metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­bromidobis[diphen­yl(p-tol­yl)phosphine]palladium(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: leokirsten@gmail.com

(Received 22 October 2009; accepted 29 October 2009; online 14 November 2009)

In the title compound, [PdBr2(C19H17P)2], the PdII ion resides on a centre of symmetry and is coordinated by two Br anions [Pd—Br = 2.4266 (2) Å] and two P-donor ligands [Pd—P = 2.3462 (5) Å] in a slightly distorted square-planar geometry [P—Pd—Br = 93.528 (12)°]. Weak inter­molecular C—H⋯Br hydrogen bonds link mol­ecules into chains extended in [1[\overline{1}]0].

Related literature

For the isostructural compound, trans-[PdCl2{P((Ph)2(p-Tol))}2], in which the Pd centers are coordinated by Cl anions instead of Br, see: Steyl et al. (2006[Steyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705-m1707.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C19H17P)2]

  • Mr = 818.81

  • Triclinic, [P \overline 1]

  • a = 10.0321 (4) Å

  • b = 10.0521 (4) Å

  • c = 10.2967 (4) Å

  • α = 70.876 (2)°

  • β = 68.288 (2)°

  • γ = 60.312 (2)°

  • V = 824.54 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 100 K

  • 0.33 × 0.11 × 0.09 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.427, Tmax = 0.767

  • 25915 measured reflections

  • 3982 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.04

  • 3982 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯Bri 0.93 2.88 3.7498 (19) 157
C22—H22⋯Brii 0.93 2.71 3.501 (2) 144
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This study is aimed at expanding the knowledge of trans square-planar palladium complexes containing phosphine donor ligands and bromido or chlorido anions as coordinating atoms.

The title compound is centrosymmetric with a slightly distorted-square-planar geometry, as seen by the cis angle P—Pd—Br of 93.528 (12)°. The packing of the title compound is stabilized by two weak intermolecular C—H···Br hydrogen bonds (Table 1).

The corresponding chloro complex (Steyl et al., 2006) is iso-structural to the title complex when comparing the geometrical parameters as well as the crystallization mode. The RMS error of 0.061 Å also indicate the iso-structurality of the two complexes (the title complex superimposed with the corresponding dichloro-palladium complex (Steyl et al., 2006) including the Pd, Cl(Br), P and first C atoms of the phenyl rings).

Related literature top

For the isostructural compound, trans-[PdCl2{P((Ph)2(p-Tol))}2], in which the Pd centers are coordinated by Cl anions instead of Br, see Steyl et al. (2006).

Experimental top

The title complex was synthesized by the addition of 2.2 equivalents of diphenyl(p-tolyl)phosphine (16 mg, 0.059 mmol) to [Pd(COD)Br2] (10 mg, 0.026 mmol) in 10 ml of dichloromethane while stirring for 5 minutes. Slow evaporation of the solvent resulted in orange crystals suitable for X-Ray diffraction (yield 71%, 16 mg).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = (1.2 or 1.5) times Ueq of the parent atom, respectively. The s.u.'s on all the Cell Axes and all the Cell Angles are equal as calculated from the unit cell determination.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A sketch of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) 1 - x,1 - y,1 - z]. For the phenyl rings the first digit refers to ring number and the second digit to the atom in the ring. Hydrogen atoms have been omitted for clarity.
trans-Dibromidobis[diphenyl(p-tolyl)phosphine]palladium(II) top
Crystal data top
[PdBr2(C19H17P)2]Z = 1
Mr = 818.81F(000) = 408
Triclinic, P1Dx = 1.649 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0321 (4) ÅCell parameters from 6740 reflections
b = 10.0521 (4) Åθ = 2.4–28.3°
c = 10.2967 (4) ŵ = 3.11 mm1
α = 70.876 (2)°T = 100 K
β = 68.288 (2)°Cuboid, orange
γ = 60.312 (2)°0.33 × 0.11 × 0.09 mm
V = 824.54 (6) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube3621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 512 pixels mm-1θmax = 28.0°, θmin = 2.4°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1313
Tmin = 0.427, Tmax = 0.767l = 1313
25915 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: riding model
wR(F2) = 0.051H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0199P)2 + 0.7898P]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[PdBr2(C19H17P)2]γ = 60.312 (2)°
Mr = 818.81V = 824.54 (6) Å3
Triclinic, P1Z = 1
a = 10.0321 (4) ÅMo Kα radiation
b = 10.0521 (4) ŵ = 3.11 mm1
c = 10.2967 (4) ÅT = 100 K
α = 70.876 (2)°0.33 × 0.11 × 0.09 mm
β = 68.288 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3621 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.767Rint = 0.029
25915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.79 e Å3
3982 reflectionsΔρmin = 0.46 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50000.50000.50000.01341 (5)
Br0.39230 (2)0.78196 (2)0.45123 (2)0.02035 (6)
P0.28802 (5)0.49477 (5)0.69762 (5)0.01335 (9)
C110.3682 (2)0.3708 (2)0.84911 (18)0.0139 (3)
C120.4892 (2)0.3878 (2)0.8690 (2)0.0189 (4)
H120.52840.45730.80350.023*
C130.5507 (2)0.3014 (2)0.9859 (2)0.0195 (4)
H130.63010.31490.99860.023*
C140.4963 (2)0.1951 (2)1.0847 (2)0.0195 (4)
C150.3776 (2)0.1772 (2)1.0628 (2)0.0210 (4)
H150.34080.10531.12670.025*
C160.3131 (2)0.2648 (2)0.9470 (2)0.0178 (4)
H160.23270.25230.93510.021*
C1410.5660 (3)0.1007 (3)1.2101 (2)0.0332 (5)
H14A0.51450.03391.26700.050*
H14B0.55040.16931.26620.050*
H14C0.67740.03861.17720.050*
C210.1532 (2)0.4290 (2)0.68471 (19)0.0160 (3)
C220.2059 (2)0.3178 (2)0.6032 (2)0.0235 (4)
H220.31220.27430.55490.028*
C230.1014 (3)0.2714 (3)0.5934 (2)0.0281 (5)
H230.13860.19520.54040.034*
C240.0579 (2)0.3376 (2)0.6621 (2)0.0229 (4)
H240.12800.30710.65430.027*
C250.1120 (2)0.4490 (2)0.7422 (2)0.0225 (4)
H250.21920.49450.78780.027*
C260.0077 (2)0.4938 (2)0.7553 (2)0.0202 (4)
H260.04490.56730.81140.024*
C310.1493 (2)0.6787 (2)0.75882 (19)0.0144 (3)
C320.0568 (2)0.8003 (2)0.6700 (2)0.0181 (4)
H320.06970.78720.58010.022*
C330.0535 (2)0.9396 (2)0.7151 (2)0.0218 (4)
H330.11491.01960.65580.026*
C340.0728 (2)0.9604 (2)0.8489 (2)0.0224 (4)
H340.14641.05450.87880.027*
C350.0175 (2)0.8410 (2)0.9375 (2)0.0202 (4)
H350.00410.85471.02740.024*
C360.1286 (2)0.7006 (2)0.89275 (19)0.0160 (3)
H360.18920.62080.95270.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01211 (9)0.01332 (9)0.01158 (9)0.00500 (7)0.00154 (7)0.00073 (7)
Br0.01631 (9)0.01435 (9)0.02261 (10)0.00509 (7)0.00119 (7)0.00071 (7)
P0.0124 (2)0.0147 (2)0.0114 (2)0.00587 (17)0.00238 (16)0.00109 (16)
C110.0122 (8)0.0143 (8)0.0127 (8)0.0038 (7)0.0030 (6)0.0027 (6)
C120.0188 (9)0.0186 (9)0.0207 (9)0.0112 (7)0.0061 (7)0.0014 (7)
C130.0189 (9)0.0206 (9)0.0229 (10)0.0094 (8)0.0088 (7)0.0030 (8)
C140.0199 (9)0.0182 (9)0.0178 (9)0.0057 (7)0.0071 (7)0.0016 (7)
C150.0210 (9)0.0222 (10)0.0191 (9)0.0130 (8)0.0051 (7)0.0035 (7)
C160.0158 (8)0.0197 (9)0.0183 (9)0.0096 (7)0.0046 (7)0.0003 (7)
C1410.0392 (13)0.0362 (13)0.0271 (11)0.0181 (11)0.0190 (10)0.0065 (10)
C210.0177 (9)0.0173 (9)0.0138 (8)0.0090 (7)0.0068 (7)0.0021 (7)
C220.0188 (9)0.0258 (10)0.0261 (10)0.0065 (8)0.0061 (8)0.0095 (8)
C230.0297 (11)0.0280 (11)0.0338 (12)0.0112 (9)0.0117 (9)0.0119 (9)
C240.0278 (10)0.0268 (10)0.0216 (10)0.0166 (9)0.0132 (8)0.0028 (8)
C250.0198 (9)0.0285 (10)0.0198 (10)0.0140 (8)0.0048 (8)0.0008 (8)
C260.0202 (9)0.0249 (10)0.0169 (9)0.0113 (8)0.0024 (7)0.0053 (8)
C310.0111 (8)0.0160 (8)0.0155 (8)0.0073 (7)0.0009 (6)0.0024 (7)
C320.0161 (8)0.0214 (9)0.0151 (9)0.0082 (7)0.0039 (7)0.0007 (7)
C330.0158 (9)0.0179 (9)0.0265 (10)0.0063 (7)0.0061 (8)0.0015 (8)
C340.0168 (9)0.0174 (9)0.0306 (11)0.0067 (8)0.0014 (8)0.0079 (8)
C350.0194 (9)0.0238 (10)0.0213 (9)0.0115 (8)0.0015 (7)0.0087 (8)
C360.0142 (8)0.0187 (9)0.0169 (9)0.0095 (7)0.0041 (7)0.0012 (7)
Geometric parameters (Å, º) top
Pd—P2.3462 (5)C21—C261.399 (3)
Pd—Pi2.3462 (5)C22—C231.387 (3)
Pd—Bri2.4266 (2)C22—H220.9300
Pd—Br2.4266 (2)C23—C241.384 (3)
P—C111.8150 (18)C23—H230.9300
P—C311.8217 (18)C24—C251.379 (3)
P—C211.8331 (19)C24—H240.9300
C11—C161.387 (3)C25—C261.388 (3)
C11—C121.399 (2)C25—H250.9300
C12—C131.385 (3)C26—H260.9300
C12—H120.9300C31—C361.391 (3)
C13—C141.389 (3)C31—C321.401 (3)
C13—H130.9300C32—C331.383 (3)
C14—C151.392 (3)C32—H320.9300
C14—C1411.505 (3)C33—C341.389 (3)
C15—C161.391 (3)C33—H330.9300
C15—H150.9300C34—C351.383 (3)
C16—H160.9300C34—H340.9300
C141—H14A0.9600C35—C361.391 (3)
C141—H14B0.9600C35—H350.9300
C141—H14C0.9600C36—H360.9300
C21—C221.390 (3)
P—Pd—Pi180.0C22—C21—C26118.53 (17)
P—Pd—Bri86.472 (12)C22—C21—P121.58 (14)
Pi—Pd—Bri93.528 (12)C26—C21—P119.87 (14)
P—Pd—Br93.528 (12)C23—C22—C21120.60 (19)
Pi—Pd—Br86.472 (12)C23—C22—H22119.7
Bri—Pd—Br180.0C21—C22—H22119.7
C11—P—C31103.51 (8)C24—C23—C22120.5 (2)
C11—P—C21107.56 (8)C24—C23—H23119.8
C31—P—C21101.59 (8)C22—C23—H23119.8
C11—P—Pd108.36 (6)C25—C24—C23119.51 (19)
C31—P—Pd116.57 (6)C25—C24—H24120.2
C21—P—Pd118.01 (6)C23—C24—H24120.2
C16—C11—C12118.91 (16)C24—C25—C26120.46 (19)
C16—C11—P123.69 (14)C24—C25—H25119.8
C12—C11—P117.36 (14)C26—C25—H25119.8
C13—C12—C11120.18 (17)C25—C26—C21120.41 (18)
C13—C12—H12119.9C25—C26—H26119.8
C11—C12—H12119.9C21—C26—H26119.8
C12—C13—C14121.38 (17)C36—C31—C32118.96 (17)
C12—C13—H13119.3C36—C31—P122.06 (14)
C14—C13—H13119.3C32—C31—P118.94 (14)
C13—C14—C15118.01 (17)C33—C32—C31120.42 (18)
C13—C14—C141120.66 (18)C33—C32—H32119.8
C15—C14—C141121.32 (18)C31—C32—H32119.8
C16—C15—C14121.24 (18)C32—C33—C34120.13 (18)
C16—C15—H15119.4C32—C33—H33119.9
C14—C15—H15119.4C34—C33—H33119.9
C11—C16—C15120.26 (17)C35—C34—C33119.91 (18)
C11—C16—H16119.9C35—C34—H34120.0
C15—C16—H16119.9C33—C34—H34120.0
C14—C141—H14A109.5C34—C35—C36120.19 (18)
C14—C141—H14B109.5C34—C35—H35119.9
H14A—C141—H14B109.5C36—C35—H35119.9
C14—C141—H14C109.5C31—C36—C35120.38 (17)
H14A—C141—H14C109.5C31—C36—H36119.8
H14B—C141—H14C109.5C35—C36—H36119.8
Bri—Pd—P—C1154.51 (6)C11—P—C21—C2690.47 (16)
Br—Pd—P—C11125.49 (6)C31—P—C21—C2617.89 (17)
Bri—Pd—P—C31170.70 (7)Pd—P—C21—C26146.67 (13)
Br—Pd—P—C319.30 (7)C26—C21—C22—C230.6 (3)
Bri—Pd—P—C2167.94 (7)P—C21—C22—C23179.11 (16)
Br—Pd—P—C21112.06 (7)C21—C22—C23—C241.5 (3)
C31—P—C11—C1697.53 (16)C22—C23—C24—C250.9 (3)
C21—P—C11—C169.49 (18)C23—C24—C25—C260.6 (3)
Pd—P—C11—C16138.11 (14)C24—C25—C26—C211.5 (3)
C31—P—C11—C1280.59 (15)C22—C21—C26—C250.9 (3)
C21—P—C11—C12172.39 (14)P—C21—C26—C25177.67 (15)
Pd—P—C11—C1243.78 (15)C11—P—C31—C361.98 (17)
C16—C11—C12—C131.0 (3)C21—P—C31—C36113.45 (15)
P—C11—C12—C13177.24 (15)Pd—P—C31—C36116.86 (14)
C11—C12—C13—C140.9 (3)C11—P—C31—C32175.85 (14)
C12—C13—C14—C150.1 (3)C21—P—C31—C3264.39 (16)
C12—C13—C14—C141179.2 (2)Pd—P—C31—C3265.30 (15)
C13—C14—C15—C161.1 (3)C36—C31—C32—C330.1 (3)
C141—C14—C15—C16179.83 (19)P—C31—C32—C33177.80 (14)
C12—C11—C16—C150.0 (3)C31—C32—C33—C340.4 (3)
P—C11—C16—C15178.07 (15)C32—C33—C34—C350.6 (3)
C14—C15—C16—C111.0 (3)C33—C34—C35—C360.5 (3)
C11—P—C21—C2291.04 (17)C32—C31—C36—C350.0 (3)
C31—P—C21—C22160.60 (16)P—C31—C36—C35177.80 (14)
Pd—P—C21—C2231.82 (18)C34—C35—C36—C310.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···Br0.932.993.2380 (18)97
C33—H33···Brii0.932.883.7498 (19)157
C22—H22···Bri0.932.713.501 (2)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[PdBr2(C19H17P)2]
Mr818.81
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0321 (4), 10.0521 (4), 10.2967 (4)
α, β, γ (°)70.876 (2), 68.288 (2), 60.312 (2)
V3)824.54 (6)
Z1
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.33 × 0.11 × 0.09
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.427, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
25915, 3982, 3621
Rint0.029
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.04
No. of reflections3982
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Bri0.932.883.7498 (19)157.2
C22—H22···Brii0.932.713.501 (2)143.7
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705–m1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds