metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m200-m201

trans-Tetra­aqua­bis­­(isonicotinamide-κN1)nickel(II) bis­­(3-hy­dr­oxy­benzoate) tetra­hydrate

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 16 January 2012; accepted 18 January 2012; online 21 January 2012)

The asymmetric unit of the title compound, [Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O, contains one-half of the complex cation with the NiII ion located on an inversion center, a 3-hy­droxy­benzoate counter-anion and two uncoordinated water mol­ecules. Four water O atoms in the equatorial plane around the NiII ion [Ni—O = 2.052 (2) and 2.079 (2) Å] form a slightly distorted square-planar arrangement, which is completed up to a distorted octa­hedron by the two N atoms [Ni—N = 2.075 (3) Å] from two isonicotinamide ligands. In the anion, the carboxyl­ate group is twisted from the attached benzene ring by 8.8 (3)°. In the crystal, a three-dimensional hydrogen-bonding network, formed by classical O—H⋯O and N—H⋯O hydrogen bonds, consolidates the crystal packing, which also exhibits ππ inter­actions between the benzene and pyridine rings, with centroid–centroid distances of 3.455 (2) and 3.621 (2) Å, respectively.

Related literature

For general background, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1330-m1331.],b[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1101-m1102.],c[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m768-m769.],d[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1130-m1131.],e[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m627-m628.]); Sertçelik et al. (2009a[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326-m327.],b[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m389-m390.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O

  • Mr = 721.29

  • Monoclinic, P 21 /n

  • a = 6.6884 (3) Å

  • b = 16.9271 (5) Å

  • c = 13.5543 (4) Å

  • β = 100.186 (3)°

  • V = 1510.37 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.46 × 0.33 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.877

  • 13495 measured reflections

  • 3723 independent reflections

  • 3365 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.157

  • S = 1.26

  • 3723 reflections

  • 256 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.83 (5) 2.20 (5) 3.018 (4) 169 (4)
N2—H22⋯O8ii 0.84 (5) 2.21 (5) 3.012 (4) 159 (5)
O3—H31⋯O7 0.79 (5) 1.91 (5) 2.696 (4) 175 (5)
O5—H51⋯O3ii 0.85 (4) 1.87 (4) 2.716 (3) 177 (5)
O5—H52⋯O1iii 0.84 (5) 1.99 (6) 2.795 (4) 160 (6)
O6—H61⋯O4ii 0.85 (3) 1.86 (3) 2.693 (3) 169 (4)
O6—H62⋯O1iv 0.85 (5) 1.87 (5) 2.685 (4) 159 (5)
O7—H71⋯O7v 0.78 (4) 2.03 (3) 2.795 (4) 167 (6)
O7—H72⋯O2vi 0.85 (5) 1.88 (5) 2.731 (4) 177 (5)
O8—H81⋯O7vii 0.77 (4) 2.10 (4) 2.802 (4) 152 (6)
O8—H82⋯O2 0.83 (4) 1.93 (5) 2.752 (4) 171 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y+1, -z+1; (vi) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound (I) was synthesized and its crystal structure is reported herein.

The asymmetric unit of (I) (Fig. 1) contains one NiII ion on a centre of symmetry, one isonicotinamide (INA) ligand, one 3-hydroxybenzoate (HB) molecule, two coordinated and two uncoordinated water molecules, respectively. The structures of some DENA and/or NA complexes of NiII and Co(II) ions, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009a), [Ni(C6H6N2O)2(H2O)4](C7H4FO2)2 (Hökelek et al., 2009a), [Ni(C6H6N2O)2(H2O)4](C8H5O3)2.2(H2O) (Hökelek et al., 2009b), [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009c), [Co(C6H6N2O)2(H2O)4](C8H5O3)2.2(H2O) (Hökelek et al., 2009d), [Co(C6H6N2O)(C9H10NO2)2(H2O)2] (Hökelek et al., 2009e) and [Co(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009b) have also been determined. In (I), INA ligands are monodentate. The four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the INA ligands at 2.075 (3) Å from the Ni atom in the axial positions (Fig. 1). The average Ni—O bond length is 2.066 (2) Å. The intramolecular O—H···O hydrogen bonds (Table 1) link the uncoordinated water molecules to the HB anion. The dihedral angle between the planar carboxylate group (O1/O2/C1) and the benzene ring A (C2—C7) is 8.77 (27)°, while that between rings A and B (N1/C8—C12) is 1.53 (11)°.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. ππ Contacts between the benzene and phenyl rings, Cg1···Cg2 and Cg1···Cg2i, [symmetry code: (i) -1 + x, y, z, where Cg1 and Cg2 are centroids of the rings A (C2–C7) and B (N1/C8–C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.621 (2) and 3.455 (2) Å, respectively.

Related literature top

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek et al. (2009a,b,c,d,e); Sertçelik et al. (2009a,b).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.314 g, 5 mmol) in H2O (100 ml) and INA (1.220 g, 10 mmol) in H2O (50 ml) with sodium 3-hydroxybenzoate (1.601 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for four weeks, giving blue single crystals.

Refinement top

Atoms H51, H52, H61, H62, H71, H72, H81 and H82 (for H2O), H21 and H22 (for NH2) and H31 (for OH) were located in difference Fourier map and were refined by applying restraints. C-bound H-atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme [symmetry code: (') - x, - y, -z]. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
trans-Tetraaquabis(isonicotinamide-κN1)nickel(II) bis(3-hydroxybenzoate) tetrahydrate top
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2OF(000) = 756
Mr = 721.29Dx = 1.586 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7580 reflections
a = 6.6884 (3) Åθ = 2.4–28.4°
b = 16.9271 (5) ŵ = 0.73 mm1
c = 13.5543 (4) ÅT = 100 K
β = 100.186 (3)°Rod-shaped, blue
V = 1510.37 (9) Å30.46 × 0.33 × 0.18 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3723 independent reflections
Radiation source: fine-focus sealed tube3365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.750, Tmax = 0.877k = 2221
13495 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0492P)2 + 5.1781P]
where P = (Fo2 + 2Fc2)/3
3723 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.86 e Å3
12 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2OV = 1510.37 (9) Å3
Mr = 721.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.6884 (3) ŵ = 0.73 mm1
b = 16.9271 (5) ÅT = 100 K
c = 13.5543 (4) Å0.46 × 0.33 × 0.18 mm
β = 100.186 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3365 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.877Rint = 0.029
13495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.86 e Å3
3723 reflectionsΔρmin = 0.69 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.00840 (16)
O10.0786 (4)0.04089 (13)0.29703 (18)0.0135 (5)
O20.1778 (4)0.11616 (14)0.16276 (17)0.0145 (5)
O30.0150 (4)0.39248 (14)0.27901 (19)0.0151 (5)
H310.011 (8)0.428 (3)0.317 (4)0.027 (13)*
O40.3941 (4)0.32984 (14)0.18014 (18)0.0160 (5)
O50.3225 (4)0.04752 (14)0.59662 (18)0.0128 (5)
H510.372 (9)0.068 (3)0.653 (3)0.051 (17)*
H520.245 (8)0.014 (3)0.616 (5)0.054 (18)*
O60.7696 (4)0.03386 (14)0.58654 (19)0.0148 (5)
H610.803 (7)0.0796 (16)0.609 (3)0.026 (12)*
H620.851 (7)0.000 (3)0.618 (4)0.041 (16)*
O70.0025 (4)0.51961 (15)0.40009 (19)0.0168 (5)
H710.018 (9)0.508 (4)0.453 (2)0.050*
H720.101 (6)0.548 (3)0.380 (4)0.047 (17)*
O80.0926 (4)0.06780 (16)0.04380 (19)0.0192 (5)
H810.196 (5)0.060 (4)0.077 (4)0.050*
H820.021 (7)0.082 (3)0.085 (3)0.047 (17)*
N10.4858 (4)0.10763 (15)0.4259 (2)0.0098 (5)
N20.5148 (5)0.39569 (17)0.3228 (2)0.0140 (6)
H210.525 (7)0.439 (3)0.296 (3)0.017 (11)*
H220.559 (8)0.396 (3)0.385 (4)0.030 (13)*
C10.1092 (5)0.10742 (18)0.2549 (2)0.0112 (6)
C20.0587 (5)0.18065 (18)0.3173 (2)0.0106 (6)
C30.0642 (5)0.25416 (18)0.2706 (2)0.0110 (6)
H30.10050.25800.20130.013*
C40.0156 (5)0.32139 (18)0.3277 (3)0.0120 (6)
C50.0358 (5)0.31639 (19)0.4314 (3)0.0130 (6)
H50.06840.36190.46940.016*
C60.0386 (5)0.2433 (2)0.4783 (3)0.0137 (6)
H60.07070.23990.54780.016*
C70.0068 (5)0.17514 (19)0.4214 (2)0.0121 (6)
H70.00260.12610.45260.015*
C80.4370 (5)0.11290 (18)0.3253 (2)0.0113 (6)
H80.41020.06660.28840.014*
C90.4250 (5)0.18391 (18)0.2748 (2)0.0119 (6)
H90.38970.18510.20530.014*
C100.4660 (5)0.25372 (18)0.3287 (2)0.0106 (6)
C110.5176 (5)0.24858 (18)0.4322 (2)0.0124 (6)
H110.54670.29400.47060.015*
C120.5253 (5)0.17508 (19)0.4776 (2)0.0118 (6)
H120.55940.17240.54710.014*
C130.4552 (5)0.33050 (18)0.2717 (2)0.0115 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0102 (3)0.0075 (3)0.0072 (3)0.00025 (19)0.00071 (19)0.00018 (19)
O10.0146 (11)0.0103 (10)0.0151 (12)0.0006 (8)0.0015 (9)0.0001 (8)
O20.0171 (12)0.0151 (11)0.0105 (11)0.0004 (9)0.0007 (9)0.0006 (9)
O30.0218 (13)0.0101 (11)0.0132 (12)0.0002 (9)0.0022 (10)0.0006 (9)
O40.0246 (13)0.0122 (11)0.0107 (11)0.0019 (9)0.0016 (10)0.0017 (8)
O50.0145 (12)0.0136 (11)0.0113 (11)0.0003 (8)0.0049 (9)0.0006 (9)
O60.0155 (12)0.0098 (11)0.0162 (12)0.0000 (9)0.0052 (9)0.0013 (9)
O70.0199 (13)0.0139 (11)0.0155 (12)0.0031 (9)0.0004 (10)0.0000 (9)
O80.0202 (13)0.0214 (13)0.0173 (13)0.0031 (10)0.0064 (10)0.0001 (10)
N10.0084 (12)0.0117 (12)0.0096 (12)0.0005 (9)0.0025 (10)0.0005 (9)
N20.0199 (15)0.0109 (13)0.0105 (14)0.0009 (10)0.0007 (11)0.0027 (10)
C10.0072 (13)0.0127 (14)0.0142 (15)0.0003 (10)0.0030 (11)0.0011 (11)
C20.0079 (14)0.0115 (14)0.0126 (15)0.0008 (10)0.0022 (11)0.0012 (11)
C30.0095 (14)0.0147 (14)0.0088 (14)0.0014 (11)0.0015 (11)0.0008 (11)
C40.0094 (14)0.0108 (14)0.0160 (16)0.0009 (11)0.0027 (12)0.0020 (12)
C50.0117 (14)0.0129 (14)0.0141 (16)0.0003 (11)0.0019 (12)0.0030 (11)
C60.0133 (15)0.0172 (15)0.0101 (15)0.0010 (11)0.0010 (12)0.0001 (12)
C70.0129 (15)0.0116 (14)0.0124 (15)0.0017 (11)0.0034 (12)0.0020 (11)
C80.0107 (14)0.0113 (14)0.0118 (15)0.0002 (11)0.0019 (11)0.0009 (11)
C90.0120 (14)0.0132 (14)0.0105 (15)0.0002 (11)0.0016 (12)0.0006 (11)
C100.0092 (14)0.0102 (13)0.0125 (15)0.0011 (10)0.0024 (11)0.0018 (11)
C110.0143 (15)0.0100 (14)0.0129 (15)0.0003 (11)0.0026 (12)0.0011 (11)
C120.0107 (14)0.0135 (14)0.0115 (15)0.0007 (11)0.0028 (11)0.0003 (11)
C130.0100 (14)0.0119 (14)0.0133 (15)0.0022 (11)0.0038 (12)0.0020 (11)
Geometric parameters (Å, º) top
Ni1—O52.079 (2)N2—H210.83 (5)
Ni1—O5i2.079 (2)N2—H220.84 (5)
Ni1—O62.052 (2)C2—C11.505 (4)
Ni1—O6i2.052 (2)C2—C31.394 (4)
Ni1—N12.075 (3)C2—C71.395 (4)
Ni1—N1i2.075 (3)C3—H30.9300
O1—C11.263 (4)C4—C31.383 (4)
O2—C11.260 (4)C5—C41.389 (5)
O3—C41.373 (4)C5—C61.390 (5)
O3—H310.79 (5)C5—H50.9300
O4—C131.236 (4)C6—H60.9300
O5—H510.85 (2)C7—C61.391 (5)
O5—H520.85 (2)C7—H70.9300
O6—H610.85 (2)C8—H80.9300
O6—H620.85 (2)C9—C81.378 (4)
O7—H710.784 (18)C9—C101.391 (4)
O7—H720.85 (2)C9—H90.9300
O8—H810.769 (18)C10—C111.386 (5)
O8—H820.83 (2)C10—C131.507 (4)
N1—C81.347 (4)C11—H110.9300
N1—C121.341 (4)C12—C111.385 (4)
N2—C131.326 (4)C12—H120.9300
O5—Ni1—O5i180.00 (9)C7—C2—C1120.3 (3)
O6—Ni1—O594.23 (10)C2—C3—H3120.1
O6i—Ni1—O585.77 (10)C4—C3—C2119.7 (3)
O6—Ni1—O5i85.77 (10)C4—C3—H3120.1
O6i—Ni1—O5i94.23 (10)O3—C4—C3118.2 (3)
O6i—Ni1—O6180.0O3—C4—C5121.2 (3)
O6—Ni1—N189.53 (10)C3—C4—C5120.5 (3)
O6i—Ni1—N190.47 (10)C4—C5—C6119.9 (3)
O6—Ni1—N1i90.47 (10)C4—C5—H5120.1
O6i—Ni1—N1i89.53 (10)C6—C5—H5120.1
N1—Ni1—O589.02 (10)C5—C6—C7120.1 (3)
N1i—Ni1—O590.98 (10)C5—C6—H6120.0
N1—Ni1—O5i90.98 (10)C7—C6—H6120.0
N1i—Ni1—O5i89.02 (10)C2—C7—H7120.1
N1i—Ni1—N1180.0C6—C7—C2119.8 (3)
C4—O3—H31111 (4)C6—C7—H7120.1
Ni1—O5—H51123 (4)N1—C8—C9122.8 (3)
Ni1—O5—H52113 (4)N1—C8—H8118.6
H52—O5—H5199 (6)C9—C8—H8118.6
Ni1—O6—H61128 (3)C8—C9—C10119.4 (3)
Ni1—O6—H62121 (4)C8—C9—H9120.3
H61—O6—H62110 (5)C10—C9—H9120.3
H72—O7—H71100 (4)C9—C10—C13118.5 (3)
H81—O8—H82103 (4)C11—C10—C9117.9 (3)
C8—N1—Ni1122.0 (2)C11—C10—C13123.6 (3)
C12—N1—Ni1120.4 (2)C10—C11—H11120.4
C12—N1—C8117.6 (3)C12—C11—C10119.3 (3)
C13—N2—H21123 (3)C12—C11—H11120.4
C13—N2—H22123 (3)N1—C12—C11122.9 (3)
H21—N2—H22113 (4)N1—C12—H12118.5
O1—C1—C2118.5 (3)C11—C12—H12118.5
O2—C1—O1123.7 (3)O4—C13—N2123.2 (3)
O2—C1—C2117.8 (3)O4—C13—C10119.0 (3)
C3—C2—C1119.6 (3)N2—C13—C10117.9 (3)
C3—C2—C7120.1 (3)
O5—Ni1—N1—C8131.1 (3)C1—C2—C7—C6179.7 (3)
O5i—Ni1—N1—C848.9 (3)C3—C2—C7—C60.2 (5)
O5—Ni1—N1—C1248.7 (2)O3—C4—C3—C2177.5 (3)
O5i—Ni1—N1—C12131.3 (2)C5—C4—C3—C20.9 (5)
O6—Ni1—N1—C8134.6 (3)C6—C5—C4—O3178.4 (3)
O6i—Ni1—N1—C845.4 (3)C6—C5—C4—C30.0 (5)
O6—Ni1—N1—C1245.5 (2)C4—C5—C6—C71.1 (5)
O6i—Ni1—N1—C12134.5 (2)C2—C7—C6—C51.2 (5)
Ni1—N1—C8—C9179.4 (2)C10—C9—C8—N10.5 (5)
C12—N1—C8—C90.5 (5)C8—C9—C10—C110.1 (5)
Ni1—N1—C12—C11179.8 (2)C8—C9—C10—C13179.0 (3)
C8—N1—C12—C110.1 (5)C9—C10—C11—C120.3 (5)
C3—C2—C1—O1171.2 (3)C13—C10—C11—C12179.4 (3)
C3—C2—C1—O28.0 (4)C9—C10—C13—O46.0 (5)
C7—C2—C1—O18.9 (5)C9—C10—C13—N2173.2 (3)
C7—C2—C1—O2171.9 (3)C11—C10—C13—O4175.0 (3)
C1—C2—C3—C4179.3 (3)C11—C10—C13—N25.8 (5)
C7—C2—C3—C40.8 (5)N1—C12—C11—C100.3 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.83 (5)2.20 (5)3.018 (4)169 (4)
N2—H22···O8iii0.84 (5)2.21 (5)3.012 (4)159 (5)
O3—H31···O70.79 (5)1.91 (5)2.696 (4)175 (5)
O5—H51···O3iii0.85 (4)1.87 (4)2.716 (3)177 (5)
O5—H52···O1iv0.84 (5)1.99 (6)2.795 (4)160 (6)
O6—H61···O4iii0.85 (3)1.86 (3)2.693 (3)169 (4)
O6—H62···O1i0.85 (5)1.87 (5)2.685 (4)159 (5)
O7—H71···O7v0.78 (4)2.03 (3)2.795 (4)167 (6)
O7—H72···O2vi0.85 (5)1.88 (5)2.731 (4)177 (5)
O8—H81···O7vii0.77 (4)2.10 (4)2.802 (4)152 (6)
O8—H82···O20.83 (4)1.93 (5)2.752 (4)171 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N2O)2(H2O)4](C7H5O3)2·4H2O
Mr721.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.6884 (3), 16.9271 (5), 13.5543 (4)
β (°) 100.186 (3)
V3)1510.37 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.46 × 0.33 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.750, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
13495, 3723, 3365
Rint0.029
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.157, 1.26
No. of reflections3723
No. of parameters256
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.83 (5)2.20 (5)3.018 (4)169 (4)
N2—H22···O8ii0.84 (5)2.21 (5)3.012 (4)159 (5)
O3—H31···O70.79 (5)1.91 (5)2.696 (4)175 (5)
O5—H51···O3ii0.85 (4)1.87 (4)2.716 (3)177 (5)
O5—H52···O1iii0.84 (5)1.99 (6)2.795 (4)160 (6)
O6—H61···O4ii0.85 (3)1.86 (3)2.693 (3)169 (4)
O6—H62···O1iv0.85 (5)1.87 (5)2.685 (4)159 (5)
O7—H71···O7v0.78 (4)2.03 (3)2.795 (4)167 (6)
O7—H72···O2vi0.85 (5)1.88 (5)2.731 (4)177 (5)
O8—H81···O7vii0.77 (4)2.10 (4)2.802 (4)152 (6)
O8—H82···O20.83 (4)1.93 (5)2.752 (4)171 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1330–m1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1101–m1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m768–m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1130–m1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m389–m390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m200-m201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds