligand were added to fac-[Re(CO)3(NN)(CF3SO3)] in methanol and the mixture were kept in reflux under argon atmosphere during 8–9 h. After cooling, the final products were obtained by addition of solid NH4PF6. The solids were separated by filtration, washed with water to remove the NH4PF6 excess and ethyl ether to dry fac-[Re(CO)3(phen)(bpa)]PF6 were crystallized by slow diffusion of diethyl ether into an acetonitrile solution at room temperature.

Refinement top

H atoms were included in calculated positions (C–H = 0.93 Å for aromatic H, C–H = 0.97 Å for methylene H and C–H = 0.96 Å for methyl H), and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

Rhenium(I) polypyridyl complexes exhibit very interesting photophysical and photochemical properties which can be exploited in the development of different photochemical molecular devices. Interesting examples can be found in the literature such as light emitting devices (Li et al., 2012; Mizoguchi et al., 2009), photoswitches (Patrocinio et al., 2010, 2013), DNA sensors (Thorp-Greenwood et al., 2012), among others. In this article, we describe the crystal structure of a ReI polypyridyl complex having 1,2-bis(pyridin-4-yl)ethane (bpa) as ancillary ligand. This complex can be conveniently used as luminescent material and also as a construction unit for binuclear complex in intramolecular energy transfer studies.

The asymmetric unit in the title compound consists of the complex cation [Re(CO)3(phen)(bpa)]+ (phen = 1,10-phenanthroline), PF6- anion and one acetonitrile solvent molecule (Fig. 1). The ReI center has a distorted octahedral environment. It is coordinated by three carbonyl groups arranged in a facial fashion [mean Re–C distance of 1.926 (6) Å], two nitrogen atoms from phen ligand [mean Re–N distance of 2.183 (4) Å] and one nitrogen atom from bpa ligand [Re–N distance of 2.208 (4) Å]. The Re–C and Re–N distances were comparable to those of related systems (Ranjan et al., 2003; Wenger et al., 2004). The bidentate bite angle N–Re–N is 76.0 (2)°. The ReI lies -0.055 (4) Å from the least-squares plane of 1,10-phenanthroline. In the bpa ligand, the bond distance C21–C22 is 1.526 (8) Å. The C21 ethane carbon atom is nearly coplanar with N3-pyridyl moiety. The C21–C22–C23–C24 and C21–C22–C23–C27 torsion angles are 102.5 (7)° and -75.2 (8)°, respectively. These angles in the free bpa ligand are 78.0 (3)° and -99.5 (3)°, respectively (Ide et al., 1995). The bond lengths in the structure of the free bpa ligand are shorter than those observed in the ligand coordinated to the metallic center. The PF6- anion adopts an octahedral geometry with P–F distances varied from 1.587 (4) to 1.612 (3) Å. The components of the structure are connected into a three-dimensional architecture by electrostatic forces and C—H···F and C—H···O hydrogen bonds (Table 1).

For photophysical and photochemical properties of rhenium(I)–polypyridyl complexes, see: Li et al. (2012); Mizoguchi et al. (2009); Patrocinio et al. (2010, 2013); Thorp-Greenwood et al. (2012). For similar compounds and their crystal structures, see: Ranjan et al. (2003); Wenger et al. (2004); Ide et al. (1995). For details of the synthetic procedure, see: Patrocinio et al. (2010); Patrocinio & Murakami Iha (2008); Argazzi et al. (2001).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the atom labeling and 30% probability displacement ellipsoids.
fac-[1,2-Bis(pyridin-4-yl)ethane-κN]tricarbonyl(1,10-phenanthroline-κ2N,N')rhenium(I) hexafluoridophosphate acetonitrile monosolvate top
Crystal data top
[Re(C12H8N2)(C12H12N2)(CO)3]PF6·C2H3NF(000) = 1600
Mr = 820.69Dx = 1.873 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5992 (2) ÅCell parameters from 20552 reflections
b = 16.1201 (3) Åθ = 2.9–26.7°
c = 17.3449 (2) ŵ = 4.31 mm1
β = 100.879 (1)°T = 100 K
V = 2910.29 (8) Å3Prism, colourless
Z = 40.29 × 0.20 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
6066 independent reflections
Radiation source: Enraf–Nonius FR5905415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Detector resolution: 9 pixels mm-1θmax = 26.6°, θmin = 3.1°
CCD rotation images, thick slices scansh = 1313
Absorption correction: gaussian
(Coppens et al., 1965)
k = 1820
Tmin = 0.386, Tmax = 0.613l = 2121
35034 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0541P)2 + 8.7438P]
where P = (Fo2 + 2Fc2)/3
6066 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 2.50 e Å3
Crystal data top
[Re(C12H8N2)(C12H12N2)(CO)3]PF6·C2H3NV = 2910.29 (8) Å3
Mr = 820.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5992 (2) ŵ = 4.31 mm1
b = 16.1201 (3) ÅT = 100 K
c = 17.3449 (2) Å0.29 × 0.20 × 0.13 mm
β = 100.879 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6066 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
5415 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.613Rint = 0.106
35034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.09Δρmax = 1.39 e Å3
6066 reflectionsΔρmin = 2.50 e Å3
406 parameters
Special details top

Experimental. a grid of 8 x 8 x 8 = 512 sampling points was used in the absorption correction

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.804584 (18)0.150099 (11)0.635436 (10)0.01716 (9)
O10.5921 (4)0.0300 (3)0.5622 (2)0.0328 (9)
O20.9983 (4)0.0058 (2)0.6471 (2)0.0302 (9)
O30.8369 (4)0.1791 (3)0.46486 (19)0.0268 (8)
N10.7658 (4)0.1315 (3)0.7536 (2)0.0199 (9)
N20.6642 (4)0.2458 (3)0.6470 (2)0.0193 (8)
N30.9448 (4)0.2463 (3)0.6853 (2)0.0196 (8)
N41.3479 (5)0.6998 (3)0.9550 (3)0.0292 (10)
N50.7950 (6)0.3895 (4)0.8097 (4)0.0460 (14)
C10.6701 (5)0.0737 (3)0.5915 (3)0.0225 (11)
C20.9281 (5)0.0614 (3)0.6420 (3)0.0234 (11)
C30.8273 (5)0.1710 (3)0.5297 (3)0.0244 (11)
C40.8152 (5)0.0726 (3)0.8044 (3)0.0237 (11)
H40.87780.03750.79160.028*
C50.7759 (6)0.0619 (4)0.8764 (3)0.0304 (12)
H50.81090.01930.90990.036*
C60.6858 (6)0.1141 (4)0.8979 (3)0.0278 (12)
H60.66040.1080.9460.033*
C70.6330 (5)0.1772 (3)0.8453 (3)0.0221 (10)
C80.5392 (5)0.2344 (3)0.8619 (3)0.0228 (10)
H80.51040.23060.90920.027*
C90.4913 (5)0.2947 (3)0.8094 (3)0.0228 (10)
H90.43140.33220.82190.027*
C100.5316 (5)0.3013 (3)0.7355 (3)0.0206 (10)
C110.4825 (6)0.3620 (3)0.6783 (3)0.0255 (12)
H110.42310.40120.68810.031*
C120.5247 (6)0.3614 (3)0.6080 (3)0.0260 (12)
H120.49270.40010.56950.031*
C130.6158 (5)0.3028 (3)0.5941 (3)0.0215 (10)
H130.64330.30390.54630.026*
C140.6757 (5)0.1834 (3)0.7736 (3)0.0182 (9)
C150.6230 (5)0.2453 (3)0.7174 (3)0.0189 (10)
C160.9463 (5)0.3204 (3)0.6488 (3)0.0225 (10)
H160.89110.32830.60090.027*
C171.0259 (5)0.3845 (3)0.6794 (3)0.0241 (11)
H171.02240.43460.65260.029*
C181.1111 (5)0.3747 (3)0.7497 (3)0.0222 (10)
C191.1136 (5)0.2970 (3)0.7860 (3)0.0229 (11)
H191.17160.28680.83240.027*
C201.0294 (5)0.2353 (3)0.7528 (3)0.0212 (10)
H201.03160.18440.77810.025*
C211.1946 (5)0.4445 (3)0.7878 (3)0.0237 (10)
H21A1.23190.47340.74840.028*
H21B1.26410.42230.82680.028*
C221.1154 (6)0.5050 (4)0.8268 (4)0.0398 (15)
H22A1.05030.53010.78680.048*
H22B1.0720.47470.86240.048*
C231.1966 (5)0.5727 (4)0.8718 (3)0.0286 (13)
C241.1984 (6)0.6522 (3)0.8408 (4)0.0302 (13)
H241.14980.66450.79170.036*
C251.2736 (6)0.7129 (3)0.8839 (3)0.0276 (12)
H251.27270.76580.86240.033*
C261.3481 (6)0.6218 (4)0.9832 (3)0.0323 (13)
H261.39980.61031.03150.039*
C271.2757 (6)0.5582 (4)0.9441 (3)0.0339 (13)
H271.27980.50550.96620.041*
C280.8459 (7)0.3541 (4)0.8642 (4)0.0392 (16)
C290.9137 (7)0.3104 (5)0.9339 (4)0.0464 (16)
H29A0.98620.28140.92120.07*
H29B0.85650.27140.95130.07*
H29C0.94270.34980.9750.07*
P0.72529 (14)0.43615 (8)0.41578 (7)0.0227 (3)
F10.6050 (3)0.4560 (2)0.45748 (19)0.0332 (7)
F20.7573 (3)0.53361 (19)0.41536 (18)0.0299 (7)
F30.8432 (4)0.4168 (2)0.3742 (2)0.0422 (9)
F40.6912 (4)0.33928 (19)0.4165 (2)0.0399 (9)
F50.6330 (3)0.44566 (19)0.33112 (17)0.0294 (7)
F60.8144 (4)0.4265 (2)0.50075 (19)0.0373 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.01953 (14)0.01844 (14)0.01390 (12)0.00022 (7)0.00417 (8)0.00007 (6)
O10.033 (2)0.034 (2)0.031 (2)0.0109 (18)0.0033 (17)0.0095 (17)
O20.031 (2)0.027 (2)0.033 (2)0.0107 (17)0.0089 (17)0.0046 (16)
O30.033 (2)0.037 (2)0.0114 (17)0.0021 (18)0.0074 (14)0.0034 (15)
N10.028 (2)0.023 (2)0.0108 (18)0.0000 (18)0.0081 (16)0.0028 (16)
N20.024 (2)0.017 (2)0.0179 (19)0.0026 (16)0.0055 (16)0.0011 (16)
N30.019 (2)0.021 (2)0.0177 (19)0.0012 (17)0.0015 (16)0.0001 (16)
N40.036 (3)0.024 (2)0.026 (2)0.003 (2)0.0039 (19)0.0001 (19)
N50.043 (3)0.043 (3)0.049 (3)0.006 (3)0.001 (3)0.008 (3)
C10.021 (3)0.030 (3)0.018 (2)0.002 (2)0.0066 (19)0.001 (2)
C20.027 (3)0.027 (3)0.017 (2)0.005 (2)0.007 (2)0.002 (2)
C30.018 (3)0.019 (2)0.034 (3)0.001 (2)0.002 (2)0.001 (2)
C40.025 (3)0.025 (3)0.023 (2)0.004 (2)0.011 (2)0.010 (2)
C50.046 (4)0.027 (3)0.020 (2)0.009 (2)0.009 (2)0.007 (2)
C60.030 (3)0.036 (3)0.018 (2)0.003 (2)0.008 (2)0.002 (2)
C70.021 (3)0.028 (3)0.017 (2)0.004 (2)0.0031 (19)0.004 (2)
C80.026 (3)0.026 (3)0.018 (2)0.002 (2)0.0067 (19)0.003 (2)
C90.022 (3)0.026 (3)0.022 (2)0.000 (2)0.008 (2)0.005 (2)
C100.022 (3)0.016 (2)0.024 (2)0.0013 (19)0.0051 (19)0.0038 (19)
C110.028 (3)0.027 (3)0.021 (3)0.007 (2)0.002 (2)0.002 (2)
C120.024 (3)0.025 (3)0.028 (3)0.002 (2)0.003 (2)0.007 (2)
C130.022 (3)0.024 (3)0.019 (2)0.000 (2)0.0039 (19)0.005 (2)
C140.018 (2)0.020 (2)0.016 (2)0.0026 (19)0.0016 (18)0.0006 (18)
C150.019 (2)0.020 (2)0.018 (2)0.0019 (19)0.0054 (18)0.0004 (19)
C160.026 (3)0.024 (3)0.017 (2)0.000 (2)0.0020 (19)0.003 (2)
C170.028 (3)0.020 (3)0.024 (3)0.000 (2)0.006 (2)0.005 (2)
C180.021 (3)0.021 (3)0.026 (3)0.001 (2)0.009 (2)0.001 (2)
C190.023 (3)0.027 (3)0.017 (2)0.001 (2)0.0006 (19)0.002 (2)
C200.027 (3)0.020 (2)0.017 (2)0.001 (2)0.0037 (19)0.0004 (19)
C210.028 (3)0.024 (3)0.020 (2)0.003 (2)0.006 (2)0.001 (2)
C220.025 (3)0.034 (3)0.061 (4)0.003 (3)0.010 (3)0.019 (3)
C230.022 (3)0.027 (3)0.039 (3)0.004 (2)0.012 (2)0.012 (2)
C240.031 (3)0.032 (3)0.026 (3)0.007 (2)0.000 (2)0.004 (2)
C250.031 (3)0.023 (3)0.029 (3)0.000 (2)0.005 (2)0.000 (2)
C260.042 (4)0.031 (3)0.024 (3)0.001 (3)0.007 (2)0.002 (2)
C270.049 (4)0.023 (3)0.033 (3)0.002 (3)0.018 (3)0.006 (2)
C280.036 (4)0.036 (4)0.045 (4)0.009 (3)0.007 (3)0.013 (3)
C290.045 (4)0.048 (4)0.045 (4)0.005 (3)0.006 (3)0.005 (3)
P0.0310 (8)0.0219 (7)0.0153 (6)0.0034 (5)0.0046 (5)0.0005 (5)
F10.0371 (19)0.0351 (18)0.0312 (16)0.0021 (15)0.0162 (14)0.0018 (14)
F20.0366 (19)0.0246 (17)0.0267 (15)0.0045 (13)0.0013 (13)0.0017 (13)
F30.048 (2)0.048 (2)0.0354 (18)0.0192 (18)0.0200 (16)0.0068 (16)
F40.075 (3)0.0202 (17)0.0249 (17)0.0009 (16)0.0113 (18)0.0003 (13)
F50.0396 (19)0.0265 (16)0.0184 (14)0.0059 (14)0.0035 (13)0.0014 (12)
F60.045 (2)0.040 (2)0.0226 (16)0.0098 (16)0.0042 (14)0.0071 (14)
Geometric parameters (Å, º) top
Re—C11.929 (5)C13—H130.93
Re—C21.927 (6)C14—C151.432 (7)
Re—C31.923 (6)C16—C171.375 (8)
Re—N12.186 (4)C16—H160.93
Re—N22.179 (4)C17—C181.384 (7)
Re—N32.208 (4)C17—H170.93
O1—C11.131 (7)C18—C191.399 (7)
O2—C21.158 (7)C18—C211.504 (7)
O3—C31.156 (7)C19—C201.387 (7)
N1—C41.334 (6)C19—H190.93
N1—C141.363 (7)C20—H200.93
N2—C131.330 (6)C21—C221.526 (8)
N2—C151.372 (6)C21—H21A0.97
N3—C201.346 (6)C21—H21B0.97
N3—C161.353 (7)C22—C231.513 (8)
N4—C251.348 (7)C22—H22A0.97
N4—C261.349 (8)C22—H22B0.97
N5—C281.148 (9)C23—C271.390 (8)
C4—C51.400 (7)C23—C241.391 (8)
C4—H40.93C24—C251.388 (8)
C5—C61.376 (8)C24—H240.93
C5—H50.93C25—H250.93
C6—C71.410 (8)C26—C271.379 (9)
C6—H60.93C26—H260.93
C7—C141.405 (7)C27—H270.93
C7—C81.425 (7)C28—C291.466 (10)
C8—C91.363 (7)C29—H29A0.96
C8—H80.93C29—H29B0.96
C9—C101.431 (7)C29—H29C0.96
C9—H90.93P—F31.587 (4)
C10—C151.403 (7)P—F61.601 (3)
C10—C111.420 (7)P—F41.603 (3)
C11—C121.375 (8)P—F21.608 (3)
C11—H110.93P—F51.611 (3)
C12—C131.404 (8)P—F11.612 (3)
C12—H120.93
C3—Re—C288.9 (2)N3—C16—C17122.9 (5)
C3—Re—C187.2 (2)N3—C16—H16118.6
C2—Re—C189.6 (2)C17—C16—H16118.6
C3—Re—N2100.01 (19)C16—C17—C18120.4 (5)
C2—Re—N2171.09 (18)C16—C17—H17119.8
C1—Re—N291.25 (19)C18—C17—H17119.8
C3—Re—N1175.83 (19)C17—C18—C19116.9 (5)
C2—Re—N195.09 (19)C17—C18—C21122.2 (5)
C1—Re—N191.52 (19)C19—C18—C21120.9 (5)
N2—Re—N176.02 (16)C20—C19—C18119.9 (5)
C3—Re—N393.08 (19)C20—C19—H19120
C2—Re—N395.64 (19)C18—C19—H19120
C1—Re—N3174.74 (19)N3—C20—C19122.6 (5)
N2—Re—N383.52 (16)N3—C20—H20118.7
N1—Re—N387.78 (16)C19—C20—H20118.7
C4—N1—C14118.4 (4)C18—C21—C22110.2 (5)
C4—N1—Re126.7 (4)C18—C21—H21A109.6
C14—N1—Re114.8 (3)C22—C21—H21A109.6
C13—N2—C15118.2 (4)C18—C21—H21B109.6
C13—N2—Re127.4 (3)C22—C21—H21B109.6
C15—N2—Re114.5 (3)H21A—C21—H21B108.1
C20—N3—C16117.3 (4)C23—C22—C21112.6 (5)
C20—N3—Re122.5 (3)C23—C22—H22A109.1
C16—N3—Re120.2 (3)C21—C22—H22A109.1
C25—N4—C26116.0 (5)C23—C22—H22B109.1
O1—C1—Re176.6 (5)C21—C22—H22B109.1
O2—C2—Re176.9 (5)H22A—C22—H22B107.8
O3—C3—Re175.7 (5)C27—C23—C24117.0 (5)
N1—C4—C5122.1 (5)C27—C23—C22122.1 (6)
N1—C4—H4119C24—C23—C22120.8 (6)
C5—C4—H4119C25—C24—C23119.3 (5)
C6—C5—C4120.3 (5)C25—C24—H24120.4
C6—C5—H5119.8C23—C24—H24120.4
C4—C5—H5119.8N4—C25—C24124.0 (5)
C5—C6—C7118.6 (5)N4—C25—H25118
C5—C6—H6120.7C24—C25—H25118
C7—C6—H6120.7N4—C26—C27123.5 (5)
C14—C7—C6117.9 (5)N4—C26—H26118.3
C14—C7—C8119.2 (5)C27—C26—H26118.3
C6—C7—C8122.9 (5)C26—C27—C23120.2 (5)
C9—C8—C7120.8 (5)C26—C27—H27119.9
C9—C8—H8119.6C23—C27—H27119.9
C7—C8—H8119.6N5—C28—C29178.5 (8)
C8—C9—C10121.0 (5)C28—C29—H29A109.5
C8—C9—H9119.5C28—C29—H29B109.5
C10—C9—H9119.5H29A—C29—H29B109.5
C15—C10—C11117.7 (5)C28—C29—H29C109.5
C15—C10—C9119.2 (5)H29A—C29—H29C109.5
C11—C10—C9123.0 (5)H29B—C29—H29C109.5
C12—C11—C10118.5 (5)F3—P—F691.2 (2)
C12—C11—H11120.7F3—P—F490.6 (2)
C10—C11—H11120.7F6—P—F489.6 (2)
C11—C12—C13120.4 (5)F3—P—F290.3 (2)
C11—C12—H12119.8F6—P—F290.64 (18)
C13—C12—H12119.8F4—P—F2179.1 (2)
N2—C13—C12122.3 (5)F3—P—F589.95 (19)
N2—C13—H13118.8F6—P—F5178.8 (2)
C12—C13—H13118.8F4—P—F590.05 (19)
N1—C14—C7122.7 (5)F2—P—F589.73 (17)
N1—C14—C15117.1 (4)F3—P—F1179.6 (2)
C7—C14—C15120.1 (5)F6—P—F189.17 (19)
N2—C15—C10122.9 (4)F4—P—F189.5 (2)
N2—C15—C14117.5 (4)F2—P—F189.67 (18)
C10—C15—C14119.5 (4)F5—P—F189.68 (19)
C2—Re—N1—C42.6 (5)Re—N1—C14—C7176.1 (4)
C1—Re—N1—C487.1 (5)C4—N1—C14—C15179.1 (5)
N2—Re—N1—C4178.0 (5)Re—N1—C14—C152.9 (6)
N3—Re—N1—C498.1 (5)C6—C7—C14—N10.3 (8)
C2—Re—N1—C14178.5 (4)C8—C7—C14—N1179.5 (5)
C1—Re—N1—C1488.8 (4)C6—C7—C14—C15178.6 (5)
N2—Re—N1—C142.1 (3)C8—C7—C14—C151.6 (7)
N3—Re—N1—C1486.0 (4)C13—N2—C15—C100.7 (7)
C3—Re—N2—C132.3 (5)Re—N2—C15—C10179.1 (4)
C1—Re—N2—C1389.7 (5)C13—N2—C15—C14179.9 (4)
N1—Re—N2—C13179.1 (5)Re—N2—C15—C140.0 (6)
N3—Re—N2—C1389.7 (4)C11—C10—C15—N21.3 (7)
C3—Re—N2—C15177.6 (4)C9—C10—C15—N2178.2 (5)
C1—Re—N2—C1590.1 (4)C11—C10—C15—C14179.6 (5)
N1—Re—N2—C151.1 (3)C9—C10—C15—C141.0 (7)
N3—Re—N2—C1590.4 (3)N1—C14—C15—N21.9 (7)
C3—Re—N3—C20139.5 (4)C7—C14—C15—N2177.1 (5)
C2—Re—N3—C2050.3 (4)N1—C14—C15—C10178.9 (5)
N2—Re—N3—C20120.7 (4)C7—C14—C15—C102.1 (7)
N1—Re—N3—C2044.6 (4)C20—N3—C16—C172.7 (8)
C3—Re—N3—C1641.9 (4)Re—N3—C16—C17176.0 (4)
C2—Re—N3—C16131.1 (4)N3—C16—C17—C181.2 (8)
N2—Re—N3—C1657.9 (4)C16—C17—C18—C191.5 (8)
N1—Re—N3—C16134.0 (4)C16—C17—C18—C21176.4 (5)
C14—N1—C4—C51.1 (8)C17—C18—C19—C202.5 (8)
Re—N1—C4—C5174.7 (4)C21—C18—C19—C20175.4 (5)
N1—C4—C5—C61.6 (9)C16—N3—C20—C191.6 (8)
C4—C5—C6—C71.1 (9)Re—N3—C20—C19177.0 (4)
C5—C6—C7—C140.2 (8)C18—C19—C20—N31.0 (8)
C5—C6—C7—C8180.0 (5)C17—C18—C21—C2276.3 (7)
C14—C7—C8—C90.1 (8)C19—C18—C21—C22101.5 (6)
C6—C7—C8—C9179.6 (5)C18—C21—C22—C23175.2 (5)
C7—C8—C9—C101.3 (8)C21—C22—C23—C2775.2 (8)
C8—C9—C10—C150.7 (8)C21—C22—C23—C24102.5 (7)
C8—C9—C10—C11178.7 (5)C27—C23—C24—C252.5 (9)
C15—C10—C11—C121.4 (8)C22—C23—C24—C25179.7 (6)
C9—C10—C11—C12178.0 (5)C26—N4—C25—C241.1 (9)
C10—C11—C12—C131.0 (8)C23—C24—C25—N40.8 (10)
C15—N2—C13—C120.2 (8)C25—N4—C26—C271.4 (9)
Re—N2—C13—C12179.6 (4)N4—C26—C27—C230.3 (10)
C11—C12—C13—N20.4 (8)C24—C23—C27—C262.2 (9)
C4—N1—C14—C70.1 (7)C22—C23—C27—C26180.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F40.932.473.377 (6)166
C16—H16···F60.932.383.180 (6)145
C11—H11···F5i0.932.553.327 (6)142
C12—H12···F1i0.932.553.355 (6)145
C5—H5···F1ii0.932.523.382 (6)154
C19—H19···F4iii0.932.493.150 (6)128
C20—H20···F5iii0.932.453.317 (6)154
C21—H21A···F5iv0.972.533.486 (6)168
C22—H22B···O1v0.972.533.211 (8)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F40.932.473.377 (6)166.3
C16—H16···F60.932.383.180 (6)144.6
C11—H11···F5i0.932.553.327 (6)141.6
C12—H12···F1i0.932.553.355 (6)145.4
C5—H5···F1ii0.932.523.382 (6)154.2
C19—H19···F4iii0.932.493.150 (6)128.4
C20—H20···F5iii0.932.453.317 (6)154.4
C21—H21A···F5iv0.972.533.486 (6)168.3
C22—H22B···O1v0.972.533.211 (8)127.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by CAPES, CNPq and FAPEMIG. This work is also a collaboration research project of members of the Rede Mineira de Química (RQ - MG) also supported by FAPEMIG.

References

First citationArgazzi, R., Bertolasi, E., Chiorboli, C., Bignozzi, C. A., Itokazu, M. K. & Murakami Iha, N. Y. (2001). Inorg. Chem. 40, 6885–6891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoppens P., Leiserowitz L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIde, S., Karacan, N. & Tufan, Y. (1995). Acta Cryst. C51, 2304–2305.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, X., Chi, H.-J., Lu, G.-H., Xiao, G.-Y., Dong, Y., Zhang, D.-Y., Zhang, Z.-Q. & Hu, Z.-Z. (2012). Org. Electron. 13, 3138–3144.  Web of Science CrossRef CAS Google Scholar
First citationMizoguchi, S. K., Patrocinio, A. O. T. & Murakami Iha, N. Y. (2009). Synth. Met. 159, 2315–2317.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatrocinio, A. O. T., Brennaman, M. K., Meyer, T. J. & Murakami Iha, N. Y. (2010). J. Phys. Chem. A, 114, 12129–12137.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatrocinio, A. O. T., Frin, K. P. M. & Murakami Iha, N. Y. (2013). Inorg. Chem. 52, 5889–5896.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatrocinio, A. O. T. & Murakami Iha, N. Y. (2008). Inorg. Chem. 47, 10851–10857.  Web of Science PubMed CAS Google Scholar
First citationRanjan, S., Lin, S.-Y., Hwang, K.-C., Chi, Y., Ching, W.-L. & Liu, C.-S. (2003). Inorg. Chem. 42, 1248–1255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorp-Greenwood, F. L., Coogan, M. P., Mishra, L., Kumari, N., Rai, G. & Saripella, S. (2012). New J. Chem. 36, 64–72.  CAS Google Scholar
First citationWenger, O. S., Henling, L. M., Day, M. W., Winkler, J. R. & Gray, H. B. (2004). Inorg. Chem. 43, 2043–2048.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds