organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1324

4-[(4-Benzyl­oxybenzyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri-574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 30 March 2012; accepted 2 April 2012; online 6 April 2012)

In the title mol­ecule, C25H23N3O2, two terminal phenyl rings are twisted by 50.20 (6) and 71.26 (5)° from the mean plane (r.m.s. deviation = 0.032 Å) of the central benzyl­idene–amino–pyrazolone fragment. The N atoms of the pyrazole ring have a pyramidal environment, the sums of the valence angles around them being 353.5 (2) and 347.3 (2)°. The crystal structure is stabilized by C—H⋯O interactions.

Related literature

Related crystal structures have been described by Shi (2005[Shi, J. (2005). Acta Cryst. E61, o4023-o4024.]), Jun (2005[Jun, S. (2005). Acta Cryst. E61, o3893-o3894.]), Zhen et al. (2006[Zhen, X.-L., Han, J.-R., Tian, X., Li, Z.-C. & Liu, S.-X. (2006). Acta Cryst. E62, o5641-o5642.]), Liu et al. (2006[Liu, S.-X., Han, J.-R., Zhen, X.-L. & Tian, X. (2006). Acta Cryst. E62, o5765-o6766.]), Diao & Chen (2006[Diao, C.-H. & Chen, X. (2006). Acta Cryst. E62, o5211-o5212.]), Duan et al. (2006[Duan, Z.-Y., Li, G., Zhang, W.-J., Han, E.-S. & Du, F.-Y. (2006). Acta Cryst. E62, o3103-o3104.]), Hu (2006[Hu, T.-P. (2006). Acta Cryst. E62, o2270-o2271.]) and Zhang et al. (2006[Zhang, W.-J., Duan, Z.-Y. & Zhao, X. (2006). Acta Cryst. E62, o2834-o2835.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O2

  • Mr = 397.46

  • Monoclinic, P 21 /c

  • a = 19.8137 (19) Å

  • b = 6.1588 (4) Å

  • c = 18.0784 (14) Å

  • β = 108.881 (9)°

  • V = 2087.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.890, Tmax = 1.000

  • 8408 measured reflections

  • 4352 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.119

  • S = 1.04

  • 4352 reflections

  • 363 parameters

  • All H-atom parameters refined

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O49i 0.990 (18) 2.486 (18) 3.470 (2) 172.6 (15)
C21—H21C⋯O5ii 0.97 (3) 2.58 (3) 3.352 (3) 137.3 (19)
C31—H31A⋯O5ii 0.97 (2) 2.65 (2) 3.517 (3) 149.1 (17)
C52—H52⋯O5iii 0.96 (3) 2.51 (3) 3.411 (3) 156 (2)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazolone, as a prominent structural motif, is found in numerous pharmaceutically active compounds. Due to the easy preparation and rich biological activity, pyrazolone framework plays an essential role and represents an interesting template for combinatorial and medicinal chemistry. Indeed, pyrazolone based derivatives have shown several biological activities such as analgesic, anti-inflammatory, antipyretic, antiarrhythmic, antifungal, muscle relaxing, psychoanaleptic, anticonvulsant, enzyme inhibiting, antidiabetic and antibacterial activities. So, the chemistry of pyrazolone and its derivatives is particularly interesting because of their potential application in medicinal chemistry. Here we present the results of the X-ray structure determination of the title compound, 1.

Quite recently, the crystal structures of a series of similar compounds, with substituted rings C and D (cf. Fig. 1) have been reported, namely, 3-methoxy (C),2,4-dichloro (D) (Zhen et al., 2006); 2,4-dichloro (D) (Liu et al., 2006); 3-methoxy (C), 4-nitro (D) (Diao & Chen, 2006); 3-methoxy (C), 4-chloro (D) (Duan et al., 2006); 4-chloro (D) (Hu, 2006); 3-ethoxy (C),4-chloro (D) (Zhang et al., 2006); 3-methoxy (C) (Shi, 2005), and 3-ethoxy (C) (Jun, 2005).

Compound 1, without additional substituents on the phenyl rings, might be regarded as the reference molecule. It has almost perfectly coplanar central part, consisting of two rings B and C (pyrazolone and phenyl) and the linking C—N=C—C chain (maximum deviation from the least-squares plane is 0.070 (1) Å). The dihedral angle between the planes of the two rings B and C is only 1.42 (13)°, and is significantly smaller than in the other similar molecules (6.21 (10)° - 39.24 (5)°). The overall conformation of the molecule might be described either by the dihedral angle between the planes of terminal phenyl rings (62.71 (6)°) or by the dihedral angles between the central plane and terminal ring planes (50.20 (6)° with ring A, 71.26 (5)° with ring D). These last values are generally consistent with those referred for similar compounds (48.05 (6)° - 72.97 (8)° for A, 39.49 (14)° - 86.16 (7)° for D).

In the pyrazolone ring, the N atoms of the pyrazole ring have pyramidal environment, sums of the valence angles around them are 353.5° for N1 and 347.3° for N2. The bond lengths pattern within this ring suggests significant delocalization and is also typical for these compounds, in contrast, the bond N41—C42 (1.276 (2) Å) has an obvious double-bond character.

In the crystal structure relatively short and linear C16—H16···O49i hydrogen bonds join molecules into centrosymmetric dimers; these dimers, in turn, by means of other, still weaker C—H···O contacts expand in two dimensions (Table 1, Fig. 2).

Related literature top

Related crystal structures have been described by Shi (2005), Jun (2005), Zhen et al. (2006), Liu et al. (2006), Diao & Chen (2006), Duan et al. (2006), Hu (2006) and Zhang et al. (2006).

Experimental top

The mixture of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (2.03 g, 0.01 mol) and 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) was refluxed in 30 ml e thanol with two drops of sulfuric acid for 3 h. The crude product obtained was filtered and recrystallized from ethanol. Good quality crystals were obtained by the evaporation of the solution in DMF (m.p: 438 K).

Refinement top

Hydrogen atoms were found in difference Fourier maps and isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing the atom labelling scheme and ring labels (cf. Comment). Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along [010] direction; C—H···O hydrogen bonds (cf. Table 1) are shown as dashed lines.
4-[(4-Benzyloxybenzylidene)amino]-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C25H23N3O2F(000) = 840
Mr = 397.46Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.8137 (19) ÅCell parameters from 2304 reflections
b = 6.1588 (4) Åθ = 3.1–28.2°
c = 18.0784 (14) ŵ = 0.08 mm1
β = 108.881 (9)°T = 295 K
V = 2087.4 (3) Å3Block, yellow
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
4352 independent reflections
Radiation source: Enhance (Mo) X-ray Source3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1544 pixels mm-1θmax = 28.3°, θmin = 3.3°
ω–scanh = 2526
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.890, Tmax = 1.000l = 1924
8408 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0652P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H23N3O2V = 2087.4 (3) Å3
Mr = 397.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.8137 (19) ŵ = 0.08 mm1
b = 6.1588 (4) ÅT = 295 K
c = 18.0784 (14) Å0.5 × 0.4 × 0.2 mm
β = 108.881 (9)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3298 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.018
8408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.04Δρmax = 0.68 e Å3
4352 reflectionsΔρmin = 0.22 e Å3
363 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.77141 (7)1.0983 (2)1.10006 (8)0.0236 (3)
C110.83244 (8)1.0018 (3)1.15422 (9)0.0213 (4)
C120.88429 (10)0.9158 (3)1.12682 (11)0.0278 (4)
H120.8798 (9)0.924 (3)1.0744 (11)0.027 (5)*
C130.94283 (10)0.8168 (3)1.17855 (12)0.0334 (5)
H130.9787 (11)0.760 (3)1.1597 (11)0.037 (6)*
C140.95142 (10)0.8101 (3)1.25755 (12)0.0354 (5)
H140.9920 (11)0.744 (3)1.2934 (11)0.035 (5)*
C150.90004 (10)0.8993 (3)1.28475 (11)0.0310 (4)
H150.9032 (10)0.893 (3)1.3398 (12)0.039 (6)*
C160.83978 (9)0.9942 (3)1.23326 (10)0.0253 (4)
H160.8016 (9)1.053 (3)1.2519 (10)0.024 (5)*
N20.73781 (8)1.2714 (2)1.12442 (8)0.0253 (3)
C210.78145 (11)1.4594 (3)1.15796 (13)0.0324 (5)
H21A0.7554 (12)1.554 (4)1.1837 (13)0.052 (7)*
H21B0.8227 (12)1.412 (4)1.1980 (13)0.049 (6)*
H21C0.7936 (13)1.536 (4)1.1174 (16)0.070 (8)*
C30.67109 (9)1.2867 (3)1.07207 (10)0.0261 (4)
C310.62346 (11)1.4701 (4)1.07381 (14)0.0364 (5)
H31A0.6409 (11)1.606 (4)1.0604 (12)0.045 (6)*
H31B0.6190 (12)1.488 (4)1.1266 (15)0.059 (7)*
H31C0.5748 (13)1.442 (4)1.0366 (14)0.061 (7)*
C40.65791 (9)1.1164 (3)1.02127 (10)0.0258 (4)
C50.72166 (9)0.9880 (3)1.03848 (9)0.0242 (4)
O50.73457 (7)0.8174 (2)1.01041 (7)0.0324 (3)
N410.59094 (8)1.0843 (3)0.96662 (8)0.0289 (4)
C420.57671 (10)0.9211 (4)0.92063 (10)0.0306 (4)
H420.6106 (11)0.804 (3)0.9202 (11)0.038 (6)*
C430.50516 (9)0.8971 (4)0.86385 (10)0.0311 (5)
C440.48958 (11)0.7305 (4)0.80983 (11)0.0407 (5)
H440.5249 (11)0.619 (4)0.8114 (12)0.042 (6)*
C450.42241 (11)0.7081 (4)0.75510 (12)0.0443 (6)
H450.4146 (11)0.584 (4)0.7209 (13)0.047 (6)*
C460.36996 (9)0.8553 (4)0.75447 (10)0.0372 (5)
C470.38462 (10)1.0237 (4)0.80834 (11)0.0363 (5)
H470.3460 (11)1.129 (3)0.8060 (11)0.039 (6)*
C480.45139 (10)1.0441 (4)0.86208 (11)0.0343 (5)
H480.4620 (10)1.163 (3)0.8994 (12)0.036 (6)*
O490.30121 (7)0.8475 (3)0.70470 (7)0.0454 (4)
C500.28438 (11)0.6850 (5)0.64450 (13)0.0495 (7)
H50A0.3121 (13)0.719 (4)0.6121 (14)0.059 (7)*
H50B0.2951 (15)0.526 (5)0.6720 (16)0.087 (10)*
C510.20732 (10)0.7172 (4)0.59813 (10)0.0356 (5)
C520.18548 (12)0.8875 (4)0.54645 (12)0.0459 (6)
H520.2206 (13)0.984 (4)0.5387 (14)0.069 (8)*
C530.11413 (13)0.9177 (4)0.50569 (13)0.0480 (6)
H530.0951 (13)1.038 (5)0.4697 (15)0.073 (8)*
C540.06391 (11)0.7793 (4)0.51715 (13)0.0403 (5)
H540.0139 (12)0.805 (4)0.4887 (13)0.045 (6)*
C550.08516 (11)0.6104 (4)0.56866 (12)0.0368 (5)
H550.0505 (11)0.512 (4)0.5780 (12)0.047 (6)*
C560.15672 (11)0.5793 (4)0.60880 (11)0.0360 (5)
H560.1712 (11)0.459 (4)0.6452 (13)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0250 (8)0.0217 (8)0.0205 (7)0.0004 (6)0.0022 (6)0.0013 (6)
C110.0207 (8)0.0171 (8)0.0230 (8)0.0054 (7)0.0027 (7)0.0011 (7)
C120.0282 (10)0.0270 (10)0.0288 (10)0.0068 (8)0.0099 (8)0.0026 (8)
C130.0263 (10)0.0276 (11)0.0466 (12)0.0013 (9)0.0121 (9)0.0051 (9)
C140.0260 (10)0.0271 (11)0.0423 (11)0.0014 (9)0.0040 (9)0.0022 (9)
C150.0354 (10)0.0262 (10)0.0248 (9)0.0038 (9)0.0007 (8)0.0010 (8)
C160.0273 (9)0.0235 (9)0.0230 (9)0.0036 (8)0.0055 (7)0.0024 (8)
N20.0257 (8)0.0187 (8)0.0274 (8)0.0009 (6)0.0028 (6)0.0006 (6)
C210.0316 (11)0.0235 (10)0.0345 (11)0.0049 (9)0.0000 (9)0.0040 (9)
C30.0232 (9)0.0269 (10)0.0257 (9)0.0030 (8)0.0045 (7)0.0087 (8)
C310.0297 (11)0.0307 (12)0.0442 (13)0.0013 (9)0.0059 (9)0.0048 (10)
C40.0241 (9)0.0312 (10)0.0200 (8)0.0064 (8)0.0045 (7)0.0041 (8)
C50.0277 (9)0.0252 (10)0.0184 (8)0.0062 (8)0.0058 (7)0.0022 (8)
O50.0351 (7)0.0317 (8)0.0270 (7)0.0036 (6)0.0053 (6)0.0081 (6)
N410.0250 (8)0.0400 (10)0.0193 (7)0.0085 (7)0.0040 (6)0.0046 (7)
C420.0276 (10)0.0412 (12)0.0221 (9)0.0072 (9)0.0070 (8)0.0005 (9)
C430.0239 (9)0.0498 (13)0.0199 (8)0.0091 (9)0.0073 (7)0.0022 (9)
C440.0275 (10)0.0617 (15)0.0317 (11)0.0018 (11)0.0077 (9)0.0130 (11)
C450.0269 (10)0.0733 (17)0.0316 (11)0.0055 (11)0.0079 (9)0.0244 (12)
C460.0208 (9)0.0693 (15)0.0210 (9)0.0081 (10)0.0062 (7)0.0108 (10)
C470.0241 (10)0.0583 (15)0.0260 (9)0.0020 (10)0.0075 (8)0.0067 (10)
C480.0290 (10)0.0492 (14)0.0243 (9)0.0082 (9)0.0079 (8)0.0082 (9)
O490.0205 (7)0.0846 (12)0.0287 (7)0.0030 (7)0.0046 (6)0.0241 (8)
C500.0243 (10)0.089 (2)0.0322 (11)0.0042 (12)0.0047 (9)0.0266 (13)
C510.0268 (10)0.0596 (14)0.0192 (9)0.0038 (10)0.0059 (8)0.0132 (10)
C520.0427 (13)0.0631 (16)0.0343 (11)0.0225 (12)0.0159 (10)0.0083 (11)
C530.0551 (15)0.0474 (14)0.0331 (11)0.0063 (12)0.0027 (10)0.0021 (11)
C540.0274 (11)0.0427 (13)0.0414 (12)0.0007 (10)0.0018 (9)0.0124 (10)
C550.0294 (10)0.0384 (12)0.0412 (11)0.0091 (10)0.0097 (9)0.0098 (10)
C560.0347 (11)0.0425 (13)0.0278 (10)0.0020 (10)0.0059 (8)0.0056 (10)
Geometric parameters (Å, º) top
N1—C51.401 (2)C42—C431.464 (2)
N1—N21.401 (2)C42—H420.99 (2)
N1—C111.417 (2)C43—C441.381 (3)
C11—C121.382 (2)C43—C481.390 (3)
C11—C161.389 (2)C44—C451.385 (3)
C12—C131.375 (3)C44—H440.98 (2)
C12—H120.924 (18)C45—C461.376 (3)
C13—C141.383 (3)C45—H450.96 (2)
C13—H130.95 (2)C46—O491.369 (2)
C14—C151.380 (3)C46—C471.387 (3)
C14—H140.95 (2)C47—C481.370 (3)
C15—C161.384 (3)C47—H470.99 (2)
C15—H150.98 (2)C48—H480.97 (2)
C16—H160.990 (18)O49—C501.436 (3)
N2—C31.357 (2)C50—C511.498 (3)
N2—C211.455 (2)C50—H50A0.95 (2)
C21—H21A0.99 (2)C50—H50B1.09 (3)
C21—H21B0.94 (2)C51—C561.375 (3)
C21—H21C0.97 (3)C51—C521.378 (3)
C3—C41.363 (3)C52—C531.379 (3)
C3—C311.479 (3)C52—H520.96 (3)
C31—H31A0.97 (2)C53—C541.376 (3)
C31—H31B0.99 (2)C53—H530.98 (3)
C31—H31C1.00 (3)C54—C551.369 (3)
C4—N411.388 (2)C54—H540.97 (2)
C4—C51.436 (3)C55—C561.381 (3)
C5—O51.229 (2)C55—H550.97 (2)
N41—C421.276 (2)C56—H560.97 (2)
C5—N1—N2109.57 (13)N41—C42—C43119.73 (19)
C5—N1—C11124.71 (15)N41—C42—H42125.0 (12)
N2—N1—C11119.21 (13)C43—C42—H42115.3 (12)
C12—C11—C16120.85 (16)C44—C43—C48118.24 (18)
C12—C11—N1118.70 (15)C44—C43—C42121.00 (19)
C16—C11—N1120.45 (15)C48—C43—C42120.75 (18)
C13—C12—C11119.18 (18)C43—C44—C45121.5 (2)
C13—C12—H12120.2 (11)C43—C44—H44120.7 (13)
C11—C12—H12120.6 (11)C45—C44—H44117.7 (13)
C12—C13—C14120.70 (19)C46—C45—C44119.3 (2)
C12—C13—H13119.1 (12)C46—C45—H45123.6 (13)
C14—C13—H13120.2 (12)C44—C45—H45117.1 (13)
C15—C14—C13119.85 (18)O49—C46—C45124.78 (19)
C15—C14—H14119.2 (12)O49—C46—C47115.17 (18)
C13—C14—H14120.9 (12)C45—C46—C47120.03 (18)
C14—C15—C16120.26 (18)C48—C47—C46120.1 (2)
C14—C15—H15122.5 (12)C48—C47—H47121.6 (12)
C16—C15—H15117.2 (12)C46—C47—H47118.3 (12)
C15—C16—C11119.12 (17)C47—C48—C43120.9 (2)
C15—C16—H16120.9 (10)C47—C48—H48120.2 (12)
C11—C16—H16120.0 (10)C43—C48—H48118.9 (12)
C3—N2—N1106.76 (14)C46—O49—C50117.40 (16)
C3—N2—C21123.27 (16)O49—C50—C51106.06 (18)
N1—N2—C21117.24 (15)O49—C50—H50A106.2 (16)
N2—C21—H21A109.6 (13)C51—C50—H50A108.4 (15)
N2—C21—H21B108.9 (14)O49—C50—H50B108.6 (15)
H21A—C21—H21B106.0 (18)C51—C50—H50B112.8 (15)
N2—C21—H21C109.5 (16)H50A—C50—H50B114 (2)
H21A—C21—H21C111 (2)C56—C51—C52118.83 (19)
H21B—C21—H21C111 (2)C56—C51—C50119.8 (2)
N2—C3—C4110.33 (16)C52—C51—C50121.3 (2)
N2—C3—C31121.50 (17)C51—C52—C53120.5 (2)
C4—C3—C31128.17 (17)C51—C52—H52119.2 (15)
C3—C31—H31A111.9 (13)C53—C52—H52120.3 (15)
C3—C31—H31B111.1 (14)C54—C53—C52120.1 (2)
H31A—C31—H31B107.3 (19)C54—C53—H53115.4 (15)
C3—C31—H31C109.6 (14)C52—C53—H53124.4 (16)
H31A—C31—H31C109.3 (19)C55—C54—C53119.7 (2)
H31B—C31—H31C107.5 (18)C55—C54—H54121.5 (13)
C3—C4—N41121.31 (17)C53—C54—H54118.8 (13)
C3—C4—C5108.33 (15)C54—C55—C56120.0 (2)
N41—C4—C5130.32 (17)C54—C55—H55121.0 (13)
O5—C5—N1123.76 (16)C56—C55—H55119.0 (13)
O5—C5—C4131.83 (16)C51—C56—C55120.8 (2)
N1—C5—C4104.39 (15)C51—C56—H56119.8 (13)
C42—N41—C4122.30 (17)C55—C56—H56119.4 (13)
C5—N1—C11—C1262.7 (2)C3—C4—C5—N11.39 (18)
N2—N1—C11—C12148.63 (16)N41—C4—C5—N1178.76 (17)
C5—N1—C11—C16117.28 (19)C3—C4—N41—C42177.14 (17)
N2—N1—C11—C1631.4 (2)C5—C4—N41—C420.1 (3)
C16—C11—C12—C131.7 (3)C4—N41—C42—C43179.59 (16)
N1—C11—C12—C13178.33 (17)N41—C42—C43—C44175.54 (18)
C11—C12—C13—C142.5 (3)N41—C42—C43—C483.3 (3)
C12—C13—C14—C151.5 (3)C48—C43—C44—C450.1 (3)
C13—C14—C15—C160.4 (3)C42—C43—C44—C45179.0 (2)
C14—C15—C16—C111.2 (3)C43—C44—C45—C460.0 (3)
C12—C11—C16—C150.1 (3)C44—C45—C46—O49178.3 (2)
N1—C11—C16—C15179.87 (16)C44—C45—C46—C470.1 (3)
C5—N1—N2—C38.15 (18)O49—C46—C47—C48178.61 (18)
C11—N1—N2—C3161.16 (15)C45—C46—C47—C480.2 (3)
C5—N1—N2—C21151.23 (16)C46—C47—C48—C430.3 (3)
C11—N1—N2—C2155.8 (2)C44—C43—C48—C470.2 (3)
N1—N2—C3—C47.24 (19)C42—C43—C48—C47179.14 (18)
C21—N2—C3—C4147.53 (18)C45—C46—O49—C505.7 (3)
N1—N2—C3—C31172.05 (16)C47—C46—O49—C50176.0 (2)
C21—N2—C3—C3131.8 (3)C46—O49—C50—C51178.53 (18)
N2—C3—C4—N41173.97 (15)O49—C50—C51—C56103.0 (3)
C31—C3—C4—N416.8 (3)O49—C50—C51—C5274.8 (3)
N2—C3—C4—C53.7 (2)C56—C51—C52—C530.6 (3)
C31—C3—C4—C5175.55 (18)C50—C51—C52—C53178.4 (2)
N2—N1—C5—O5172.94 (15)C51—C52—C53—C540.9 (3)
C11—N1—C5—O521.7 (3)C52—C53—C54—C550.6 (3)
N2—N1—C5—C45.81 (17)C53—C54—C55—C560.1 (3)
C11—N1—C5—C4157.01 (15)C52—C51—C56—C550.1 (3)
C3—C4—C5—O5177.22 (18)C50—C51—C56—C55177.76 (19)
N41—C4—C5—O50.2 (3)C54—C55—C56—C510.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O49i0.990 (18)2.486 (18)3.470 (2)172.6 (15)
C21—H21C···O5ii0.97 (3)2.58 (3)3.352 (3)137.3 (19)
C31—H31A···O5ii0.97 (2)2.65 (2)3.517 (3)149.1 (17)
C52—H52···O5iii0.96 (3)2.51 (3)3.411 (3)156 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H23N3O2
Mr397.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)19.8137 (19), 6.1588 (4), 18.0784 (14)
β (°) 108.881 (9)
V3)2087.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.890, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8408, 4352, 3298
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.04
No. of reflections4352
No. of parameters363
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.68, 0.22

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O49i0.990 (18)2.486 (18)3.470 (2)172.6 (15)
C21—H21C···O5ii0.97 (3)2.58 (3)3.352 (3)137.3 (19)
C31—H31A···O5ii0.97 (2)2.65 (2)3.517 (3)149.1 (17)
C52—H52···O5iii0.96 (3)2.51 (3)3.411 (3)156 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks Mangalore University for research facilities.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDiao, C.-H. & Chen, X. (2006). Acta Cryst. E62, o5211–o5212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, Z.-Y., Li, G., Zhang, W.-J., Han, E.-S. & Du, F.-Y. (2006). Acta Cryst. E62, o3103–o3104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, T.-P. (2006). Acta Cryst. E62, o2270–o2271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJun, S. (2005). Acta Cryst. E61, o3893–o3894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-X., Han, J.-R., Zhen, X.-L. & Tian, X. (2006). Acta Cryst. E62, o5765–o6766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o4023–o4024.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-J., Duan, Z.-Y. & Zhao, X. (2006). Acta Cryst. E62, o2834–o2835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhen, X.-L., Han, J.-R., Tian, X., Li, Z.-C. & Liu, S.-X. (2006). Acta Cryst. E62, o5641–o5642.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1324
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds