organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6,7,9,10,12,13,15-Octa­hydro-2H-1,3-di­thiolo[4,5-i][1,4,7,12]dioxadi­thia­cyclo­tetra­decine-2-thione

aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 21 July 2009; accepted 24 July 2009; online 31 July 2009)

In the title mol­ecule, C11H16O2S5, the two S atoms from the macrocycle are situated on opposite sides of the mean plane of the five-membered ring, deviating from it by 1.288 (3) and 1.728 (3) Å. In the crystal, weak inter­molecular C—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (100). The crystal studied was a racemic twin.

Related literature

For crown ether annulated 1,3-dithiol-2-thio­nes, see: Hansen et al. (1992[Hansen, T. K., Jφrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403-6409.]); Trippé et al. (2002[Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461-2464.]). For details of the synthesis, see: Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For a related structure, see: Hou et al. (2009[Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.])

[Scheme 1]

Experimental

Crystal data
  • C11H16O2S5

  • Mr = 340.54

  • Monoclinic, P 21

  • a = 8.9201 (18) Å

  • b = 8.5317 (17) Å

  • c = 10.128 (2) Å

  • β = 97.00 (3)°

  • V = 765.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 291 K

  • 0.13 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.909, Tmax = 0.922

  • 7527 measured reflections

  • 3221 independent reflections

  • 3100 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.06

  • 3221 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1359 Friedel pairs

  • Flack parameter: 0.42 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯S1i 0.97 2.86 3.695 (3) 145
C10—H10A⋯O2ii 0.97 2.51 3.317 (3) 140
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the context of redox-responsive ligands, TTF is an ideal redox-active unit in view of its unique π-electron donating properties. Attachment of ligands such as crown ethers to TTF in many cases results in the electrochemical tunable ligands (Trippé et al., 2002). Crowned 1,3-dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Hansen et al., 1992). In this paper, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal, weak intermolecular C—H···S and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to (a+c)b plane.

Related literature top

For crown ether annulated 1,3-dithiol-2-thiones, see: Hansen et al. (1992); Trippé et al. (2002). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009)

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromthane and petroleum (60–90 °C) at room temperatue.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C). The refined value of Flack parameter of 0.42 (9) suggests that the crystal studied was a racemic twin.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
4,6,7,9,10,12,13,15-Octahydro-2H-1,3- dithiolo[4,5-i][1,4,7,12]dioxadithiacyclotetradecine-2-thione top
Crystal data top
C11H16O2S5F(000) = 356
Mr = 340.54Dx = 1.478 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7211 reflections
a = 8.9201 (18) Åθ = 3.1–27.5°
b = 8.5317 (17) ŵ = 0.75 mm1
c = 10.128 (2) ÅT = 291 K
β = 97.00 (3)°Block, yellow
V = 765.0 (3) Å30.13 × 0.12 × 0.11 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3221 independent reflections
Radiation source: fine-focus sealed tube3100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.909, Tmax = 0.922k = 1110
7527 measured reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1939P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3221 reflectionsΔρmax = 0.58 e Å3
164 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983); 1359 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (9)
Crystal data top
C11H16O2S5V = 765.0 (3) Å3
Mr = 340.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9201 (18) ŵ = 0.75 mm1
b = 8.5317 (17) ÅT = 291 K
c = 10.128 (2) Å0.13 × 0.12 × 0.11 mm
β = 97.00 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3221 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3100 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.922Rint = 0.028
7527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.58 e Å3
S = 1.06Δρmin = 0.22 e Å3
3221 reflectionsAbsolute structure: Flack (1983); 1359 Friedel pairs
164 parametersAbsolute structure parameter: 0.42 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9104 (3)0.5403 (4)1.0514 (2)0.0344 (5)
C20.6930 (2)0.4126 (3)0.8914 (2)0.0264 (5)
C30.5748 (3)0.2952 (3)0.8447 (2)0.0342 (5)
H3A0.62060.19200.84920.041*
H3B0.53910.31640.75210.041*
C40.3178 (3)0.4733 (4)0.8901 (3)0.0406 (6)
H4A0.25240.49900.95680.049*
H4B0.39290.55560.89150.049*
C50.2242 (3)0.4741 (4)0.7555 (3)0.0445 (7)
H5A0.16380.37950.74390.053*
H5B0.15660.56370.74820.053*
C60.2480 (3)0.4848 (4)0.5262 (3)0.0426 (6)
H6A0.17040.56500.51790.051*
H6B0.20050.38420.50470.051*
C70.3637 (3)0.5190 (4)0.4329 (3)0.0418 (6)
H7A0.31500.52530.34210.050*
H7B0.41280.61850.45580.050*
C80.5855 (3)0.4162 (4)0.3590 (3)0.0427 (7)
H8A0.53820.44950.27220.051*
H8B0.63310.31560.34800.051*
C90.7060 (3)0.5337 (4)0.4090 (3)0.0470 (7)
H9A0.65890.63510.41750.056*
H9B0.77650.54380.34380.056*
C100.6889 (3)0.5696 (4)0.6801 (2)0.0381 (6)
H10A0.68850.68260.66900.046*
H10B0.58610.53220.65860.046*
C110.7448 (2)0.5293 (3)0.8207 (2)0.0290 (5)
O10.3233 (2)0.4825 (3)0.65686 (18)0.0432 (5)
O20.4715 (2)0.3969 (2)0.44464 (17)0.0385 (4)
S11.03598 (9)0.58767 (12)1.17933 (8)0.0558 (2)
S20.78149 (7)0.39272 (8)1.05411 (6)0.03282 (15)
S30.41352 (8)0.29178 (9)0.93755 (8)0.04456 (18)
S40.80970 (8)0.48036 (12)0.56811 (7)0.0539 (2)
S50.89230 (7)0.64009 (8)0.90156 (7)0.03733 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (11)0.0456 (15)0.0325 (11)0.0034 (10)0.0003 (9)0.0064 (11)
C20.0195 (10)0.0336 (13)0.0252 (10)0.0033 (8)0.0005 (8)0.0022 (9)
C30.0310 (12)0.0346 (13)0.0356 (12)0.0012 (10)0.0020 (9)0.0022 (11)
C40.0330 (13)0.0503 (17)0.0400 (13)0.0006 (12)0.0105 (10)0.0063 (12)
C50.0259 (12)0.0616 (19)0.0473 (15)0.0072 (12)0.0094 (11)0.0041 (14)
C60.0275 (13)0.0597 (19)0.0388 (13)0.0049 (12)0.0030 (10)0.0054 (13)
C70.0369 (14)0.0520 (17)0.0346 (12)0.0011 (12)0.0028 (11)0.0071 (12)
C80.0417 (15)0.0582 (19)0.0283 (11)0.0032 (13)0.0048 (10)0.0000 (12)
C90.0413 (15)0.069 (2)0.0313 (12)0.0104 (14)0.0065 (11)0.0044 (13)
C100.0318 (13)0.0507 (16)0.0315 (12)0.0060 (11)0.0028 (10)0.0054 (11)
C110.0184 (10)0.0390 (13)0.0292 (11)0.0012 (9)0.0020 (8)0.0002 (10)
O10.0233 (8)0.0716 (14)0.0349 (9)0.0071 (9)0.0045 (7)0.0047 (9)
O20.0346 (10)0.0433 (11)0.0377 (9)0.0016 (8)0.0049 (7)0.0018 (9)
S10.0336 (4)0.0887 (7)0.0416 (4)0.0110 (4)0.0092 (3)0.0101 (4)
S20.0298 (3)0.0407 (3)0.0267 (3)0.0002 (2)0.0015 (2)0.0031 (2)
S30.0319 (3)0.0508 (4)0.0507 (4)0.0110 (3)0.0041 (3)0.0134 (3)
S40.0314 (3)0.0975 (7)0.0325 (3)0.0086 (4)0.0027 (3)0.0032 (4)
S50.0254 (3)0.0466 (4)0.0399 (3)0.0089 (3)0.0031 (2)0.0025 (3)
Geometric parameters (Å, º) top
C1—S11.656 (3)C6—H6A0.9700
C1—S21.708 (3)C6—H6B0.9700
C1—S51.730 (3)C7—O21.413 (4)
C2—C111.341 (4)C7—H7A0.9700
C2—C31.489 (3)C7—H7B0.9700
C2—S21.747 (2)C8—O21.424 (3)
C3—S31.812 (3)C8—C91.511 (4)
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
C4—C51.510 (4)C9—S41.815 (3)
C4—S31.805 (3)C9—H9A0.9700
C4—H4A0.9700C9—H9B0.9700
C4—H4B0.9700C10—C111.490 (3)
C5—O11.414 (3)C10—S41.824 (3)
C5—H5A0.9700C10—H10A0.9700
C5—H5B0.9700C10—H10B0.9700
C6—O11.409 (3)C11—S51.741 (2)
C6—C71.510 (4)
S1—C1—S2124.03 (17)C6—C7—H7A110.0
S1—C1—S5123.24 (18)O2—C7—H7B110.0
S2—C1—S5112.70 (14)C6—C7—H7B110.0
C11—C2—C3127.4 (2)H7A—C7—H7B108.4
C11—C2—S2115.48 (18)O2—C8—C9113.8 (2)
C3—C2—S2117.08 (18)O2—C8—H8A108.8
C2—C3—S3114.98 (18)C9—C8—H8A108.8
C2—C3—H3A108.5O2—C8—H8B108.8
S3—C3—H3A108.5C9—C8—H8B108.8
C2—C3—H3B108.5H8A—C8—H8B107.7
S3—C3—H3B108.5C8—C9—S4113.3 (2)
H3A—C3—H3B107.5C8—C9—H9A108.9
C5—C4—S3115.9 (2)S4—C9—H9A108.9
C5—C4—H4A108.3C8—C9—H9B108.9
S3—C4—H4A108.3S4—C9—H9B108.9
C5—C4—H4B108.3H9A—C9—H9B107.7
S3—C4—H4B108.3C11—C10—S4110.08 (18)
H4A—C4—H4B107.4C11—C10—H10A109.6
O1—C5—C4108.3 (2)S4—C10—H10A109.6
O1—C5—H5A110.0C11—C10—H10B109.6
C4—C5—H5A110.0S4—C10—H10B109.6
O1—C5—H5B110.0H10A—C10—H10B108.2
C4—C5—H5B110.0C2—C11—C10125.7 (2)
H5A—C5—H5B108.4C2—C11—S5116.22 (18)
O1—C6—C7107.8 (2)C10—C11—S5118.0 (2)
O1—C6—H6A110.1C6—O1—C5113.3 (2)
C7—C6—H6A110.1C7—O2—C8113.1 (2)
O1—C6—H6B110.1C1—S2—C298.09 (12)
C7—C6—H6B110.1C4—S3—C3103.16 (13)
H6A—C6—H6B108.5C9—S4—C1099.88 (14)
O2—C7—C6108.3 (2)C1—S5—C1197.47 (13)
O2—C7—H7A110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1i0.972.863.695 (3)145
C10—H10A···O2ii0.972.513.317 (3)140
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H16O2S5
Mr340.54
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)8.9201 (18), 8.5317 (17), 10.128 (2)
β (°) 97.00 (3)
V3)765.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.13 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.909, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
7527, 3221, 3100
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections3221
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.22
Absolute structureFlack (1983); 1359 Friedel pairs
Absolute structure parameter0.42 (9)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1i0.972.863.695 (3)144.5
C10—H10A···O2ii0.972.513.317 (3)140.4
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHansen, T. K., Jφrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403–6409.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461–2464.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds