metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-{[2-(iso­propyl­aza­nium­yl)eth­yl]imino­meth­yl}-6-meth­­oxy­phenolato)copper(II) bis­­(thio­cyanate)

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: yuanlin_ycu@126.com

(Received 6 January 2011; accepted 10 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, [Cu(C13H20N2O2)2](NCS)2, contains one half-dication, located on an inversion center, and one thio­cyanate anion. Each CuII atom is four-coordinated by two phenolate O and two imine N atoms from two symmetry-related Schiff base 2-{[2-(isopropyl­aza­nium­yl)eth­yl]imino­meth­yl}-6-meth­oxy­phenolate (L) ligands in a distorted square-planar geometry. The ammonium groups are involved in the formation of N—H⋯O and N—H⋯N hydrogen bonds, which link one dication and two anions into an electroneutral cluster. When very weak Cu—N interactions with a distance of 2.910 (5) Å between the metal and the thiocyanate anions in apical positions are considered, the secondary coordination polyhedron is a very elongated CuN4O2 octahedron.

Related literature

For background to copper(II) complexes with Schiff base ligands, see: Fernandez et al. (2010[Fernandez, J. M., Xochitiotzi-Flores, J., Hernandez-Ortega, S., Gomez-Vidales, V. & Patino-Maya, M. D. R. (2010). J. Coord. Chem. 63, 2132-2145.]); Biswas et al. (2010[Biswas, C., Drew, M. G. B., Ruiz, E., Estrader, M., Diaz, C. & Ghosh, A. (2010). Dalton Trans. pp. 7474-7484.]); Chakraborty et al. (2010[Chakraborty, A., Kumar, P., Ghosh, K. & Roy, P. (2010). Eur. J. Pharmacol. 647, 1-12.]). For related complexes, see: Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, m881.]); Cai (2009[Cai, B.-H. (2009). Acta Cryst. E65, m339.]); Xia et al. (2008[Xia, R., Xu, H.-J. & Wang, H. (2008). Acta Cryst. E64, m1539.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.]); Ma (2008[Ma, J.-Y. (2008). Acta Cryst. E64, m878.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H20N2O2)2](NCS)2

  • Mr = 652.32

  • Orthorhombic, P b c a

  • a = 13.5307 (12) Å

  • b = 9.7992 (9) Å

  • c = 24.114 (2) Å

  • V = 3197.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.882

  • 13234 measured reflections

  • 2406 independent reflections

  • 1666 reflections with I > 2σ(I)

  • Rint = 0.063

  • θmax = 23.8°

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.143

  • S = 1.15

  • 2406 reflections

  • 190 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.90 2.13 2.972 (10) 155
N2—H2B⋯O1i 0.90 1.87 2.665 (6) 147
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Copper(II) complexes with Schiff bases have been extensively studied (Fernandez et al., 2010; Biswas et al., 2010; Chakraborty et al., 2010). In this paper, we present the title compound (I) - a new copper(II) complex with the Schiff base ligand 2-[(2-isopropylaminoethylimino)methyl]-6-methoxyphenol.

In (I) (Fig. 1), the Cu center is four-coordinated by two phenolate O and two imine N atoms from two Schiff base ligands in a distorted square-planar geometry. The coordinate bond lengths and angles are comparable with those observed in similar complexes (Ji & Lu, 2010; Cai, 2009; Xia et al., 2008; Suleiman Gwaram et al., 2010; Ma, 2008). Ammonium groups are involved in formation of N—H···O and N—H···N hydrogen bonds (Table 1), which link one dication and two anions into electroneutral cluster, where thiocyanate anions can also be considered as ligands coordinating Cu center in apical positions [Cu1—N3 2.910 (5) Å].

Related literature top

For background to copper(II) complexes with Schiff base ligands, see: Fernandez et al. (2010); Biswas et al. (2010); Chakraborty et al. (2010). For related complexes, see: Ji & Lu (2010); Cai (2009); Xia et al. (2008); Suleiman Gwaram et al. (2010); Ma (2008).

Experimental top

Equimolar quantities (0.1 mmol each) of 3-methoxysalicylaldehyde, N-isopropylethane-1,2-diamine, ammonium thiocyanate, and Cu(CH3COO)2.H2O were mixed and stirred in methanol for 30 min at reflux. After keeping the filtrate in an air for a few days, blue block crystals were formed.

Refinement top

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Unlabelled atoms are related with labelled ones by symmetry operation (- x, 1 - y, 2 - z).
Bis(2-{[2-(isopropylazaniumyl)ethyl]iminomethyl}-6-methoxyphenolato)copper(II) bis(thiocyanate) top
Crystal data top
[Cu(C13H20N2O2)2](NCS)2Dx = 1.355 Mg m3
Mr = 652.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1594 reflections
a = 13.5307 (12) Åθ = 2.3–24.5°
b = 9.7992 (9) ŵ = 0.86 mm1
c = 24.114 (2) ÅT = 298 K
V = 3197.3 (5) Å3Block, blue
Z = 40.20 × 0.18 × 0.15 mm
F(000) = 1372
Data collection top
Bruker SMART CCD area-detector
diffractometer
2406 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 23.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.848, Tmax = 0.882k = 118
13234 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + 13.3941P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C13H20N2O2)2](NCS)2V = 3197.3 (5) Å3
Mr = 652.32Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.5307 (12) ŵ = 0.86 mm1
b = 9.7992 (9) ÅT = 298 K
c = 24.114 (2) Å0.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2406 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1666 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.882Rint = 0.063
13234 measured reflectionsθmax = 23.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0786 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + 13.3941P]
where P = (Fo2 + 2Fc2)/3
2406 reflectionsΔρmax = 0.38 e Å3
190 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50001.00000.0565 (4)
N10.1018 (4)0.3629 (5)0.97413 (19)0.0449 (13)
N20.0401 (4)0.4022 (5)0.85934 (19)0.0496 (14)
H2A0.07580.47460.87060.059*
H2B0.01870.40640.87670.059*
N30.0998 (7)0.6598 (8)0.9151 (4)0.112 (3)
O10.0858 (3)0.5576 (5)1.05728 (17)0.0600 (13)
O20.1714 (4)0.7103 (5)1.12935 (19)0.0683 (14)
S10.1299 (2)0.8802 (4)0.84850 (14)0.1397 (13)
C10.2387 (5)0.4671 (7)1.0238 (2)0.0493 (17)
C20.1830 (5)0.5544 (7)1.0579 (2)0.0484 (16)
C30.2338 (5)0.6371 (7)1.0960 (3)0.0539 (17)
C40.3351 (5)0.6389 (8)1.0981 (3)0.063 (2)
H40.36720.69781.12240.075*
C50.3903 (5)0.5527 (8)1.0640 (3)0.066 (2)
H50.45900.55371.06570.079*
C60.3431 (5)0.4669 (7)1.0282 (3)0.0589 (19)
H60.38000.40751.00630.071*
C70.1925 (5)0.3692 (7)0.9874 (2)0.0525 (17)
H70.23380.30340.97200.063*
C80.0748 (5)0.2484 (6)0.9380 (2)0.0536 (17)
H8A0.00560.22690.94360.064*
H8B0.11310.16900.94870.064*
C90.0919 (5)0.2770 (6)0.8775 (3)0.0560 (18)
H9A0.16220.28720.87080.067*
H9B0.06870.20020.85570.067*
C100.0230 (6)0.4153 (7)0.7987 (3)0.064 (2)
H100.01030.33240.78570.077*
C110.1193 (7)0.4276 (10)0.7687 (3)0.114 (4)
H11A0.15460.34290.77130.172*
H11B0.15790.49910.78510.172*
H11C0.10720.44870.73040.172*
C120.0447 (7)0.5355 (8)0.7880 (3)0.098 (3)
H12A0.10330.52640.81010.147*
H12B0.06240.53780.74950.147*
H12C0.01120.61860.79770.147*
C130.2134 (6)0.8058 (8)1.1669 (3)0.084 (3)
H13A0.25980.76001.19060.127*
H13B0.16210.84591.18900.127*
H13C0.24680.87611.14640.127*
C140.1133 (7)0.7473 (10)0.8862 (4)0.097 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0503 (6)0.0653 (7)0.0539 (6)0.0066 (7)0.0009 (6)0.0144 (7)
N10.047 (3)0.046 (3)0.041 (3)0.004 (3)0.005 (3)0.002 (3)
N20.058 (3)0.050 (3)0.041 (3)0.013 (3)0.009 (3)0.001 (3)
N30.137 (6)0.072 (5)0.127 (6)0.006 (5)0.054 (5)0.004 (5)
O10.049 (3)0.080 (3)0.051 (3)0.004 (2)0.001 (2)0.016 (2)
O20.069 (3)0.072 (3)0.064 (3)0.003 (3)0.011 (3)0.018 (3)
S10.120 (2)0.160 (3)0.139 (3)0.040 (2)0.023 (2)0.056 (2)
C10.050 (4)0.057 (4)0.041 (3)0.008 (3)0.005 (3)0.007 (3)
C20.050 (4)0.057 (4)0.039 (4)0.001 (3)0.004 (3)0.008 (3)
C30.065 (5)0.051 (4)0.047 (4)0.001 (4)0.001 (4)0.006 (3)
C40.066 (5)0.063 (5)0.060 (5)0.017 (4)0.014 (4)0.017 (4)
C50.050 (5)0.077 (5)0.071 (5)0.006 (4)0.004 (4)0.015 (4)
C60.054 (4)0.065 (5)0.058 (4)0.003 (4)0.009 (4)0.013 (4)
C70.066 (5)0.053 (4)0.039 (4)0.007 (4)0.015 (3)0.004 (3)
C80.066 (5)0.045 (4)0.050 (4)0.007 (4)0.005 (3)0.001 (3)
C90.073 (5)0.050 (4)0.046 (4)0.014 (4)0.006 (4)0.005 (3)
C100.092 (6)0.061 (5)0.040 (4)0.006 (4)0.001 (4)0.001 (4)
C110.152 (9)0.138 (9)0.053 (5)0.033 (7)0.045 (6)0.019 (5)
C120.152 (9)0.084 (6)0.058 (5)0.033 (6)0.032 (5)0.008 (4)
C130.109 (7)0.072 (5)0.071 (5)0.003 (5)0.020 (5)0.019 (4)
C140.102 (7)0.076 (6)0.114 (8)0.008 (6)0.041 (7)0.021 (6)
Geometric parameters (Å, º) top
Cu1—O1i1.891 (4)C5—C61.364 (9)
Cu1—O11.891 (4)C5—H50.9300
Cu1—N1i2.023 (5)C6—H60.9300
Cu1—N12.023 (5)C7—H70.9300
N1—C71.271 (8)C8—C91.504 (8)
N1—C81.466 (7)C8—H8A0.9700
N2—C91.480 (7)C8—H8B0.9700
N2—C101.486 (7)C9—H9A0.9700
N2—H2A0.9001C9—H9B0.9700
N2—H2B0.9000C10—C111.496 (10)
N3—C141.120 (11)C10—C121.513 (9)
O1—C21.316 (7)C10—H100.9800
O2—C31.370 (7)C11—H11A0.9600
O2—C131.421 (8)C11—H11B0.9600
S1—C141.603 (11)C11—H11C0.9600
C1—C21.404 (8)C12—H12A0.9600
C1—C61.417 (9)C12—H12B0.9600
C1—C71.443 (9)C12—H12C0.9600
C2—C31.405 (9)C13—H13A0.9600
C3—C41.372 (9)C13—H13B0.9600
C4—C51.396 (10)C13—H13C0.9600
C4—H40.9300
O1i—Cu1—O1180N1—C8—C9113.3 (5)
O1i—Cu1—N1i90.3 (2)N1—C8—H8A108.9
O1—Cu1—N1i89.7 (2)C9—C8—H8A108.9
O1i—Cu1—N189.7 (2)N1—C8—H8B108.9
O1—Cu1—N190.3 (2)C9—C8—H8B108.9
N1i—Cu1—N1180.0 (3)H8A—C8—H8B107.7
C7—N1—C8115.3 (6)N2—C9—C8111.6 (5)
C7—N1—Cu1123.2 (5)N2—C9—H9A109.3
C8—N1—Cu1121.4 (4)C8—C9—H9A109.3
C9—N2—C10115.9 (5)N2—C9—H9B109.3
C9—N2—H2A108.1C8—C9—H9B109.3
C10—N2—H2A108.2H9A—C9—H9B108.0
C9—N2—H2B108.6N2—C10—C11110.3 (6)
C10—N2—H2B108.5N2—C10—C12109.2 (6)
H2A—N2—H2B107.4C11—C10—C12112.5 (7)
C2—O1—Cu1127.9 (4)N2—C10—H10108.3
C3—O2—C13118.2 (6)C11—C10—H10108.3
C2—C1—C6119.6 (6)C12—C10—H10108.3
C2—C1—C7121.9 (6)C10—C11—H11A109.5
C6—C1—C7118.4 (6)C10—C11—H11B109.5
O1—C2—C1123.0 (6)H11A—C11—H11B109.5
O1—C2—C3118.8 (6)C10—C11—H11C109.5
C1—C2—C3118.1 (6)H11A—C11—H11C109.5
O2—C3—C4126.0 (7)H11B—C11—H11C109.5
O2—C3—C2112.7 (6)C10—C12—H12A109.5
C4—C3—C2121.3 (7)C10—C12—H12B109.5
C3—C4—C5120.3 (7)H12A—C12—H12B109.5
C3—C4—H4119.8C10—C12—H12C109.5
C5—C4—H4119.8H12A—C12—H12C109.5
C6—C5—C4119.8 (7)H12B—C12—H12C109.5
C6—C5—H5120.1O2—C13—H13A109.5
C4—C5—H5120.1O2—C13—H13B109.5
C5—C6—C1120.8 (7)H13A—C13—H13B109.5
C5—C6—H6119.6O2—C13—H13C109.5
C1—C6—H6119.6H13A—C13—H13C109.5
N1—C7—C1127.2 (6)H13B—C13—H13C109.5
N1—C7—H7116.4N3—C14—S1175.6 (11)
C1—C7—H7116.4
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.902.132.972 (10)155
N2—H2B···O1i0.901.872.665 (6)147
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C13H20N2O2)2](NCS)2
Mr652.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.5307 (12), 9.7992 (9), 24.114 (2)
V3)3197.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.848, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
13234, 2406, 1666
Rint0.063
θmax (°)23.8
(sin θ/λ)max1)0.568
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.143, 1.15
No. of reflections2406
No. of parameters190
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 13.3941P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.902.132.972 (10)155
N2—H2B···O1i0.901.872.665 (6)147
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBiswas, C., Drew, M. G. B., Ruiz, E., Estrader, M., Diaz, C. & Ghosh, A. (2010). Dalton Trans. pp. 7474–7484.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, B.-H. (2009). Acta Cryst. E65, m339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakraborty, A., Kumar, P., Ghosh, K. & Roy, P. (2010). Eur. J. Pharmacol. 647, 1–12.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFernandez, J. M., Xochitiotzi-Flores, J., Hernandez-Ortega, S., Gomez-Vidales, V. & Patino-Maya, M. D. R. (2010). J. Coord. Chem. 63, 2132–2145.  Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, m881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-Y. (2008). Acta Cryst. E64, m878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, R., Xu, H.-J. & Wang, H. (2008). Acta Cryst. E64, m1539.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds