organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-2,3-di­hydro-1H-imidazo[1,2-a]pyridinium iodide

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, bDepartment of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688, USA, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: chm_niey@ujn.edu.cn

(Received 29 November 2009; accepted 8 February 2010; online 13 February 2010)

In the title compound, C7H7N2O+·I, the carbonyl C and O atoms of the cation and the iodide ion are situated on mirror planes. The mean plane of the imidazo[1,2-d]pyridinium cation is perpendicular to the mirror plane as a consequence of the disorder of the cation over two opposite orientations of equal occupancy. In the crystal, N—H⋯I interactions are present.

Related literature

For the synthesis of imidazo[1,2-a]pyridinium chloride or bromide, see: Newton et al. (1984[Newton, C. G., Ollis, W. D. & Wright, D. E. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 69-73.]); Baumann et al. (1986[Baumann, M. E., Bosshard, H., Breitenstein, W. & Rist, G. (1986). Helv. Chim. Acta, 69, 396-403.]). For the derivatization of imidazo[1,2-a]pyridinium and related structures, see: Plutecka et al. (2006[Plutecka, A., Hoffmann, M., Rychlewska, U., Kucybała, Z., Pączkowski, J. & Pyszka, I. (2006). Acta Cryst. B62, 135-142.]); Hoffmann et al. (2005[Hoffmann, M., Plutecka, A., Rychlewska, K., Kucybala, Z., Paczkowski, J. & Pyszka, I. (2005). J. Phys. Chem. A, 109, 4568-4574.]); Qiao et al. (2006[Qiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634-o4635.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2O+·I

  • Mr = 262.05

  • Orthorhombic, P n m a

  • a = 14.597 (2) Å

  • b = 8.2044 (18) Å

  • c = 7.0926 (15) Å

  • V = 849.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 298 K

  • 0.48 × 0.45 × 0.23 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.269, Tmax = 0.482

  • 3631 measured reflections

  • 806 independent reflections

  • 691 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.05

  • 806 reflections

  • 73 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯I1i 1.03 2.85 3.80 (2) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazo[1,2-a]pyridine derivatives have been investigated as important intermediates in organic synthesis and useful agents in medicinal chemistry. Imidazo[1,2-a]pyridinium chloride or bromide is accessible from the reaction of alkyl haloacetate with 2-aminopyridine compounds (Newton et al., 1984; Baumann et al., 1986), and can be further derivatised (Plutecka et al., 2006; Hoffmann et al., 2005). The reaction of 2-aminopyridine and chloroacetic acid under basic condition gave rise to, after acidification, 3,3-bis(carboxymethyl) imidazo[1,2-a]pyridine-2-one (Qiao et al., 2006). Here we report on the synthesis and structure of the title compound (I), which was obtained from the reaction of iodoacetic acid with 2-aminopyridine under basic condition.

The structure of (I) (Fig. 1) consists of imidazo[1,2-a]pyridinium cations and iodide anions. In the cation, the six-membered and five-membered rings are coplanar with a dihedral angle of 0.48°. However, the four C/N atoms in the ring system (Fig. 1) are found to be disordered. The structure may be seen as two molecules being in one crystallographic position, with an occupancy of 0.5 for each C/N atom involved. Thus, in one molecule the five-membered ring is N2/C2/C1/N1a/C3a, and in another molecule - C3/N1/C1/C2a/N2a.

Related literature top

For the synthesis of imidazo[1,2-a]pyridinium chloride or bromide, see: Newton et al. (1984); Baumann et al. (1986). For the derivatization of imidazo[1,2-a]pyridinium and related structures, see: Plutecka et al. (2006); Hoffmann et al. (2005); Qiao et al. (2006).

Experimental top

A mixture of 2-aminopyridine (1.132 g, 0.012 mol), ICH2COOH (5.592 g, 0.030 mol) and Na2CO3 (2.549 g, 0.024 mol) was placed in 60 ml of distilled water. After the evolution of bubbles was over, the mixture of was heated at reflux for 6 h, while the pH was adjusted to 8–9 using aqueous NaOH (0.1 mol/l) solution, at a time interval of 0.5 h. The resulting deep red solution was cooled to room temperature and acidified with hydrochloric acid till pH 2–3 (during which some red solid was formed, but could be dissolved on warming to 40°C). On standing still at room temperature, deep red crystals were grown after one month. IR (KBr): 3465, 3076, 1751, 1650, 1511, 1330, 1185, 792, 608 cm-1.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability displacement ellipsoids [symmetry code: (a) x, 1/2 - y, z].
2-Oxo-2,3-dihydro-1H-imidazo[1,2-a]pyridinium iodide top
Crystal data top
C7H7N2O+·IDx = 2.049 Mg m3
Mr = 262.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1914 reflections
a = 14.597 (2) Åθ = 2.5–27.2°
b = 8.2044 (18) ŵ = 3.71 mm1
c = 7.0926 (15) ÅT = 298 K
V = 849.4 (3) Å3Block, red
Z = 40.48 × 0.45 × 0.23 mm
F(000) = 496
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
806 independent reflections
Radiation source: fine-focus sealed tube691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1713
Tmin = 0.269, Tmax = 0.482k = 99
3631 measured reflectionsl = 58
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.9786P]
where P = (Fo2 + 2Fc2)/3
806 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.70 e Å3
24 restraintsΔρmin = 0.93 e Å3
Crystal data top
C7H7N2O+·IV = 849.4 (3) Å3
Mr = 262.05Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.597 (2) ŵ = 3.71 mm1
b = 8.2044 (18) ÅT = 298 K
c = 7.0926 (15) Å0.48 × 0.45 × 0.23 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
691 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.482Rint = 0.064
3631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03624 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
806 reflectionsΔρmin = 0.93 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.41289 (4)0.25000.91066 (7)0.0537 (3)
C40.1109 (3)0.0822 (7)0.9883 (8)0.0519 (13)
H40.11120.03110.98440.062*
C50.0758 (4)0.1656 (8)1.1372 (9)0.0551 (14)
H50.05170.10911.23950.066*
O10.2504 (5)0.25000.4103 (7)0.0724 (19)
C10.2120 (6)0.25000.5605 (11)0.053 (2)
C20.184 (3)0.103 (3)0.674 (4)0.050 (9)0.50
H2A0.13840.03860.60730.060*0.50
H2B0.23630.03420.70240.060*0.50
N20.146 (4)0.174 (3)0.846 (4)0.039 (8)0.50
N10.186 (2)0.1164 (19)0.666 (3)0.049 (7)0.50
H10.19350.01700.63090.058*0.50
C30.146 (4)0.161 (4)0.831 (5)0.037 (8)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0550 (4)0.0434 (4)0.0627 (4)0.0000.0103 (2)0.000
C40.044 (3)0.044 (3)0.068 (3)0.002 (2)0.003 (3)0.009 (3)
C50.046 (3)0.064 (4)0.056 (3)0.000 (2)0.001 (2)0.013 (3)
O10.070 (4)0.099 (5)0.049 (3)0.0000.003 (3)0.000
C10.047 (5)0.058 (5)0.053 (5)0.0000.004 (4)0.000
C20.054 (13)0.039 (10)0.057 (12)0.006 (8)0.009 (8)0.005 (8)
N20.032 (10)0.040 (9)0.047 (9)0.004 (7)0.003 (7)0.002 (6)
N10.047 (11)0.042 (9)0.058 (11)0.003 (8)0.016 (8)0.019 (7)
C30.030 (11)0.034 (10)0.048 (10)0.002 (6)0.010 (7)0.006 (6)
Geometric parameters (Å, º) top
C4—N21.357 (9)C1—N1i1.381 (9)
C4—C51.358 (9)C1—C21.509 (10)
C4—C31.387 (9)C1—C2i1.509 (10)
C4—H40.9300C2—N21.461 (10)
C5—C5i1.386 (14)C2—H2A0.9700
C5—H50.9300C2—H2B0.9700
O1—C11.204 (9)N1—C31.360 (10)
C1—N11.381 (9)N1—H10.8600
N2—C4—C5116.2 (14)O1—C1—C2i126.8 (12)
N2—C4—C36 (3)N1—C1—C2i105.8 (7)
C5—C4—C3121.9 (16)N1i—C1—C2i1 (3)
N2—C4—H4121.9C2—C1—C2i106 (2)
C5—C4—H4121.9N2—C2—C1103.3 (11)
C3—C4—H4116.2N2—C2—H2A111.1
C4—C5—C5i120.2 (4)C1—C2—H2A111.1
C4—C5—H5119.9N2—C2—H2B111.1
C5i—C5—H5119.9C1—C2—H2B111.1
O1—C1—N1127.5 (10)H2A—C2—H2B109.1
O1—C1—N1i127.5 (10)C4—N2—C2122.9 (19)
N1—C1—N1i105 (2)C3—N1—C1111.7 (10)
O1—C1—C2126.8 (12)C3—N1—H1124.1
N1—C1—C21 (3)C1—N1—H1124.1
N1i—C1—C2105.8 (7)N1—C3—C4136 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···I1ii1.032.853.80 (2)153
Symmetry code: (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC7H7N2O+·I
Mr262.05
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)14.597 (2), 8.2044 (18), 7.0926 (15)
V3)849.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.71
Crystal size (mm)0.48 × 0.45 × 0.23
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.269, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
3631, 806, 691
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.05
No. of reflections806
No. of parameters73
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.93

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···I1i1.032.853.80 (2)153
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank the University of Jinan (grant No. B0605) and the Key Subject Research Foundation of Shandong Province (grant No. XTD 0704) for support.

References

First citationBaumann, M. E., Bosshard, H., Breitenstein, W. & Rist, G. (1986). Helv. Chim. Acta, 69, 396–403.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoffmann, M., Plutecka, A., Rychlewska, K., Kucybala, Z., Paczkowski, J. & Pyszka, I. (2005). J. Phys. Chem. A, 109, 4568–4574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNewton, C. G., Ollis, W. D. & Wright, D. E. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 69–73.  CrossRef Web of Science Google Scholar
First citationPlutecka, A., Hoffmann, M., Rychlewska, U., Kucybała, Z., Pączkowski, J. & Pyszka, I. (2006). Acta Cryst. B62, 135–142.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, o4634–o4635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds