organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R*)-Methyl 3-[(2S*)-4,6-di­meth­oxy-2-(4-methoxyphenyl)-3-oxo-2,3-di­hydro-1-benzo­furan-2-yl]-2-methoxycarbonyl-3-phenylpropionate

aCollege of Science, China Agricultural University, Beijing 100094, People's Republic of China
*Correspondence e-mail: qinzhaohai@cau.edu.cn

(Received 18 September 2009; accepted 14 October 2009; online 28 October 2009)

The title compound, C29H28O9, was isolated from the reaction of 4,6-dimeth­oxy-2-(4-methoxy­phen­yl)-3-benzofuran and α-methoxy­carbonyl­cinnaminate. The two aromatic rings form a dihedral angle of 22.7 (1)°. One methoxy­carbonyl group is disordered between two orientations in a 0.612 (4):0.388 (4) ratio. The crystal structure exhibits no significantly short inter­molecular contacts.

Related literature

The title compound is a key inter­mediate in the synthesis of rocaglamide, see: Kraus & Sy (1989[Kraus, G. A. & Sy, J. O. (1989). J. Org. Chem. 54, 77-83.]); Li et al. (2008[Li, H. S., Fu, B., Wang, M. A., Li, N., Liu, W. J., Xie, Z. Q., Ma, Y. Q. & Qin, Z. H. (2008). Eur. J. Org. Chem. 10, 1753-1758.]). For the biological activity of rocaglamide derivatives, see: Zhu et al. (2007[Zhu, J. Y., Lavrik, I. N., Mahlknecht, U., Giaisi, M., Proksch, P., Krammer, P. H. & Li-Weber, M. (2007). Int. J. Cancer. 121, 1839-1846.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28O9

  • Mr = 520.51

  • Triclinic, [P \overline 1]

  • a = 6.901 (5) Å

  • b = 10.478 (5) Å

  • c = 18.467 (5) Å

  • α = 79.838 (5)°

  • β = 86.976 (5)°

  • γ = 77.097 (5)°

  • V = 1281.1 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 295 K

  • 0.40 × 0.36 × 0.34 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]). Tmin = 0.731, Tmax = 0.764

  • 24595 measured reflections

  • 4811 independent reflections

  • 4581 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.093

  • S = 1.01

  • 4811 reflections

  • 378 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rocaglamide (Fig. 1), featuring a cyclopenta[b]benzofuran ring system, was first isolated from the roots and stems of Aglia elliptifolia by King and co-workers in 1982. Since then, rocaglamide and related compounds have shown cytostatic and cytotoxic activity against a variety of human cancer cell lines (King et al., 1982; Zhu et al., 2007). The structural complexity of rocaglamide and its significant activity make it an attractive synthetic target. To date, several synthetic routes were developed for rocaglamide and its derivatives (Kraus et al., 1989; Li et al., 2008).

The title compound (I) is one of the key intermediates to rocaglamide in Li's strategy (Li et al., 2008). Preparation of the compound involved the reaction of 4,6-dimethoxy-2-(4-methoxyphenyl)-3-benzofuran, α-methoxycarbonylcinnaminate and Triton B (N,N,N-trimethylbenzylammonium hydroxide) for 4 h with concomitant stirring in 40 °C and purification by silica-gel column chromatography (petroleumether/EtOAc, 3:1) to give colourless crystals.

In (I) (Fig. 2), two aromatic rings form a dihedral angle of 22.7 (1) °, and one methoxycarbonyl group is disordered between two orientations in an approximate ratio 3:2. The X-ray crystal structure confirms that the substance produced is a racemic mixture of Methyl 2-methoxycarbonyl-(3R, 4S) - and - (3S, 4R) - 4-(4, 6-dimethoxy-3-oxo -2, 3-dihydrobenzofuran-2-yl]-4-(4-methoxy-phenyl)-3-phenylpropionate as predicted by NOESY NMR experiments.

Related literature top

The title compound is a key intermediate in the synthesis of rocaglamide, see: Kraus & Sy (1989); Li et al. (2008). For the biological activity of rocaglamide derivatives, see: Zhu et al. (2007).

Experimental top

Under N2 atmosphere, to asolution of 4, 6-dimethoxy- 2-(4-methoxyphenyl)-3- benzofuran (3.0 g, 10 mmol) in anhydrous THF (100 ml) was added a solution of Triton B (40% in CH3OH, 0.3 ml) and a solution of α-methoxycarbonylcinnaminate(3.2 g, 14.5 mmol) in anhydrous THF (40 ml) by syringe. After stirring at 40 °C for 4 h, the solvent was removed in vacuo. To the residue was added a solution of HCl (1 mol/L, 35 ml), and this solution was extracted with CH2Cl2 (3 × 40 ml). The combined organic phase was washed with saturated NaCl solution (2 × 30 ml), dried with Na2SO4, and concentrated. The crude product was separated by silica-gel columnchromatography (petroleum ether/EtOAc, 3:1) to afford colourless crystal of compound (I).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 - 0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for other H atoms.

Structure description top

Rocaglamide (Fig. 1), featuring a cyclopenta[b]benzofuran ring system, was first isolated from the roots and stems of Aglia elliptifolia by King and co-workers in 1982. Since then, rocaglamide and related compounds have shown cytostatic and cytotoxic activity against a variety of human cancer cell lines (King et al., 1982; Zhu et al., 2007). The structural complexity of rocaglamide and its significant activity make it an attractive synthetic target. To date, several synthetic routes were developed for rocaglamide and its derivatives (Kraus et al., 1989; Li et al., 2008).

The title compound (I) is one of the key intermediates to rocaglamide in Li's strategy (Li et al., 2008). Preparation of the compound involved the reaction of 4,6-dimethoxy-2-(4-methoxyphenyl)-3-benzofuran, α-methoxycarbonylcinnaminate and Triton B (N,N,N-trimethylbenzylammonium hydroxide) for 4 h with concomitant stirring in 40 °C and purification by silica-gel column chromatography (petroleumether/EtOAc, 3:1) to give colourless crystals.

In (I) (Fig. 2), two aromatic rings form a dihedral angle of 22.7 (1) °, and one methoxycarbonyl group is disordered between two orientations in an approximate ratio 3:2. The X-ray crystal structure confirms that the substance produced is a racemic mixture of Methyl 2-methoxycarbonyl-(3R, 4S) - and - (3S, 4R) - 4-(4, 6-dimethoxy-3-oxo -2, 3-dihydrobenzofuran-2-yl]-4-(4-methoxy-phenyl)-3-phenylpropionate as predicted by NOESY NMR experiments.

The title compound is a key intermediate in the synthesis of rocaglamide, see: Kraus & Sy (1989); Li et al. (2008). For the biological activity of rocaglamide derivatives, see: Zhu et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Rocaglamide.
[Figure 2] Fig. 2. The molecular structure of (I), showing the labelling scheme. Displacement ellipsoids are drawn at the 50% probability level for all non-H atoms. Only major parts of the disordered atoms are shown.
(3R*)-Methyl 3-[(2S*)-4,6-dimethoxy-2-(4-methoxyphenyl)- 3-oxo-2,3-dihydro-1-benzofuran-2-yl]-2-methoxycarbonyl-3-phenylpropionate top
Crystal data top
C29H28O9Z = 2
Mr = 520.51F(000) = 548
Triclinic, P1Dx = 1.349 Mg m3
a = 6.901 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.478 (5) ÅCell parameters from 21851 reflections
c = 18.467 (5) Åθ = 2.4–72.1°
α = 79.838 (5)°µ = 0.84 mm1
β = 86.976 (5)°T = 295 K
γ = 77.097 (5)°Block, colourless
V = 1281.1 (12) Å30.40 × 0.36 × 0.34 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4811 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4581 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 15.9149 pixels mm-1θmax = 70.1°, θmin = 2.4°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009).
k = 1212
Tmin = 0.731, Tmax = 0.764l = 2222
24595 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.6245P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4811 reflectionsΔρmax = 0.41 e Å3
378 parametersΔρmin = 0.45 e Å3
9 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0365 (14)
Crystal data top
C29H28O9γ = 77.097 (5)°
Mr = 520.51V = 1281.1 (12) Å3
Triclinic, P1Z = 2
a = 6.901 (5) ÅCu Kα radiation
b = 10.478 (5) ŵ = 0.84 mm1
c = 18.467 (5) ÅT = 295 K
α = 79.838 (5)°0.40 × 0.36 × 0.34 mm
β = 86.976 (5)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4811 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009).
4581 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.764Rint = 0.018
24595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0429 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
4811 reflectionsΔρmin = 0.45 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.72974 (16)0.00047 (10)0.17466 (6)0.0477 (3)
O20.11720 (18)0.08988 (12)0.05005 (7)0.0560 (3)
O30.74032 (15)0.21665 (10)0.26672 (6)0.0441 (3)
O40.23465 (13)0.35531 (9)0.22326 (5)0.0339 (2)
O50.1979 (2)0.09372 (13)0.55766 (6)0.0616 (3)
O80.47464 (18)0.74181 (12)0.28233 (9)0.0681 (4)
O90.14431 (16)0.81607 (10)0.27886 (7)0.0517 (3)
C10.2267 (2)0.12553 (15)0.09905 (8)0.0406 (3)
C20.4180 (2)0.04509 (15)0.11022 (8)0.0445 (4)
H20.45940.02630.08530.053*
C30.5450 (2)0.07168 (14)0.15815 (8)0.0374 (3)
C40.4790 (2)0.18239 (13)0.19409 (7)0.0338 (3)
C50.2860 (2)0.25550 (12)0.18279 (7)0.0320 (3)
C60.1540 (2)0.23139 (14)0.13594 (7)0.0363 (3)
H60.02540.28250.12950.044*
C70.3966 (2)0.34343 (13)0.27287 (7)0.0324 (3)
C80.5705 (2)0.24013 (13)0.24547 (7)0.0334 (3)
C90.3410 (2)0.27976 (13)0.34983 (7)0.0341 (3)
C100.4720 (2)0.26054 (15)0.40736 (8)0.0424 (3)
H100.59050.28940.39870.051*
C110.4297 (2)0.19920 (16)0.47741 (8)0.0469 (4)
H110.51840.18830.51530.056*
C120.2553 (2)0.15417 (15)0.49079 (8)0.0444 (4)
C130.1257 (2)0.16977 (16)0.43329 (9)0.0460 (4)
H130.00950.13800.44160.055*
C140.1678 (2)0.23218 (14)0.36369 (8)0.0392 (3)
H140.07930.24240.32570.047*
C150.3217 (3)0.0827 (2)0.61877 (10)0.0685 (5)
H15B0.45270.03350.60910.103*
H15C0.26700.03740.66200.103*
H15A0.32890.16990.62630.103*
C160.4442 (2)0.48256 (13)0.26704 (7)0.0334 (3)
H160.54240.47620.30470.040*
C170.5380 (2)0.52433 (13)0.19253 (8)0.0347 (3)
C180.4260 (2)0.57228 (18)0.12944 (9)0.0498 (4)
H180.28870.58130.13240.060*
C190.5154 (3)0.6070 (2)0.06191 (10)0.0610 (5)
H190.43780.63890.02020.073*
C200.7178 (3)0.59466 (18)0.05638 (10)0.0566 (4)
H200.77790.61750.01110.068*
C210.8301 (2)0.54818 (16)0.11845 (10)0.0514 (4)
H210.96720.53970.11510.062*
C220.7418 (2)0.51363 (14)0.18602 (9)0.0423 (3)
H220.82030.48280.22760.051*
C230.2594 (2)0.58820 (13)0.28276 (8)0.0362 (3)
H230.16100.59780.24470.043*
C240.1603 (2)0.56062 (15)0.35796 (8)0.0455 (4)
C260.3135 (2)0.72205 (13)0.28050 (8)0.0408 (3)
C270.1644 (3)0.94722 (15)0.28982 (12)0.0638 (5)
H27B0.05201.01300.26920.096*
H27C0.28410.96640.26590.096*
H27A0.17030.94840.34150.096*
C280.7892 (3)0.12487 (18)0.14867 (11)0.0616 (5)
H28B0.78770.10930.09590.092*
H28A0.69860.18060.16750.092*
H28C0.92100.16790.16520.092*
C290.0736 (3)0.17228 (18)0.03147 (10)0.0542 (4)
H29C0.13430.13650.00370.081*
H29B0.05920.26030.01060.081*
H29A0.15580.17550.07500.081*
O6A0.2258 (6)0.5551 (6)0.41638 (11)0.0610 (9)0.612 (4)
O7A0.0279 (4)0.5512 (5)0.34725 (13)0.0462 (7)0.612 (4)
C25A0.1494 (4)0.5308 (3)0.41401 (13)0.0527 (8)0.612 (4)
H25A0.28610.54430.40080.079*0.612 (4)
H25B0.13680.59290.44500.079*0.612 (4)
H25C0.10500.44180.43990.079*0.612 (4)
O6B0.0009 (7)0.5422 (10)0.3754 (4)0.097 (3)0.388 (4)
O7B0.2974 (7)0.5644 (8)0.40674 (19)0.074 (2)0.388 (4)
C25B0.2580 (11)0.5464 (7)0.4862 (2)0.090 (2)0.388 (4)
H25D0.38030.53310.51170.135*0.388 (4)
H25E0.20030.47020.50070.135*0.388 (4)
H25F0.16740.62390.49810.135*0.388 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (6)0.0393 (6)0.0547 (6)0.0048 (5)0.0024 (5)0.0187 (5)
O20.0601 (7)0.0565 (7)0.0579 (7)0.0070 (6)0.0148 (6)0.0299 (6)
O30.0363 (6)0.0397 (6)0.0555 (6)0.0030 (4)0.0079 (5)0.0104 (5)
O40.0358 (5)0.0298 (5)0.0365 (5)0.0017 (4)0.0062 (4)0.0120 (4)
O50.0730 (8)0.0697 (8)0.0418 (6)0.0249 (7)0.0023 (6)0.0023 (6)
O80.0491 (7)0.0482 (7)0.1165 (12)0.0139 (6)0.0003 (7)0.0354 (7)
O90.0498 (6)0.0290 (5)0.0748 (8)0.0026 (4)0.0009 (5)0.0125 (5)
C10.0502 (9)0.0392 (8)0.0360 (7)0.0118 (6)0.0038 (6)0.0121 (6)
C20.0530 (9)0.0384 (8)0.0438 (8)0.0044 (7)0.0009 (7)0.0193 (6)
C30.0410 (8)0.0316 (7)0.0379 (7)0.0031 (6)0.0028 (6)0.0089 (6)
C40.0379 (7)0.0294 (7)0.0338 (7)0.0055 (5)0.0006 (5)0.0070 (5)
C50.0396 (7)0.0262 (6)0.0302 (6)0.0063 (5)0.0010 (5)0.0065 (5)
C60.0398 (7)0.0338 (7)0.0352 (7)0.0058 (6)0.0031 (6)0.0081 (6)
C70.0344 (7)0.0290 (6)0.0343 (7)0.0043 (5)0.0058 (5)0.0083 (5)
C80.0366 (7)0.0270 (6)0.0352 (7)0.0048 (5)0.0016 (5)0.0039 (5)
C90.0398 (7)0.0267 (6)0.0359 (7)0.0045 (5)0.0025 (6)0.0083 (5)
C100.0442 (8)0.0438 (8)0.0408 (8)0.0132 (7)0.0055 (6)0.0057 (6)
C110.0538 (9)0.0487 (9)0.0382 (8)0.0113 (7)0.0093 (7)0.0047 (7)
C120.0558 (9)0.0377 (8)0.0383 (8)0.0091 (7)0.0024 (7)0.0052 (6)
C130.0468 (9)0.0450 (8)0.0486 (9)0.0160 (7)0.0019 (7)0.0075 (7)
C140.0419 (8)0.0360 (7)0.0411 (8)0.0088 (6)0.0047 (6)0.0091 (6)
C150.0890 (15)0.0740 (13)0.0387 (9)0.0189 (11)0.0037 (9)0.0023 (8)
C160.0363 (7)0.0289 (6)0.0356 (7)0.0054 (5)0.0043 (5)0.0083 (5)
C170.0377 (7)0.0272 (6)0.0400 (7)0.0062 (5)0.0014 (6)0.0083 (5)
C180.0398 (8)0.0637 (10)0.0437 (8)0.0103 (7)0.0041 (7)0.0032 (7)
C190.0608 (11)0.0768 (13)0.0413 (9)0.0150 (9)0.0057 (8)0.0025 (8)
C200.0624 (11)0.0554 (10)0.0505 (10)0.0165 (8)0.0127 (8)0.0040 (8)
C210.0413 (8)0.0438 (9)0.0672 (11)0.0104 (7)0.0096 (8)0.0061 (8)
C220.0389 (8)0.0344 (7)0.0522 (9)0.0062 (6)0.0041 (6)0.0046 (6)
C230.0401 (8)0.0305 (7)0.0387 (7)0.0058 (6)0.0008 (6)0.0103 (6)
C240.0602 (10)0.0313 (7)0.0444 (9)0.0045 (7)0.0049 (8)0.0133 (6)
C260.0456 (9)0.0332 (7)0.0448 (8)0.0066 (6)0.0005 (6)0.0121 (6)
C270.0717 (12)0.0285 (8)0.0913 (14)0.0093 (8)0.0114 (10)0.0159 (8)
C280.0641 (11)0.0448 (9)0.0710 (12)0.0118 (8)0.0022 (9)0.0268 (9)
C290.0510 (10)0.0614 (11)0.0568 (10)0.0158 (8)0.0098 (8)0.0207 (8)
O6A0.074 (2)0.077 (2)0.0306 (14)0.0115 (17)0.0055 (14)0.0125 (15)
O7A0.0501 (14)0.0492 (15)0.0386 (13)0.0111 (9)0.0131 (10)0.0091 (13)
C25A0.0483 (16)0.0634 (18)0.0461 (15)0.0120 (13)0.0125 (12)0.0130 (13)
O6B0.106 (5)0.065 (3)0.106 (5)0.016 (4)0.078 (4)0.006 (5)
O7B0.129 (6)0.050 (2)0.039 (2)0.013 (4)0.047 (3)0.0138 (16)
C25B0.127 (6)0.094 (5)0.057 (3)0.035 (4)0.029 (3)0.029 (3)
Geometric parameters (Å, º) top
O1—C31.3485 (19)C16—C231.543 (2)
O1—C281.4349 (19)C16—H160.9800
O2—C11.3589 (18)C17—C221.386 (2)
O2—C291.426 (2)C17—C181.387 (2)
O3—C81.2141 (18)C18—C191.388 (2)
O4—C51.3638 (16)C18—H180.9300
O4—C71.4524 (16)C19—C201.374 (3)
O5—C121.3665 (19)C19—H190.9300
O5—C151.424 (2)C20—C211.371 (3)
O8—C261.1788 (18)C20—H200.9300
O9—C261.3470 (18)C21—C221.385 (2)
O9—C271.4610 (17)C21—H210.9300
C1—C61.389 (2)C22—H220.9300
C1—C21.402 (2)C23—C261.523 (2)
C2—C31.381 (2)C23—C241.525 (2)
C2—H20.9300C23—H230.9800
C3—C41.4133 (19)C24—O6B1.178 (2)
C4—C51.386 (2)C24—O6A1.1786 (18)
C4—C81.4497 (19)C24—O7B1.3519 (19)
C5—C61.380 (2)C24—O7A1.352 (2)
C6—H60.9300C27—H27B0.9600
C7—C91.5280 (19)C27—H27C0.9600
C7—C161.5491 (19)C27—H27A0.9600
C7—C81.5545 (19)C28—H28B0.9600
C9—C141.389 (2)C28—H28A0.9600
C9—C101.390 (2)C28—H28C0.9600
C10—C111.387 (2)C29—H29C0.9600
C10—H100.9300C29—H29B0.9600
C11—C121.383 (2)C29—H29A0.9600
C11—H110.9300O7A—C25A1.4652 (18)
C12—C131.389 (2)C25A—H25A0.9600
C13—C141.383 (2)C25A—H25B0.9600
C13—H130.9300C25A—H25C0.9600
C14—H140.9300O7B—C25B1.4642 (19)
C15—H15B0.9600C25B—H25D0.9600
C15—H15C0.9600C25B—H25E0.9600
C15—H15A0.9600C25B—H25F0.9600
C16—C171.5243 (19)
C3—O1—C28117.37 (13)C22—C17—C16120.09 (13)
C1—O2—C29117.97 (13)C18—C17—C16122.13 (13)
C5—O4—C7107.90 (10)C17—C18—C19121.03 (16)
C12—O5—C15117.50 (15)C17—C18—H18119.5
C26—O9—C27116.34 (13)C19—C18—H18119.5
O2—C1—C6122.80 (14)C20—C19—C18120.39 (16)
O2—C1—C2114.41 (13)C20—C19—H19119.8
C6—C1—C2122.78 (13)C18—C19—H19119.8
C3—C2—C1120.13 (13)C21—C20—C19119.14 (16)
C3—C2—H2119.9C21—C20—H20120.4
C1—C2—H2119.9C19—C20—H20120.4
O1—C3—C2125.39 (13)C20—C21—C22120.77 (16)
O1—C3—C4116.06 (13)C20—C21—H21119.6
C2—C3—C4118.54 (13)C22—C21—H21119.6
C5—C4—C3118.67 (13)C21—C22—C17120.88 (15)
C5—C4—C8107.82 (12)C21—C22—H22119.6
C3—C4—C8133.49 (13)C17—C22—H22119.6
O4—C5—C6121.85 (12)C26—C23—C24104.52 (11)
O4—C5—C4113.69 (11)C26—C23—C16110.65 (12)
C6—C5—C4124.46 (13)C24—C23—C16115.72 (12)
C5—C6—C1115.31 (13)C26—C23—H23108.6
C5—C6—H6122.3C24—C23—H23108.6
C1—C6—H6122.3C16—C23—H23108.6
O4—C7—C9109.10 (11)O6B—C24—O6A99.9 (4)
O4—C7—C16107.85 (10)O6B—C24—O7B123.3 (4)
C9—C7—C16115.55 (11)O6A—C24—O7B23.4 (3)
O4—C7—C8104.70 (10)O6B—C24—O7A23.9 (4)
C9—C7—C8106.01 (11)O6A—C24—O7A123.6 (2)
C16—C7—C8113.05 (12)O7B—C24—O7A147.0 (3)
O3—C8—C4131.22 (13)O6B—C24—C23131.9 (4)
O3—C8—C7124.37 (12)O6A—C24—C23128.2 (2)
C4—C8—C7104.38 (12)O7B—C24—C23104.8 (2)
C14—C9—C10118.20 (13)O7A—C24—C23108.04 (14)
C14—C9—C7122.03 (12)O8—C26—O9124.70 (14)
C10—C9—C7119.65 (13)O8—C26—C23126.77 (13)
C11—C10—C9121.33 (15)O9—C26—C23108.48 (12)
C11—C10—H10119.3O9—C27—H27B109.5
C9—C10—H10119.3O9—C27—H27C109.5
C12—C11—C10119.91 (14)H27B—C27—H27C109.5
C12—C11—H11120.0O9—C27—H27A109.5
C10—C11—H11120.0H27B—C27—H27A109.5
O5—C12—C11124.79 (15)H27C—C27—H27A109.5
O5—C12—C13115.96 (15)O1—C28—H28B109.5
C11—C12—C13119.25 (14)O1—C28—H28A109.5
C14—C13—C12120.55 (15)H28B—C28—H28A109.5
C14—C13—H13119.7O1—C28—H28C109.5
C12—C13—H13119.7H28B—C28—H28C109.5
C13—C14—C9120.73 (14)H28A—C28—H28C109.5
C13—C14—H14119.6O2—C29—H29C109.5
C9—C14—H14119.6O2—C29—H29B109.5
O5—C15—H15B109.5H29C—C29—H29B109.5
O5—C15—H15C109.5O2—C29—H29A109.5
H15B—C15—H15C109.5H29C—C29—H29A109.5
O5—C15—H15A109.5H29B—C29—H29A109.5
H15B—C15—H15A109.5C24—O7A—C25A115.6 (2)
H15C—C15—H15A109.5C24—O7B—C25B122.2 (4)
C17—C16—C23111.16 (11)O7B—C25B—H25D109.5
C17—C16—C7111.15 (11)O7B—C25B—H25E109.5
C23—C16—C7111.99 (12)H25D—C25B—H25E109.5
C17—C16—H16107.4O7B—C25B—H25F109.5
C23—C16—H16107.4H25D—C25B—H25F109.5
C7—C16—H16107.4H25E—C25B—H25F109.5
C22—C17—C18117.78 (14)
C29—O2—C1—C65.6 (2)C11—C12—C13—C141.4 (2)
C29—O2—C1—C2175.50 (14)C12—C13—C14—C90.4 (2)
O2—C1—C2—C3179.32 (14)C10—C9—C14—C131.3 (2)
C6—C1—C2—C31.7 (2)C7—C9—C14—C13177.15 (13)
C28—O1—C3—C29.3 (2)O4—C7—C16—C1769.31 (14)
C28—O1—C3—C4170.16 (14)C9—C7—C16—C17168.34 (11)
C1—C2—C3—O1178.22 (14)C8—C7—C16—C1745.95 (15)
C1—C2—C3—C41.2 (2)O4—C7—C16—C2355.69 (14)
O1—C3—C4—C5176.09 (12)C9—C7—C16—C2366.66 (15)
C2—C3—C4—C53.4 (2)C8—C7—C16—C23170.95 (11)
O1—C3—C4—C81.8 (2)C23—C16—C17—C22133.41 (13)
C2—C3—C4—C8178.72 (15)C7—C16—C17—C22101.13 (14)
C7—O4—C5—C6173.08 (12)C23—C16—C17—C1847.31 (18)
C7—O4—C5—C46.36 (15)C7—C16—C17—C1878.15 (17)
C3—C4—C5—O4176.52 (12)C22—C17—C18—C190.7 (2)
C8—C4—C5—O41.89 (16)C16—C17—C18—C19178.61 (15)
C3—C4—C5—C62.9 (2)C17—C18—C19—C200.1 (3)
C8—C4—C5—C6178.68 (13)C18—C19—C20—C210.3 (3)
O4—C5—C6—C1179.29 (12)C19—C20—C21—C220.1 (3)
C4—C5—C6—C10.1 (2)C20—C21—C22—C170.4 (2)
O2—C1—C6—C5178.88 (13)C18—C17—C22—C210.8 (2)
C2—C1—C6—C52.3 (2)C16—C17—C22—C21178.48 (13)
C5—O4—C7—C9101.91 (12)C17—C16—C23—C2657.94 (15)
C5—O4—C7—C16131.87 (11)C7—C16—C23—C26177.07 (11)
C5—O4—C7—C811.22 (13)C17—C16—C23—C24176.55 (11)
C5—C4—C8—O3173.21 (14)C7—C16—C23—C2458.46 (15)
C3—C4—C8—O38.7 (3)C26—C23—C24—O6B121.0 (7)
C5—C4—C8—C78.64 (14)C16—C23—C24—O6B117.0 (7)
C3—C4—C8—C7169.44 (15)C26—C23—C24—O6A57.0 (4)
O4—C7—C8—O3169.64 (13)C16—C23—C24—O6A65.0 (4)
C9—C7—C8—O375.06 (16)C26—C23—C24—O7B57.3 (4)
C16—C7—C8—O352.51 (18)C16—C23—C24—O7B64.7 (4)
O4—C7—C8—C412.04 (13)C26—C23—C24—O7A119.1 (3)
C9—C7—C8—C4103.26 (12)C16—C23—C24—O7A119.0 (3)
C16—C7—C8—C4129.18 (12)C27—O9—C26—O88.3 (2)
O4—C7—C9—C145.46 (17)C27—O9—C26—C23169.40 (14)
C16—C7—C9—C14127.14 (14)C24—C23—C26—O8110.02 (19)
C8—C7—C9—C14106.80 (15)C16—C23—C26—O815.2 (2)
O4—C7—C9—C10178.71 (11)C24—C23—C26—O967.62 (15)
C16—C7—C9—C1057.03 (17)C16—C23—C26—O9167.16 (12)
C8—C7—C9—C1069.03 (15)O6B—C24—O7A—C25A6.4 (13)
C14—C9—C10—C111.9 (2)O6A—C24—O7A—C25A1.0 (6)
C7—C9—C10—C11177.88 (13)O7B—C24—O7A—C25A3.8 (9)
C9—C10—C11—C120.9 (2)C23—C24—O7A—C25A177.3 (3)
C15—O5—C12—C113.5 (2)O6B—C24—O7B—C25B0.3 (11)
C15—O5—C12—C13176.57 (16)O6A—C24—O7B—C25B1.2 (9)
C10—C11—C12—O5179.32 (15)O7A—C24—O7B—C25B4.6 (13)
C10—C11—C12—C130.8 (2)C23—C24—O7B—C25B178.2 (6)
O5—C12—C13—C14178.68 (14)

Experimental details

Crystal data
Chemical formulaC29H28O9
Mr520.51
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.901 (5), 10.478 (5), 18.467 (5)
α, β, γ (°)79.838 (5), 86.976 (5), 77.097 (5)
V3)1281.1 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.40 × 0.36 × 0.34
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009).
Tmin, Tmax0.731, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
24595, 4811, 4581
Rint0.018
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 1.01
No. of reflections4811
No. of parameters378
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.45

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We acknowledge financial support of this investigation by the National Natural Science Foundation of China (grant No. 20772151).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKing, M. L., Chiang, C. C., Ling, H. C., Fujita, E., Ochiai, M. & McPhail, A. T. (1982). J. Chem. Soc. Chem. Commun. 20, 1150–1151.  Google Scholar
First citationKraus, G. A. & Sy, J. O. (1989). J. Org. Chem. 54, 77–83.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, H. S., Fu, B., Wang, M. A., Li, N., Liu, W. J., Xie, Z. Q., Ma, Y. Q. & Qin, Z. H. (2008). Eur. J. Org. Chem. 10, 1753–1758.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, J. Y., Lavrik, I. N., Mahlknecht, U., Giaisi, M., Proksch, P., Krammer, P. H. & Li-Weber, M. (2007). Int. J. Cancer. 121, 1839–1846.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds