organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{3-(4-Chloro­phen­yl)-5-[4-(propan-2-yl)phen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}butan-1-one

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 May 2014; accepted 4 June 2014; online 11 June 2014)

In the title compound, C22H25ClN2O, the pyrazole ring exhibits an envelope conformation with the methine C atom as the flap. The benzene rings are twisted by 3.3 (5) and 84.6 (5)° from the pyrazole mean plane, and are inclined to each other by 81.4 (4)°. In the crystal, pairs of weak C—H⋯O hydrogen bonds form centrosymmetric dimers with an R22(16) graph-set motif. C—H⋯π inter­actions link the dimers into columns propagating in [100].

Related literature

For the biological activity of pyrazolines, see: Samshuddin et al. (2012a[Samshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Ragavendra, R. (2012a). Der Pharma Chem. 4, 1445-1457.],b[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012b). Med. Chem. Res. 21, 2012-2022.]). For related structures, see: Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292-o1293.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Fun et al. (2012a[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2680.],b[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655-o2656.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.], 2012c[Samshuddin, S., Narayana, B., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012c). Acta Cryst. E68, o3216-o3217.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Narayana et al., (2014[Narayana, B., Salian, V. V., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o763-o764.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25ClN2O

  • Mr = 368.89

  • Triclinic, [P \overline 1]

  • a = 6.8148 (6) Å

  • b = 11.1115 (9) Å

  • c = 13.8239 (15) Å

  • α = 70.935 (9)°

  • β = 81.420 (8)°

  • γ = 75.829 (7)°

  • V = 956.52 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.86 mm−1

  • T = 173 K

  • 0.48 × 0.24 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.777, Tmax = 1.000

  • 6121 measured reflections

  • 3624 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.03

  • 3624 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.57 3.437 (2) 151
C20—H20ACgii 0.99 2.67 3.5079 (19) 143
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrazoline derivatives are biologically active compounds. They possess activities like antimicrobial, analgesic and antioxidant activities (Samshuddin et al., 2012a,b). The crystal structure of some pyrazoline derivatives viz., 3,5-bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde (Baktır et al., 2011), 3,5-bis(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (Jasinski et al., 2010), 5-(4-bromophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 1-[5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl] butan-1-one (Fun et al., 2012a,b) and 3,5-bis(4-bromophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 3,5-bis(4-fluorophenyl)-1-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (Samshuddin et al., 2010, 2012c) have been reported. Herein we report the crystal structure of the title compound (I).

In (I) (Fig. 1), the pyrazole ring exhibits an envelope conformation (puckering parameters Q =0.1957 (19)Å, φ = 314.1 (5)°; Cremer & Pople, 1975) with the methine carbon atom as a flap. Bond lengths are in normal ranges and correspond to those observed in the related structures (Baktır et al., 2011; Jasinski et al., 2010; Fun et al., 2012a,b; Samshuddin et al., 2010, 2012c). The two benzene rings are twisted at 3.3 (5)° and 84.6 (5)°, respectively, from the pyrazole mean plane, and are inclined to each other at 81.4 (4)°.

In the crystal, a weak C—H···O intermolecular interaction between the phenyl ring and the butan-1-one group is observed forming dimers in an R22[16] ring-set motif (Fig. 2). In addition, weak C—H···π intermolecular stacking interactions (Table 1) are also present and link further these dimers into columns propagated in [100].

Related literature top

For the biological activity of pyrazolines, see: Samshuddin et al. (2012a,b). For related structures, see: Baktır et al. (2011); Jasinski et al. (2010); Fun et al. (2012a,b); Samshuddin et al. (2010, 2012c). For puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Narayana et al., (2014).

Experimental top

To a mixture of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl) phenyl] prop-2-en-1-one (2.85 g, 0.01 mol) and hydrazine hydrate (0.5 mL, 0.01 mol) in 30 mL butyric acid was refluxed for 10h (Fig. 3). The reaction mixture was cooled and poured into 50 mL ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method (m.p.: 369–371 K).

Refinement top

All H atoms were placed in their calculated positions and refined using the riding model with C—H of 0.95 - 1.00 Å. Isotropic displacement parameters for H atoms were set to 1.2–1.5 times Ueq of the parent atom. The idealised Me was refined as a rotating group.

Structure description top

Pyrazoline derivatives are biologically active compounds. They possess activities like antimicrobial, analgesic and antioxidant activities (Samshuddin et al., 2012a,b). The crystal structure of some pyrazoline derivatives viz., 3,5-bis(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde (Baktır et al., 2011), 3,5-bis(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (Jasinski et al., 2010), 5-(4-bromophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 1-[5-(4-bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl] butan-1-one (Fun et al., 2012a,b) and 3,5-bis(4-bromophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole, 3,5-bis(4-fluorophenyl)-1-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (Samshuddin et al., 2010, 2012c) have been reported. Herein we report the crystal structure of the title compound (I).

In (I) (Fig. 1), the pyrazole ring exhibits an envelope conformation (puckering parameters Q =0.1957 (19)Å, φ = 314.1 (5)°; Cremer & Pople, 1975) with the methine carbon atom as a flap. Bond lengths are in normal ranges and correspond to those observed in the related structures (Baktır et al., 2011; Jasinski et al., 2010; Fun et al., 2012a,b; Samshuddin et al., 2010, 2012c). The two benzene rings are twisted at 3.3 (5)° and 84.6 (5)°, respectively, from the pyrazole mean plane, and are inclined to each other at 81.4 (4)°.

In the crystal, a weak C—H···O intermolecular interaction between the phenyl ring and the butan-1-one group is observed forming dimers in an R22[16] ring-set motif (Fig. 2). In addition, weak C—H···π intermolecular stacking interactions (Table 1) are also present and link further these dimers into columns propagated in [100].

For the biological activity of pyrazolines, see: Samshuddin et al. (2012a,b). For related structures, see: Baktır et al. (2011); Jasinski et al. (2010); Fun et al. (2012a,b); Samshuddin et al. (2010, 2012c). For puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Narayana et al., (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the <b axis. Dashed lines indicate weak C—H···O hydrogen bonds. H atoms not involved with these weak intermolecular interactions have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of (I).
1-{3-(4-Chlorophenyl)-5-[4-(propan-2-yl)phenyl]-4,5-dihydro-1H-pyrazol-1-yl}butan-1-one top
Crystal data top
C22H25ClN2OZ = 2
Mr = 368.89F(000) = 392
Triclinic, P1Dx = 1.281 Mg m3
a = 6.8148 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.1115 (9) ÅCell parameters from 2535 reflections
c = 13.8239 (15) Åθ = 4.6–71.4°
α = 70.935 (9)°µ = 1.86 mm1
β = 81.420 (8)°T = 173 K
γ = 75.829 (7)°Prism, colourless
V = 956.52 (17) Å30.48 × 0.24 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
3624 independent reflections
Radiation source: Enhance (Cu) X-ray Source3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1310
Tmin = 0.777, Tmax = 1.000l = 1616
6121 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3624 reflectionsΔρmax = 0.36 e Å3
238 parametersΔρmin = 0.29 e Å3
0 restraints
Crystal data top
C22H25ClN2Oγ = 75.829 (7)°
Mr = 368.89V = 956.52 (17) Å3
Triclinic, P1Z = 2
a = 6.8148 (6) ÅCu Kα radiation
b = 11.1115 (9) ŵ = 1.86 mm1
c = 13.8239 (15) ÅT = 173 K
α = 70.935 (9)°0.48 × 0.24 × 0.12 mm
β = 81.420 (8)°
Data collection top
Agilent Eos Gemini
diffractometer
3624 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3104 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 1.000Rint = 0.028
6121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3624 reflectionsΔρmin = 0.29 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.42326 (7)0.34338 (5)0.49295 (4)0.04081 (18)
O10.25099 (19)0.72366 (12)0.02504 (10)0.0295 (3)
N10.4990 (2)0.67625 (14)0.12995 (11)0.0225 (3)
N20.6268 (2)0.58597 (14)0.20187 (11)0.0213 (3)
C10.3613 (2)0.64081 (16)0.08821 (13)0.0216 (3)
C20.5284 (3)0.81112 (16)0.10752 (13)0.0229 (4)
H20.53460.85530.03180.027*
C30.7387 (3)0.78265 (17)0.14768 (13)0.0249 (4)
H3A0.84670.79020.09090.030*
H3B0.74400.84200.18680.030*
C40.7574 (2)0.64368 (16)0.21642 (13)0.0214 (3)
C50.9147 (2)0.57270 (17)0.28833 (12)0.0218 (3)
C60.9295 (3)0.43990 (18)0.33925 (15)0.0297 (4)
H60.83250.39700.32980.036*
C71.0828 (3)0.37023 (19)0.40300 (15)0.0337 (4)
H71.09220.27990.43700.040*
C81.2233 (3)0.43392 (19)0.41678 (13)0.0276 (4)
C91.2096 (3)0.56538 (19)0.37002 (14)0.0285 (4)
H91.30480.60810.38160.034*
C101.0544 (3)0.63514 (18)0.30554 (14)0.0258 (4)
H101.04370.72590.27310.031*
C110.3582 (3)0.88801 (16)0.16102 (13)0.0221 (3)
C120.3619 (3)0.88196 (18)0.26294 (14)0.0285 (4)
H120.47680.83120.29940.034*
C130.2016 (3)0.94830 (18)0.31206 (14)0.0306 (4)
H130.20810.94210.38170.037*
C140.0295 (3)1.02465 (17)0.26082 (14)0.0259 (4)
C150.0259 (3)1.03183 (16)0.15890 (14)0.0254 (4)
H150.08851.08330.12220.030*
C160.1878 (3)0.96452 (16)0.10962 (13)0.0237 (4)
H160.18200.97090.03980.028*
C170.1436 (3)1.09614 (19)0.31842 (15)0.0314 (4)
H170.08221.14730.34880.038*
C180.3049 (4)1.1923 (3)0.25140 (19)0.0543 (7)
H18A0.24101.25350.19470.081*
H18B0.40251.24040.29240.081*
H18C0.37551.14530.22370.081*
C190.2392 (4)1.0005 (3)0.40755 (19)0.0535 (6)
H19A0.29750.94610.38120.080*
H19B0.34641.04870.44470.080*
H19C0.13520.94500.45420.080*
C200.3585 (2)0.49736 (16)0.12252 (13)0.0222 (4)
H20A0.33510.46710.19820.027*
H20B0.49280.44840.10350.027*
C210.1959 (3)0.46751 (17)0.07518 (13)0.0245 (4)
H21A0.21870.49780.00050.029*
H21B0.06120.51560.09450.029*
C220.1971 (3)0.3223 (2)0.11055 (16)0.0347 (4)
H22A0.09470.30610.07620.052*
H22B0.16600.29320.18500.052*
H22C0.33140.27420.09310.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0383 (3)0.0454 (3)0.0359 (3)0.0011 (2)0.0233 (2)0.0053 (2)
O10.0329 (7)0.0260 (6)0.0298 (7)0.0028 (5)0.0177 (5)0.0045 (5)
N10.0239 (7)0.0197 (7)0.0240 (7)0.0018 (6)0.0114 (6)0.0046 (6)
N20.0219 (7)0.0210 (7)0.0206 (7)0.0006 (5)0.0085 (5)0.0055 (5)
C10.0216 (8)0.0246 (9)0.0204 (8)0.0033 (6)0.0054 (6)0.0086 (6)
C20.0263 (8)0.0212 (8)0.0216 (8)0.0063 (7)0.0085 (6)0.0032 (6)
C30.0231 (8)0.0243 (9)0.0276 (9)0.0054 (7)0.0070 (7)0.0058 (7)
C40.0203 (8)0.0237 (8)0.0211 (8)0.0036 (6)0.0035 (6)0.0082 (6)
C50.0201 (8)0.0269 (9)0.0192 (8)0.0026 (6)0.0046 (6)0.0084 (7)
C60.0297 (9)0.0288 (9)0.0325 (10)0.0099 (7)0.0110 (7)0.0054 (8)
C70.0385 (10)0.0272 (10)0.0329 (10)0.0058 (8)0.0148 (8)0.0012 (8)
C80.0260 (9)0.0373 (10)0.0187 (8)0.0017 (7)0.0096 (7)0.0077 (7)
C90.0262 (9)0.0375 (10)0.0265 (9)0.0091 (7)0.0086 (7)0.0113 (8)
C100.0278 (9)0.0257 (9)0.0262 (9)0.0056 (7)0.0071 (7)0.0086 (7)
C110.0251 (8)0.0171 (8)0.0242 (8)0.0050 (6)0.0075 (6)0.0035 (6)
C120.0322 (9)0.0251 (9)0.0261 (9)0.0016 (7)0.0163 (7)0.0042 (7)
C130.0390 (10)0.0309 (10)0.0228 (9)0.0016 (8)0.0118 (7)0.0092 (7)
C140.0318 (9)0.0199 (8)0.0258 (9)0.0051 (7)0.0058 (7)0.0055 (7)
C150.0271 (9)0.0199 (8)0.0281 (9)0.0027 (6)0.0116 (7)0.0033 (7)
C160.0309 (9)0.0214 (8)0.0193 (8)0.0058 (7)0.0098 (7)0.0030 (6)
C170.0348 (10)0.0280 (9)0.0312 (10)0.0023 (8)0.0064 (8)0.0101 (8)
C180.0466 (13)0.0582 (15)0.0393 (12)0.0204 (11)0.0043 (10)0.0122 (11)
C190.0593 (15)0.0477 (14)0.0426 (13)0.0076 (11)0.0094 (11)0.0075 (11)
C200.0224 (8)0.0237 (9)0.0221 (8)0.0034 (6)0.0069 (6)0.0078 (7)
C210.0241 (8)0.0279 (9)0.0251 (9)0.0063 (7)0.0055 (7)0.0108 (7)
C220.0393 (11)0.0331 (10)0.0386 (11)0.0137 (8)0.0063 (8)0.0141 (8)
Geometric parameters (Å, º) top
Cl1—C81.7443 (17)C12—C131.382 (3)
O1—C11.228 (2)C13—H130.9500
N1—N21.3903 (18)C13—C141.402 (2)
N1—C11.363 (2)C14—C151.388 (2)
N1—C21.486 (2)C14—C171.527 (2)
N2—C41.289 (2)C15—H150.9500
C1—C201.511 (2)C15—C161.395 (3)
C2—H21.0000C16—H160.9500
C2—C31.537 (2)C17—H171.0000
C2—C111.515 (2)C17—C181.513 (3)
C3—H3A0.9900C17—C191.522 (3)
C3—H3B0.9900C18—H18A0.9800
C3—C41.512 (2)C18—H18B0.9800
C4—C51.467 (2)C18—H18C0.9800
C5—C61.397 (3)C19—H19A0.9800
C5—C101.394 (2)C19—H19B0.9800
C6—H60.9500C19—H19C0.9800
C6—C71.378 (3)C20—H20A0.9900
C7—H70.9500C20—H20B0.9900
C7—C81.388 (3)C20—C211.518 (2)
C8—C91.376 (3)C21—H21A0.9900
C9—H90.9500C21—H21B0.9900
C9—C101.394 (2)C21—C221.524 (3)
C10—H100.9500C22—H22A0.9800
C11—C121.392 (2)C22—H22B0.9800
C11—C161.394 (2)C22—H22C0.9800
C12—H120.9500
N2—N1—C2112.45 (13)C12—C13—C14121.12 (17)
C1—N1—N2121.93 (14)C14—C13—H13119.4
C1—N1—C2125.61 (14)C13—C14—C17119.15 (16)
C4—N2—N1107.90 (14)C15—C14—C13117.76 (16)
O1—C1—N1119.87 (16)C15—C14—C17123.09 (16)
O1—C1—C20123.77 (15)C14—C15—H15119.5
N1—C1—C20116.35 (14)C14—C15—C16120.95 (16)
N1—C2—H2110.2C16—C15—H15119.5
N1—C2—C3100.23 (13)C11—C16—C15121.13 (16)
N1—C2—C11110.45 (14)C11—C16—H16119.4
C3—C2—H2110.2C15—C16—H16119.4
C11—C2—H2110.2C14—C17—H17106.8
C11—C2—C3115.22 (14)C18—C17—C14114.41 (17)
C2—C3—H3A111.4C18—C17—H17106.8
C2—C3—H3B111.4C18—C17—C19110.51 (19)
H3A—C3—H3B109.2C19—C17—C14111.04 (16)
C4—C3—C2101.99 (13)C19—C17—H17106.8
C4—C3—H3A111.4C17—C18—H18A109.5
C4—C3—H3B111.4C17—C18—H18B109.5
N2—C4—C3113.43 (14)C17—C18—H18C109.5
N2—C4—C5120.71 (15)H18A—C18—H18B109.5
C5—C4—C3125.71 (15)H18A—C18—H18C109.5
C6—C5—C4120.24 (15)H18B—C18—H18C109.5
C10—C5—C4120.94 (16)C17—C19—H19A109.5
C10—C5—C6118.80 (16)C17—C19—H19B109.5
C5—C6—H6119.5C17—C19—H19C109.5
C7—C6—C5120.99 (17)H19A—C19—H19B109.5
C7—C6—H6119.5H19A—C19—H19C109.5
C6—C7—H7120.5H19B—C19—H19C109.5
C6—C7—C8119.10 (17)C1—C20—H20A109.0
C8—C7—H7120.5C1—C20—H20B109.0
C7—C8—Cl1118.71 (15)C1—C20—C21112.72 (14)
C9—C8—Cl1119.96 (14)H20A—C20—H20B107.8
C9—C8—C7121.32 (16)C21—C20—H20A109.0
C8—C9—H9120.4C21—C20—H20B109.0
C8—C9—C10119.24 (17)C20—C21—H21A109.3
C10—C9—H9120.4C20—C21—H21B109.3
C5—C10—H10119.8C20—C21—C22111.64 (15)
C9—C10—C5120.49 (17)H21A—C21—H21B108.0
C9—C10—H10119.8C22—C21—H21A109.3
C12—C11—C2121.95 (15)C22—C21—H21B109.3
C12—C11—C16117.72 (16)C21—C22—H22A109.5
C16—C11—C2120.30 (15)C21—C22—H22B109.5
C11—C12—H12119.3C21—C22—H22C109.5
C13—C12—C11121.31 (16)H22A—C22—H22B109.5
C13—C12—H12119.3H22A—C22—H22C109.5
C12—C13—H13119.4H22B—C22—H22C109.5
Cl1—C8—C9—C10177.00 (14)C3—C2—C11—C16153.55 (15)
O1—C1—C20—C213.4 (2)C3—C4—C5—C6172.73 (17)
N1—N2—C4—C33.92 (19)C3—C4—C5—C105.9 (3)
N1—N2—C4—C5179.60 (13)C4—C5—C6—C7176.61 (17)
N1—C1—C20—C21177.93 (14)C4—C5—C10—C9176.72 (15)
N1—C2—C3—C418.43 (16)C5—C6—C7—C80.3 (3)
N1—C2—C11—C1284.01 (19)C6—C5—C10—C91.9 (3)
N1—C2—C11—C1693.79 (18)C6—C7—C8—Cl1177.13 (15)
N2—N1—C1—O1179.87 (15)C6—C7—C8—C91.5 (3)
N2—N1—C1—C201.4 (2)C7—C8—C9—C101.6 (3)
N2—N1—C2—C318.47 (17)C8—C9—C10—C50.1 (3)
N2—N1—C2—C11103.49 (15)C10—C5—C6—C72.0 (3)
N2—C4—C5—C62.4 (2)C11—C2—C3—C4100.09 (16)
N2—C4—C5—C10179.00 (15)C11—C12—C13—C140.3 (3)
C1—N1—N2—C4171.21 (15)C12—C11—C16—C150.5 (2)
C1—N1—C2—C3162.79 (16)C12—C13—C14—C150.3 (3)
C1—N1—C2—C1175.2 (2)C12—C13—C14—C17179.98 (18)
C1—C20—C21—C22179.69 (15)C13—C14—C15—C160.4 (3)
C2—N1—N2—C410.00 (19)C13—C14—C17—C18170.5 (2)
C2—N1—C1—O11.3 (3)C13—C14—C17—C1963.6 (2)
C2—N1—C1—C20180.00 (15)C14—C15—C16—C110.0 (3)
C2—C3—C4—N215.17 (19)C15—C14—C17—C189.2 (3)
C2—C3—C4—C5169.40 (15)C15—C14—C17—C19116.7 (2)
C2—C11—C12—C13177.21 (17)C16—C11—C12—C130.6 (3)
C2—C11—C16—C15177.37 (15)C17—C14—C15—C16179.92 (16)
C3—C2—C11—C1228.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.573.437 (2)151
C20—H20A···Cgii0.992.673.5079 (19)143
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.573.437 (2)151
C20—H20A···Cgii0.992.673.5079 (19)143
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2680.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655–o2656.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayana, B., Salian, V. V., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o763–o764.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012b). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Yathirajan, H. S. & Ragavendra, R. (2012a). Der Pharma Chem. 4, 1445–1457.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012c). Acta Cryst. E68, o3216–o3217.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds