organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-{[(Pyridin-4-yl­methyl­­idene)amino]­meth­yl}benzoic acid

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 14 December 2011; accepted 30 December 2011; online 7 January 2012)

The title mol­ecule, C14H12N2O2, exhibits a V-shaped conformation with a dihedral angle of 59.69 (3)° between the benzene and pyridine rings. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into zigzag chains along [010].

Related literature

For d-block coordination polymers containing linking ligands related to the title mol­ecule, see: Hou et al. (2011[Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Wanga, J.-L. & Shi, Z. (2011). CrystEngComm, 13, 3884-3894.]); Jang & Lee (2010[Jang, Y. O. & Lee, S. W. (2010). Polyhedron, 29, 2731-2738.]); Lee & Lee (2010[Lee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247-255.]); Kim & Lee (2008[Kim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137-144.]); Jung & Lee (2009[Jung, Y.-M. & Lee, S. W. (2009). J. Mol. Struct. 928, 67-71.]). For df coordination polymers with pyrid­yl–carboxyl­ate linking ligands, see: Bo et al. (2010[Bo, Q.-B., Sun, G.-X. & Geng, D.-L. (2010). Inorg. Chem. 49, 561-571.]); Tang et al. (2011[Tang, Y.-Z., Yang, Y.-M., Wang, X.-W., Zhang, Q. & Wen, H.-R. (2011). Inorg. Chem. Commun. 14, 613-617.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2

  • Mr = 240.26

  • Monoclinic, P 21 /n

  • a = 4.2613 (1) Å

  • b = 26.5565 (6) Å

  • c = 10.3983 (2) Å

  • β = 98.123 (1)°

  • V = 1164.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.20 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.996

  • 22041 measured reflections

  • 2899 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.03

  • 2899 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 1.05 (2) 1.61 (2) 2.6634 (15) 178.7 (18)
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are many types of linking ligands containing various terminal groups, including pyridyl–pyridyl, pyridyl–amine, furan–furan, thiophene–thiophene, and pyridyl–carboxylate terminals. They are typically used to prepare coordination polymers (Hou et al., 2011; Jang & Lee, 2010; Lee & Lee, 2010; Kim & Lee, 2008; Jung & Lee, 2009). In particular, pyridyl–carboxylate type linking ligands are unique in that they contain both an oxygen donor and a nitrogen donor. On the basis of the hard and soft acid–base theory, the harder oxygen atom is expected to coordinate to f-block metals and the softer nitrogen atom to d-block metals in df coordination polymers. Consistent with this expectation, such coordination modes have been observed in many df coordination polymers (Bo et al., 2010; Tang, et al., 2011). In our ongoing study of the preparation of coordination polymers, we obtained the title compound, which can be used as a linking ligand. Herewith we present its crystal structure.

The molecular structure of the title compound with the atom-labeling scheme is given in Figure 1, which clearly demonstrates both a pyridyl terminal and a carboxylate terminal in the title compound. The overall shape of the title compound can be described as V-shaped, with the dihedral angle of 59.69 (3)° between the phenyl ring (C8–C13) and pyridyl ring (N1, C1–C5). The carboxylate group (C14, O1, O2) is slightly twisted by 1.9 (2)° from the phenyl ring to which it is attached. As shown in Figure 2, molecules are connected by the strong intermolecular hydrogen bonds of the O–H···N type (Table 1). The H-bonds result in the formation of a one-dimensional zigzag chain along b axis.

Related literature top

For d-block coordination polymers containing linking ligands related to the title molecule, see: Hou et al. (2011); Jang & Lee (2010); Lee & Lee (2010); Kim & Lee (2008); Jung & Lee (2009). For df coordination polymers with pyridyl–carboxylate linking ligands, see: Bo et al. (2010); Tang et al. (2011).

Experimental top

4-(Aminomethyl)benzoic acid (0.38 g, 2.5 mmol) was added to 4-pyridinecarboxaldehyde (0.27 g, 2.5 mmol) in methanol (20 ml) at room temperature. The mixture was sealed in a 25 ml Teflon-lined vessel and heated at 73 °C for 18 h, and then slowly air-cooled. The resulting colorless crystals were filtered and then washed with methanol (10 ml × 3) to give the title compound (480 mg, 2.0 mmol, 80.0% yield). mp: 469–471 K. 1H NMR (500 MHz, CD3SOCD3, δ): 8.67–8.70 (d, 2H, pyridine N–CH), 8.57–8.60 (d, 2H, pyridine N–CC–H), 7.90–7.94 (d, 2H, aromatic protons), 7.33–7.36 (d, 2H, aromatic protons), 7.00 (m, 1H, N=CH), 4.87 (s, 2H, CH2). 13C{1H} NMR (125 MHz, CD3SOCD3, δ): 191.8, 170.6, 162.6, 149.3, 129.0, 128.6, 123.7, 122.6, 69.6, 64.2. IR (KBr, cm-1): 3047 (w), 2890 (w), 2837 (w), 2360 (w), 1926 (w), 1697 (m, CO), 1644 (w), 1607 (m, CN), 1564 (w), 1517 (w), 1448 (w), 1412 (w), 1384 (m), 1286 (s), 1170 (w), 1120 (w), 1091 (w), 1053 (w), 1017 (m), 986 (m\w), 951 (m), 825 (m), 766 (w), 699 (w), 655 (w).

Refinement top

C-bound H atoms were positioned geometrically [C—H = 0.93–0.97 Å], and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). Atom H1O1 was located on a difference map and isotropically refined.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probabilty displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing 1-D hydrogen-bonded (dashed lines) chain. C-bound H atoms omitted for clarity.
(E)-4-{[(Pyridin-4-ylmethylidene)amino]methyl}benzoic acid top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6768 reflections
a = 4.2613 (1) Åθ = 2.5–27.2°
b = 26.5565 (6) ŵ = 0.09 mm1
c = 10.3983 (2) ÅT = 296 K
β = 98.123 (1)°Block, colourless
V = 1164.92 (4) Å30.50 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2899 independent reflections
Radiation source: sealed tube1862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
phi and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.955, Tmax = 0.996k = 3535
22041 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0198P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H12N2O2V = 1164.92 (4) Å3
Mr = 240.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.2613 (1) ŵ = 0.09 mm1
b = 26.5565 (6) ÅT = 296 K
c = 10.3983 (2) Å0.50 × 0.20 × 0.04 mm
β = 98.123 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1862 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.996Rint = 0.067
22041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2899 reflectionsΔρmin = 0.25 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0038 (3)0.06332 (4)0.16807 (10)0.0586 (3)
O20.0065 (3)0.07470 (4)0.38031 (10)0.0686 (4)
N10.1682 (3)0.48063 (4)0.29341 (12)0.0484 (3)
N20.4831 (3)0.32170 (4)0.27822 (11)0.0449 (3)
C10.0562 (3)0.44698 (5)0.38388 (13)0.0469 (4)
H10.10240.45150.46790.056*
C20.1236 (3)0.40608 (5)0.35942 (13)0.0441 (3)
H20.19610.38350.42540.053*
C30.1953 (3)0.39898 (5)0.23455 (13)0.0398 (3)
C40.0795 (3)0.43362 (5)0.14082 (14)0.0500 (4)
H40.12270.43010.05610.060*
C50.0998 (4)0.47320 (5)0.17373 (14)0.0537 (4)
H50.17760.49600.10920.064*
C60.3881 (3)0.35649 (5)0.20028 (13)0.0432 (3)
H60.44260.35530.11680.052*
C70.6761 (3)0.28186 (5)0.23166 (15)0.0501 (4)
H7A0.88470.28180.28300.060*
H7B0.70180.28840.14200.060*
C80.5224 (3)0.23103 (5)0.24140 (13)0.0411 (3)
C90.4602 (4)0.21317 (6)0.36002 (14)0.0524 (4)
H90.51540.23250.43430.063*
C100.3177 (4)0.16720 (5)0.36952 (13)0.0498 (4)
H100.27950.15570.45040.060*
C110.2303 (3)0.13776 (5)0.26076 (12)0.0393 (3)
C120.2926 (3)0.15529 (5)0.14231 (13)0.0476 (4)
H120.23610.13600.06790.057*
C130.4390 (3)0.20139 (5)0.13340 (13)0.0481 (4)
H130.48190.21260.05290.058*
C140.0674 (3)0.08894 (5)0.27622 (13)0.0448 (3)
H1O10.134 (5)0.0309 (7)0.1844 (18)0.103 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0841 (8)0.0469 (6)0.0460 (6)0.0180 (6)0.0131 (5)0.0060 (5)
O20.1020 (9)0.0593 (7)0.0464 (6)0.0290 (6)0.0169 (6)0.0012 (5)
N10.0581 (7)0.0364 (6)0.0507 (7)0.0011 (5)0.0079 (6)0.0011 (5)
N20.0482 (7)0.0347 (6)0.0532 (7)0.0032 (5)0.0124 (6)0.0004 (5)
C10.0596 (9)0.0401 (8)0.0416 (8)0.0019 (7)0.0093 (7)0.0015 (6)
C20.0527 (8)0.0375 (7)0.0417 (8)0.0014 (6)0.0051 (6)0.0036 (6)
C30.0417 (7)0.0333 (7)0.0449 (8)0.0070 (6)0.0073 (6)0.0001 (6)
C40.0644 (9)0.0452 (8)0.0419 (8)0.0012 (7)0.0131 (7)0.0049 (6)
C50.0695 (10)0.0432 (9)0.0489 (9)0.0063 (7)0.0097 (8)0.0092 (7)
C60.0449 (8)0.0403 (8)0.0461 (8)0.0058 (6)0.0129 (6)0.0008 (6)
C70.0470 (8)0.0417 (8)0.0649 (10)0.0011 (6)0.0189 (7)0.0037 (7)
C80.0397 (7)0.0352 (7)0.0504 (8)0.0051 (6)0.0133 (6)0.0014 (6)
C90.0672 (10)0.0479 (8)0.0437 (8)0.0111 (7)0.0137 (7)0.0081 (7)
C100.0691 (10)0.0459 (8)0.0365 (7)0.0076 (7)0.0151 (7)0.0005 (6)
C110.0428 (7)0.0362 (7)0.0394 (7)0.0032 (6)0.0073 (6)0.0001 (6)
C120.0599 (9)0.0463 (8)0.0373 (7)0.0027 (7)0.0090 (7)0.0048 (6)
C130.0585 (9)0.0475 (8)0.0405 (8)0.0010 (7)0.0148 (7)0.0074 (6)
C140.0521 (8)0.0413 (8)0.0412 (8)0.0016 (6)0.0073 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C141.3127 (16)C6—H60.9300
O1—H1O11.05 (2)C7—C81.5101 (18)
O2—C141.2088 (15)C7—H7A0.9700
N1—C51.3325 (18)C7—H7B0.9700
N1—C11.3358 (17)C8—C131.3764 (18)
N2—C61.2575 (16)C8—C91.3817 (19)
N2—C71.4639 (17)C9—C101.3734 (19)
C1—C21.3735 (19)C9—H90.9300
C1—H10.9300C10—C111.3819 (18)
C2—C31.3881 (18)C10—H100.9300
C2—H20.9300C11—C121.3774 (18)
C3—C41.3797 (18)C11—C141.4899 (19)
C3—C61.4691 (18)C12—C131.3828 (19)
C4—C51.371 (2)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—H50.9300
C14—O1—H1O1110.4 (10)N2—C7—H7B109.5
C5—N1—C1117.07 (12)C8—C7—H7B109.5
C6—N2—C7117.54 (12)H7A—C7—H7B108.1
N1—C1—C2123.49 (13)C13—C8—C9118.17 (12)
N1—C1—H1118.3C13—C8—C7121.40 (12)
C2—C1—H1118.3C9—C8—C7120.43 (13)
C1—C2—C3118.88 (12)C10—C9—C8120.79 (13)
C1—C2—H2120.6C10—C9—H9119.6
C3—C2—H2120.6C8—C9—H9119.6
C4—C3—C2117.78 (12)C9—C10—C11120.99 (13)
C4—C3—C6119.81 (12)C9—C10—H10119.5
C2—C3—C6122.40 (12)C11—C10—H10119.5
C5—C4—C3119.42 (13)C12—C11—C10118.48 (12)
C5—C4—H4120.3C12—C11—C14122.84 (12)
C3—C4—H4120.3C10—C11—C14118.67 (12)
N1—C5—C4123.37 (13)C11—C12—C13120.33 (13)
N1—C5—H5118.3C11—C12—H12119.8
C4—C5—H5118.3C13—C12—H12119.8
N2—C6—C3123.23 (12)C8—C13—C12121.24 (12)
N2—C6—H6118.4C8—C13—H13119.4
C3—C6—H6118.4C12—C13—H13119.4
N2—C7—C8110.77 (11)O2—C14—O1123.50 (13)
N2—C7—H7A109.5O2—C14—C11122.08 (13)
C8—C7—H7A109.5O1—C14—C11114.42 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i1.05 (2)1.61 (2)2.6634 (15)178.7 (18)
Symmetry code: (i) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.2613 (1), 26.5565 (6), 10.3983 (2)
β (°) 98.123 (1)
V3)1164.92 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
22041, 2899, 1862
Rint0.067
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.03
No. of reflections2899
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i1.05 (2)1.61 (2)2.6634 (15)178.7 (18)
Symmetry code: (i) x1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009–0079916).

References

First citationBo, Q.-B., Sun, G.-X. & Geng, D.-L. (2010). Inorg. Chem. 49, 561–571.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, K.-L., Bai, F.-Y., Xing, Y.-H., Wanga, J.-L. & Shi, Z. (2011). CrystEngComm, 13, 3884–3894.  Web of Science CSD CrossRef CAS Google Scholar
First citationJang, Y. O. & Lee, S. W. (2010). Polyhedron, 29, 2731–2738.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, Y.-M. & Lee, S. W. (2009). J. Mol. Struct. 928, 67–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y.-Z., Yang, Y.-M., Wang, X.-W., Zhang, Q. & Wen, H.-R. (2011). Inorg. Chem. Commun. 14, 613–617.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds