organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­phenyl-9,10-dioxo-9,10-di­hydro­anthracene-2,7-disulfonamide

aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: yuanweiguan_1@cwnu.edu.cn

(Received 7 June 2013; accepted 23 June 2013; online 29 June 2013)

The title mol­ecule, C26H18N2O6S2, has an overall Z-shaped conformation, in which the benzene rings are inclined to the anthra­quinone mean plane by 60.60 (9) and 50.66 (13)°. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For applications of sulfonamide derivitives, see: Valeur & Leray (2000[Valeur, B. & Leray, I. (2000). Coord Chem. Rev. 205, 3-40.]); Chen et al. (2000[Chen, L. P., Yang, L. T., Li, H. W., Gao, Y., Deng, D. Y., Wu, Y. Q. & Ma, L. J. (2000). Inorg. Chem. 50, 10028—0032.]); Kuljit & Subodh (2011[Kuljit, K. & Subodh, K. (2011). Dalton Trans. 40, 2451-2458.]). For applications of anthra­quinone derivitives, see: Lu et al. (2006[Lu, Z. K., Lord, S. J., Wang, H., Moerner, W. E. & Twieg, R. J. (2006). J. Org. Chem. 71, 9651-9657.]); Liu et al. (2011[Liu, Y. L., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M. L., Wang, P. & Guo, W. (2011). Org. Biomol. Chem. 9, 432-437.]). For details of the synthesis, see: Kuljit & Subodh (2011[Kuljit, K. & Subodh, K. (2011). Dalton Trans. 40, 2451-2458.]); Zeng & King (2002[Zeng, B. B. & King, S. B. (2002). Synthesis, 16, 2335-2337.]). For a related structure, see: Li et al. (2009[Li, H. W., Li, Y., Dang, Y. Q., Ma, L. J., Wu, Y. Q. & Hou, G. F. (2009). Chem. Commun. 29, 4453-4455.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N2O6S2

  • Mr = 518.54

  • Monoclinic, P 21 /c

  • a = 10.247 (4) Å

  • b = 6.395 (2) Å

  • c = 36.265 (12) Å

  • β = 104.511 (12)°

  • V = 2300.6 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.962

  • 12233 measured reflections

  • 4512 independent reflections

  • 1965 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.146

  • S = 1.00

  • 4512 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O4i 0.86 2.55 3.110 (4) 123
N1—H1B⋯O2ii 0.86 2.32 2.952 (5) 131
C19—H19A⋯O6iii 0.93 2.35 3.164 (5) 146
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+3, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, sulfonamide and its derivatives attract more attention due to their applications in molecular recognition (Kuljit et al., 2011). They can be used as fluorescent sensors to detect heavy metal ions (Chen et al., 2000) in view of good sensitivity, high selectivity, fast response and convenient observation (Valeur & Leray, 2000). Normally, a fluorescent sensor consists of a receptor for recognition and a fluorophore for signaling the recognition event. Anthraquinone and many of its derivatives are analogous to naphthalene dyes, therefore, they have been extensively explored as fluorescence probes in various chemical and biological systems (Lu et al., 2006; Liu et al., 2011). Herein, we report the synthesis and crystal structure of the title compound, (I), in which the anthraquinone fragment acts as a fluorophore.

In (I) (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987) and correspond well to those observed in the related compound (Li et al., 2009). Two benzene rings are inclined to the anthraquinone mean plane at 60.60 (9)° and 50.66 (13)°, respectively. In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Related literature top

For applications of sulfonamide derivitives, see: Valeur & Leray (2000); Chen et al. (2000); Kuljit et al. (2011). For applications of anthraquinone derivitives, see: Lu et al. (2006); Liu et al. (2011). For details of the synthesis, see: Kuljit & Subodh (2011); Zeng & King (2002). For a related structure, see: Li et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of aniline (372 mg, 4 mmol) and triethylamine(8 mmol) in dry dichloroethane(20 ml) was stirred at RT, then, the solution of N,N'– bisphenyl- 9,10- dioxo-9,10-dihydro-2,7- anthracenedisulfonyl chloride (977 mg, 2.2 mmol) in dry dichloroethane (30 ml) was added during 5 min, the mixture was stirred at RT for 8 h under nitrogen in air. Then the solvent was removed completely under vacuum and the solid washed with water yielding the title compound (Kuljit et al.,2011; Zeng et al.,2002). Yellow needlelike single crystals suitable for X-ray diffraction were obtained by volatilizing dichloromethane slowly.

Refinement top

H atoms were placed in calculated positions [N—H = 0.86 Å, C—H = 0.93 Å], and refined in riding mode, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

In recent years, sulfonamide and its derivatives attract more attention due to their applications in molecular recognition (Kuljit et al., 2011). They can be used as fluorescent sensors to detect heavy metal ions (Chen et al., 2000) in view of good sensitivity, high selectivity, fast response and convenient observation (Valeur & Leray, 2000). Normally, a fluorescent sensor consists of a receptor for recognition and a fluorophore for signaling the recognition event. Anthraquinone and many of its derivatives are analogous to naphthalene dyes, therefore, they have been extensively explored as fluorescence probes in various chemical and biological systems (Lu et al., 2006; Liu et al., 2011). Herein, we report the synthesis and crystal structure of the title compound, (I), in which the anthraquinone fragment acts as a fluorophore.

In (I) (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987) and correspond well to those observed in the related compound (Li et al., 2009). Two benzene rings are inclined to the anthraquinone mean plane at 60.60 (9)° and 50.66 (13)°, respectively. In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

For applications of sulfonamide derivitives, see: Valeur & Leray (2000); Chen et al. (2000); Kuljit et al. (2011). For applications of anthraquinone derivitives, see: Lu et al. (2006); Liu et al. (2011). For details of the synthesis, see: Kuljit & Subodh (2011); Zeng & King (2002). For a related structure, see: Li et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with atom numbering. The displacement ellipsoids are drawn at the 30% probability level. H atoms omitted for clarity.
N,N'-Diphenyl-9,10-dioxo-9,10-dihydroanthracene-2,7-disulfonamide top
Crystal data top
C26H18N2O6S2F(000) = 1072
Mr = 518.54Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 620 reflections
a = 10.247 (4) Åθ = 2.7–17.7°
b = 6.395 (2) ŵ = 0.28 mm1
c = 36.265 (12) ÅT = 293 K
β = 104.511 (12)°Needle, yellow
V = 2300.6 (14) Å30.26 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4512 independent reflections
Radiation source: fine-focus sealed tube1965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 812
Tmin = 0.931, Tmax = 0.962k = 77
12233 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
4512 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C26H18N2O6S2V = 2300.6 (14) Å3
Mr = 518.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.247 (4) ŵ = 0.28 mm1
b = 6.395 (2) ÅT = 293 K
c = 36.265 (12) Å0.26 × 0.17 × 0.14 mm
β = 104.511 (12)°
Data collection top
Bruker APEXII CCD
diffractometer
4512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1965 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.962Rint = 0.088
12233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
4512 reflectionsΔρmin = 0.32 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58554 (13)0.18230 (18)0.79332 (3)0.0572 (4)
S20.28393 (12)1.46829 (17)0.92991 (3)0.0563 (4)
O10.6506 (3)0.0105 (4)0.80672 (8)0.0677 (9)
O20.4492 (3)0.1852 (4)0.77093 (8)0.0677 (9)
O30.3522 (3)0.8677 (5)0.83377 (8)0.0714 (10)
O40.7155 (3)0.6645 (5)0.96336 (7)0.0645 (9)
O50.2258 (3)1.5295 (4)0.89183 (7)0.0634 (9)
O60.3526 (3)1.6176 (4)0.95722 (8)0.0720 (9)
N10.6729 (4)0.3019 (5)0.76842 (9)0.0580 (10)
H1B0.63220.35220.74660.070*
N20.1695 (3)1.3670 (5)0.94892 (9)0.0566 (10)
H2B0.15381.42480.96880.068*
C10.8998 (6)0.1581 (8)0.77943 (12)0.0693 (14)
H1A0.86360.02920.77030.083*
C21.0385 (7)0.1863 (11)0.79121 (14)0.0858 (17)
H2A1.09540.07520.78960.103*
C31.0928 (6)0.3734 (12)0.80505 (14)0.0867 (18)
H3A1.18580.39000.81290.104*
C41.0079 (7)0.5385 (10)0.80733 (13)0.0823 (16)
H4A1.04440.66710.81650.099*
C50.8700 (6)0.5145 (8)0.79609 (12)0.0665 (13)
H5A0.81380.62530.79840.080*
C60.8160 (5)0.3270 (8)0.78157 (11)0.0556 (12)
C70.6861 (4)0.2840 (7)0.86814 (11)0.0547 (12)
H7A0.73850.16430.86930.066*
C80.5946 (4)0.3395 (7)0.83429 (11)0.0472 (11)
C90.5143 (4)0.5151 (6)0.83231 (11)0.0481 (11)
H9A0.45280.55010.80960.058*
C100.5262 (4)0.6392 (6)0.86460 (11)0.0455 (11)
C110.6200 (4)0.5845 (6)0.89853 (11)0.0452 (11)
C120.6987 (4)0.4077 (7)0.90007 (12)0.0512 (11)
H12A0.76030.37190.92270.061*
C130.6374 (4)0.7168 (7)0.93335 (12)0.0489 (11)
C140.5571 (4)0.9119 (6)0.93028 (11)0.0455 (11)
C150.4591 (4)0.9599 (6)0.89736 (11)0.0438 (10)
C160.4378 (4)0.8243 (7)0.86281 (11)0.0502 (11)
C170.3778 (4)1.1325 (7)0.89652 (11)0.0503 (11)
H17A0.31151.16400.87460.060*
C180.3949 (4)1.2593 (6)0.92850 (11)0.0478 (11)
C190.4951 (4)1.2139 (7)0.96133 (11)0.0551 (12)
H19A0.50711.29980.98260.066*
C200.5760 (4)1.0420 (7)0.96214 (11)0.0538 (12)
H20A0.64341.01210.98390.065*
C210.0947 (4)1.1849 (7)0.93340 (12)0.0488 (11)
C220.0754 (5)1.0319 (8)0.95845 (12)0.0642 (13)
H22A0.10911.05150.98450.077*
C230.0068 (5)0.8506 (8)0.94520 (17)0.0824 (16)
H23A0.00660.74880.96220.099*
C240.0416 (5)0.8218 (8)0.90673 (17)0.0739 (15)
H24A0.08710.69930.89750.089*
C250.0229 (5)0.9733 (8)0.88214 (14)0.0710 (14)
H25A0.05510.95220.85610.085*
C260.0431 (4)1.1582 (8)0.89523 (12)0.0626 (13)
H26A0.05211.26260.87820.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0700 (9)0.0481 (7)0.0503 (7)0.0020 (7)0.0094 (6)0.0015 (6)
S20.0659 (8)0.0510 (7)0.0529 (8)0.0088 (7)0.0166 (6)0.0050 (6)
O10.095 (2)0.0398 (18)0.0637 (19)0.0054 (17)0.0110 (18)0.0079 (15)
O20.065 (2)0.061 (2)0.0660 (19)0.0071 (17)0.0047 (17)0.0067 (16)
O30.083 (2)0.079 (2)0.0415 (18)0.0234 (19)0.0047 (17)0.0046 (16)
O40.066 (2)0.078 (2)0.0431 (18)0.0071 (18)0.0017 (16)0.0034 (16)
O50.081 (2)0.0580 (19)0.0484 (18)0.0018 (17)0.0117 (17)0.0043 (15)
O60.086 (2)0.057 (2)0.066 (2)0.0179 (18)0.0065 (18)0.0195 (16)
N10.076 (3)0.061 (2)0.0359 (19)0.001 (2)0.013 (2)0.0038 (18)
N20.063 (2)0.062 (2)0.051 (2)0.006 (2)0.027 (2)0.0133 (18)
C10.087 (4)0.074 (4)0.048 (3)0.012 (3)0.021 (3)0.002 (3)
C20.088 (5)0.118 (5)0.059 (3)0.035 (4)0.032 (3)0.017 (4)
C30.071 (4)0.138 (6)0.050 (3)0.007 (4)0.014 (3)0.018 (4)
C40.093 (5)0.099 (5)0.053 (3)0.012 (4)0.015 (3)0.006 (3)
C50.083 (4)0.065 (4)0.054 (3)0.007 (3)0.022 (3)0.001 (3)
C60.079 (4)0.054 (3)0.035 (2)0.007 (3)0.018 (2)0.001 (2)
C70.057 (3)0.056 (3)0.051 (3)0.001 (2)0.012 (2)0.002 (2)
C80.048 (3)0.051 (3)0.045 (3)0.006 (2)0.015 (2)0.001 (2)
C90.047 (3)0.052 (3)0.041 (2)0.004 (2)0.003 (2)0.005 (2)
C100.051 (3)0.049 (3)0.036 (2)0.006 (2)0.011 (2)0.004 (2)
C110.045 (3)0.049 (3)0.041 (3)0.009 (2)0.011 (2)0.006 (2)
C120.048 (3)0.060 (3)0.044 (3)0.006 (2)0.008 (2)0.007 (2)
C130.045 (3)0.057 (3)0.041 (3)0.009 (2)0.004 (2)0.008 (2)
C140.046 (3)0.051 (3)0.037 (2)0.011 (2)0.007 (2)0.004 (2)
C150.052 (3)0.044 (3)0.036 (2)0.009 (2)0.013 (2)0.004 (2)
C160.055 (3)0.056 (3)0.038 (2)0.001 (2)0.009 (2)0.005 (2)
C170.054 (3)0.056 (3)0.040 (3)0.010 (2)0.008 (2)0.005 (2)
C180.050 (3)0.050 (3)0.044 (3)0.011 (2)0.010 (2)0.000 (2)
C190.066 (3)0.058 (3)0.041 (3)0.013 (3)0.012 (2)0.009 (2)
C200.053 (3)0.064 (3)0.039 (3)0.007 (3)0.001 (2)0.000 (2)
C210.045 (3)0.051 (3)0.051 (3)0.001 (2)0.013 (2)0.002 (2)
C220.064 (3)0.077 (4)0.051 (3)0.002 (3)0.012 (3)0.000 (3)
C230.085 (4)0.072 (4)0.095 (4)0.011 (3)0.032 (4)0.017 (3)
C240.065 (4)0.060 (3)0.100 (4)0.012 (3)0.028 (3)0.005 (3)
C250.063 (3)0.078 (4)0.073 (3)0.010 (3)0.019 (3)0.014 (3)
C260.064 (3)0.070 (3)0.052 (3)0.008 (3)0.010 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—O11.428 (3)C9—C101.394 (5)
S1—O21.430 (3)C9—H9A0.9300
S1—N11.615 (4)C10—C111.402 (5)
S1—C81.777 (4)C10—C161.482 (6)
S2—O51.415 (3)C11—C121.382 (5)
S2—O61.428 (3)C11—C131.493 (5)
S2—N21.636 (3)C12—H12A0.9300
S2—C181.764 (4)C13—C141.483 (5)
O3—C161.222 (4)C14—C151.388 (5)
O4—C131.225 (4)C14—C201.398 (5)
N1—C61.433 (5)C15—C171.379 (5)
N1—H1B0.8600C15—C161.494 (5)
N2—C211.429 (5)C17—C181.390 (5)
N2—H2B0.8600C17—H17A0.9300
C1—C21.390 (7)C18—C191.394 (5)
C1—C61.394 (6)C19—C201.372 (5)
C1—H1A0.9300C19—H19A0.9300
C2—C31.361 (7)C20—H20A0.9300
C2—H2A0.9300C21—C261.363 (5)
C3—C41.383 (7)C21—C221.383 (6)
C3—H3A0.9300C22—C231.379 (6)
C4—C51.378 (6)C22—H22A0.9300
C4—H4A0.9300C23—C241.371 (6)
C5—C61.370 (6)C23—H23A0.9300
C5—H5A0.9300C24—C251.362 (6)
C7—C121.382 (5)C24—H24A0.9300
C7—C81.391 (5)C25—C261.386 (6)
C7—H7A0.9300C25—H25A0.9300
C8—C91.384 (5)C26—H26A0.9300
O1—S1—O2120.75 (19)C12—C11—C10120.3 (4)
O1—S1—N1108.8 (2)C12—C11—C13119.0 (4)
O2—S1—N1106.02 (19)C10—C11—C13120.7 (4)
O1—S1—C8106.36 (19)C11—C12—C7120.3 (4)
O2—S1—C8107.9 (2)C11—C12—H12A119.9
N1—S1—C8106.22 (19)C7—C12—H12A119.9
O5—S2—O6120.37 (19)O4—C13—C14121.6 (4)
O5—S2—N2110.50 (18)O4—C13—C11120.6 (4)
O6—S2—N2104.67 (19)C14—C13—C11117.8 (4)
O5—S2—C18107.33 (19)C15—C14—C20120.0 (4)
O6—S2—C18108.5 (2)C15—C14—C13121.3 (4)
N2—S2—C18104.34 (18)C20—C14—C13118.7 (4)
C6—N1—S1122.1 (3)C17—C15—C14120.0 (4)
C6—N1—H1B119.0C17—C15—C16119.0 (4)
S1—N1—H1B119.0C14—C15—C16121.0 (4)
C21—N2—S2121.8 (3)O3—C16—C10121.2 (4)
C21—N2—H2B119.1O3—C16—C15120.9 (4)
S2—N2—H2B119.1C10—C16—C15117.9 (4)
C2—C1—C6118.6 (5)C15—C17—C18120.0 (4)
C2—C1—H1A120.7C15—C17—H17A120.0
C6—C1—H1A120.7C18—C17—H17A120.0
C3—C2—C1121.3 (6)C17—C18—C19120.2 (4)
C3—C2—H2A119.3C17—C18—S2121.2 (3)
C1—C2—H2A119.3C19—C18—S2118.4 (3)
C2—C3—C4119.2 (6)C20—C19—C18119.8 (4)
C2—C3—H3A120.4C20—C19—H19A120.1
C4—C3—H3A120.4C18—C19—H19A120.1
C5—C4—C3120.7 (6)C19—C20—C14120.1 (4)
C5—C4—H4A119.6C19—C20—H20A120.0
C3—C4—H4A119.6C14—C20—H20A120.0
C6—C5—C4119.8 (5)C26—C21—C22119.7 (4)
C6—C5—H5A120.1C26—C21—N2122.4 (4)
C4—C5—H5A120.1C22—C21—N2117.9 (4)
C5—C6—C1120.3 (5)C23—C22—C21120.7 (4)
C5—C6—N1120.5 (5)C23—C22—H22A119.7
C1—C6—N1119.2 (5)C21—C22—H22A119.7
C12—C7—C8119.6 (4)C24—C23—C22119.4 (5)
C12—C7—H7A120.2C24—C23—H23A120.3
C8—C7—H7A120.2C22—C23—H23A120.3
C9—C8—C7120.9 (4)C25—C24—C23119.8 (5)
C9—C8—S1120.7 (3)C25—C24—H24A120.1
C7—C8—S1118.4 (3)C23—C24—H24A120.1
C8—C9—C10119.5 (4)C24—C25—C26121.3 (5)
C8—C9—H9A120.3C24—C25—H25A119.4
C10—C9—H9A120.3C26—C25—H25A119.4
C9—C10—C11119.5 (4)C21—C26—C25119.1 (5)
C9—C10—C16119.6 (4)C21—C26—H26A120.4
C11—C10—C16121.0 (4)C25—C26—H26A120.4
O1—S1—N1—C647.7 (4)C11—C13—C14—C156.4 (6)
O2—S1—N1—C6179.0 (3)O4—C13—C14—C202.6 (6)
C8—S1—N1—C666.5 (4)C11—C13—C14—C20177.5 (4)
O5—S2—N2—C2160.2 (3)C20—C14—C15—C171.9 (6)
O6—S2—N2—C21168.9 (3)C13—C14—C15—C17174.1 (4)
C18—S2—N2—C2154.9 (3)C20—C14—C15—C16179.5 (4)
C6—C1—C2—C30.8 (7)C13—C14—C15—C164.5 (6)
C1—C2—C3—C40.1 (8)C9—C10—C16—O31.8 (6)
C2—C3—C4—C50.6 (8)C11—C10—C16—O3177.0 (4)
C3—C4—C5—C61.7 (7)C9—C10—C16—C15176.6 (4)
C4—C5—C6—C12.4 (7)C11—C10—C16—C154.7 (6)
C4—C5—C6—N1177.6 (4)C17—C15—C16—O32.0 (6)
C2—C1—C6—C51.9 (7)C14—C15—C16—O3179.4 (4)
C2—C1—C6—N1178.1 (4)C17—C15—C16—C10179.7 (4)
S1—N1—C6—C5102.5 (4)C14—C15—C16—C101.1 (6)
S1—N1—C6—C177.5 (5)C14—C15—C17—C180.6 (6)
C12—C7—C8—C91.1 (6)C16—C15—C17—C18179.3 (4)
C12—C7—C8—S1177.7 (3)C15—C17—C18—C190.7 (6)
O1—S1—C8—C9164.6 (3)C15—C17—C18—S2174.6 (3)
O2—S1—C8—C933.8 (4)O5—S2—C18—C1724.7 (4)
N1—S1—C8—C979.5 (4)O6—S2—C18—C17156.2 (3)
O1—S1—C8—C716.5 (4)N2—S2—C18—C1792.6 (4)
O2—S1—C8—C7147.4 (3)O5—S2—C18—C19160.0 (3)
N1—S1—C8—C799.3 (3)O6—S2—C18—C1928.4 (4)
C7—C8—C9—C100.7 (6)N2—S2—C18—C1982.7 (3)
S1—C8—C9—C10178.1 (3)C17—C18—C19—C200.7 (6)
C8—C9—C10—C110.3 (6)S2—C18—C19—C20174.7 (3)
C8—C9—C10—C16178.4 (4)C18—C19—C20—C140.6 (6)
C9—C10—C11—C120.8 (6)C15—C14—C20—C191.9 (6)
C16—C10—C11—C12177.9 (4)C13—C14—C20—C19174.2 (4)
C9—C10—C11—C13178.6 (4)S2—N2—C21—C2643.2 (5)
C16—C10—C11—C132.7 (6)S2—N2—C21—C22136.7 (3)
C10—C11—C12—C70.3 (6)C26—C21—C22—C231.3 (7)
C13—C11—C12—C7179.1 (4)N2—C21—C22—C23178.6 (4)
C8—C7—C12—C110.6 (6)C21—C22—C23—C240.6 (7)
C12—C11—C13—O43.5 (6)C22—C23—C24—C250.8 (8)
C10—C11—C13—O4177.2 (4)C23—C24—C25—C260.7 (8)
C12—C11—C13—C14176.6 (4)C22—C21—C26—C252.8 (7)
C10—C11—C13—C142.8 (6)N2—C21—C26—C25177.0 (4)
O4—C13—C14—C15173.5 (4)C24—C25—C26—C212.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.862.553.110 (4)123
N1—H1B···O2ii0.862.322.952 (5)131
C19—H19A···O6iii0.932.353.164 (5)146
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+3, z+2.

Experimental details

Crystal data
Chemical formulaC26H18N2O6S2
Mr518.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.247 (4), 6.395 (2), 36.265 (12)
β (°) 104.511 (12)
V3)2300.6 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.26 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.931, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
12233, 4512, 1965
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.146, 1.00
No. of reflections4512
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O4i0.862.553.110 (4)123
N1—H1B···O2ii0.862.322.952 (5)131
C19—H19A···O6iii0.932.353.164 (5)146
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+3, z+2.
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. P., Yang, L. T., Li, H. W., Gao, Y., Deng, D. Y., Wu, Y. Q. & Ma, L. J. (2000). Inorg. Chem. 50, 10028—0032.  Google Scholar
First citationKuljit, K. & Subodh, K. (2011). Dalton Trans. 40, 2451–2458.  Web of Science PubMed Google Scholar
First citationLi, H. W., Li, Y., Dang, Y. Q., Ma, L. J., Wu, Y. Q. & Hou, G. F. (2009). Chem. Commun. 29, 4453–4455.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Y. L., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M. L., Wang, P. & Guo, W. (2011). Org. Biomol. Chem. 9, 432–437.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLu, Z. K., Lord, S. J., Wang, H., Moerner, W. E. & Twieg, R. J. (2006). J. Org. Chem. 71, 9651–9657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValeur, B. & Leray, I. (2000). Coord Chem. Rev. 205, 3–40.  Web of Science CrossRef CAS Google Scholar
First citationZeng, B. B. & King, S. B. (2002). Synthesis, 16, 2335–2337.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds