metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­chlorido[3-di­methyl­amino-1-(2-pyrid­yl)prop-2-en-1-one-κN1]manganese(II) chloride

aSchool of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: zlchu@ahut.edu.cn

(Received 20 June 2009; accepted 24 June 2009; online 1 July 2009)

In the title compound, [MnCl(C10H12N2O)(H2O)3]Cl, the MnII ion has a distorted octa­hedral coordination environment formed by one N and one O atom from the chelating 3-dimethyl­amino-1-(2-pyrid­yl)prop-2-en-1-one ligand, one chloride anion and three coordinated water mol­ecules. Inter­molecular O—H⋯O and O—H⋯Cl hydrogen bonds link the cations and anions into layers parallel to the ac plane.

Related literature

For the crystal structure of a related Cd(II) complex, see: Dong et al. (2009[Dong, H.-Z., Chu, Z.-L. & Hu, N.-L. (2009). Acta Cryst. E65, m358.]). For details of the synthesis, see: Sun et al. (2008[Sun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, o901.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl(C10H12N2O)(H2O)3]Cl

  • Mr = 356.10

  • Triclinic, [P \overline 1]

  • a = 8.7039 (17) Å

  • b = 9.3247 (18) Å

  • c = 10.1407 (19) Å

  • α = 98.029 (4)°

  • β = 98.036 (4)°

  • γ = 107.357 (3)°

  • V = 763.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.792

  • 3838 measured reflections

  • 2647 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.096

  • S = 0.90

  • 2647 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯Cl1i 0.85 2.58 3.142 (3) 125
O2—H2C⋯Cl2 0.85 2.64 3.188 (3) 124
O3—H3B⋯Cl2ii 0.85 2.46 3.228 (3) 150
O3—H3C⋯Cl2iii 0.85 2.48 3.090 (3) 129
O4—H4B⋯O1ii 0.85 2.27 2.659 (3) 108
O4—H4C⋯Cl2 0.85 2.41 3.063 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

We have taken many efforts on synthesizing new ligands with pyridyl group and reported a monomeric Cd (II) complex using 3-dimethylamino-1-(4-pyridyl-)prop-2-en-1-one as ligand (Dong et al., 2009). Here we obtain an analogous ligand, 3-dimethylamino-1-(2-pyridyl-)prop-2-en-1-one by similar method, and report a new Mn (II) complex, viz. the title compound, [Mn(C10H12N2O)(H2O)3Cl]+.Cl- (I).

In (I) (Fig. 1), the MnII center shows an octahedral coordination geometry formed by NO4Cl. Cholride anions are involved in formation of O—H···Cl hydrogen bonds (Table 1), which link cations and anions into layers parallel to ac plane along with the intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For the crystal structure of the related Cd(II) complex, see: Dong et al. (2009). For details of the synthesis, see: Sun et al. (2008).

Experimental top

Ligand was prepared following the procedure reported in the literature (Sun et al., 2008). A solution of the ligand (0.1 mmol) and MnCl2 (0.1 mmol) in 40 ml of methanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suittable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for C10H18MnN2O4Cl2: C, 33.72; H, 5.09; N, 7.87. Found: C, 33.68; H, 5.13; N, 7.83.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å, O–H 0.85 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) showing 30% probability displacement ellipsoids and the atomic numbering.
Triaquachlorido[3-dimethylamino-1-(2-pyridyl)prop-2-en-1-one- κN1]manganese(II) chloride top
Crystal data top
[MnCl(C10H12N2O)(H2O)3]ClZ = 2
Mr = 356.10F(000) = 366
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7039 (17) ÅCell parameters from 956 reflections
b = 9.3247 (18) Åθ = 2.3–27.9°
c = 10.1407 (19) ŵ = 1.22 mm1
α = 98.029 (4)°T = 291 K
β = 98.036 (4)°Block, colourless
γ = 107.357 (3)°0.30 × 0.20 × 0.20 mm
V = 763.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2647 independent reflections
Radiation source: fine-focus sealed tube1898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 810
Tmin = 0.710, Tmax = 0.792k = 1011
3838 measured reflectionsl = 127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[MnCl(C10H12N2O)(H2O)3]Clγ = 107.357 (3)°
Mr = 356.10V = 763.4 (3) Å3
Triclinic, P1Z = 2
a = 8.7039 (17) ÅMo Kα radiation
b = 9.3247 (18) ŵ = 1.22 mm1
c = 10.1407 (19) ÅT = 291 K
α = 98.029 (4)°0.30 × 0.20 × 0.20 mm
β = 98.036 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1898 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.792Rint = 0.026
3838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.90Δρmax = 0.37 e Å3
2647 reflectionsΔρmin = 0.36 e Å3
174 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.38327 (7)0.51169 (6)0.24526 (6)0.0323 (2)
Cl10.18927 (14)0.33243 (12)0.05540 (10)0.0480 (3)
Cl20.81678 (13)0.36167 (13)0.32531 (11)0.0498 (3)
N10.3684 (4)0.7276 (3)0.1810 (3)0.0331 (8)
N20.9228 (4)1.0462 (4)0.6561 (3)0.0379 (9)
O10.5460 (3)0.7046 (3)0.4013 (2)0.0390 (7)
O20.6042 (3)0.5194 (3)0.1505 (3)0.0602 (9)
H2B0.61890.59840.11480.072*
H2C0.67810.54740.22190.072*
O30.1955 (3)0.4766 (3)0.3751 (3)0.0536 (8)
H3B0.22740.54200.44890.064*
H3C0.11210.48400.32550.064*
O40.4698 (3)0.3588 (3)0.3523 (2)0.0391 (7)
H4B0.53350.41140.42570.047*
H4C0.52780.32380.30420.047*
C10.2670 (5)0.7350 (5)0.0724 (4)0.0408 (11)
H10.19500.64410.01890.049*
C20.2641 (5)0.8704 (5)0.0362 (4)0.0471 (12)
H2A0.19090.87120.03960.056*
C30.3706 (5)1.0043 (5)0.1136 (4)0.0481 (12)
H3A0.37121.09790.09140.058*
C40.4769 (5)0.9982 (4)0.2251 (4)0.0415 (11)
H4A0.55091.08800.27870.050*
C50.4732 (5)0.8596 (4)0.2565 (4)0.0305 (9)
C60.5787 (5)0.8396 (4)0.3796 (3)0.0303 (9)
C70.7021 (5)0.9654 (4)0.4608 (4)0.0325 (10)
H70.71741.06300.44200.039*
C80.8019 (5)0.9433 (4)0.5698 (4)0.0363 (10)
H80.77990.84300.58310.044*
C90.9737 (6)1.2080 (4)0.6504 (4)0.0541 (13)
H9A0.97831.22010.55850.081*
H9B1.08021.25840.70660.081*
H9C0.89631.25230.68260.081*
C101.0158 (5)1.0020 (5)0.7672 (4)0.0507 (12)
H10A0.96570.89530.76750.076*
H10B1.01571.06180.85230.076*
H10C1.12671.02000.75430.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0342 (4)0.0306 (4)0.0272 (4)0.0057 (3)0.0003 (3)0.0059 (3)
Cl10.0504 (7)0.0436 (7)0.0337 (6)0.0023 (5)0.0019 (5)0.0035 (5)
Cl20.0352 (6)0.0591 (7)0.0507 (7)0.0126 (6)0.0047 (5)0.0055 (6)
N10.037 (2)0.0306 (18)0.0264 (18)0.0074 (16)0.0017 (15)0.0038 (15)
N20.036 (2)0.037 (2)0.033 (2)0.0064 (17)0.0017 (16)0.0013 (16)
O10.0468 (19)0.0289 (16)0.0298 (16)0.0009 (14)0.0060 (13)0.0064 (12)
O20.052 (2)0.088 (2)0.0515 (19)0.0239 (19)0.0188 (16)0.0382 (18)
O30.0363 (19)0.077 (2)0.0376 (18)0.0129 (17)0.0030 (14)0.0036 (15)
O40.0437 (18)0.0388 (16)0.0350 (16)0.0152 (14)0.0051 (13)0.0061 (13)
C10.041 (3)0.042 (3)0.033 (2)0.009 (2)0.004 (2)0.006 (2)
C20.052 (3)0.055 (3)0.035 (3)0.022 (3)0.003 (2)0.015 (2)
C30.057 (3)0.042 (3)0.051 (3)0.021 (2)0.008 (2)0.019 (2)
C40.050 (3)0.030 (2)0.039 (3)0.007 (2)0.003 (2)0.008 (2)
C50.029 (2)0.035 (2)0.027 (2)0.0113 (19)0.0056 (17)0.0044 (18)
C60.033 (2)0.033 (2)0.023 (2)0.0069 (19)0.0096 (17)0.0018 (18)
C70.036 (2)0.029 (2)0.027 (2)0.0060 (19)0.0019 (18)0.0030 (17)
C80.035 (3)0.035 (2)0.033 (2)0.003 (2)0.0072 (19)0.0021 (19)
C90.054 (3)0.038 (3)0.057 (3)0.008 (2)0.003 (2)0.001 (2)
C100.046 (3)0.059 (3)0.039 (3)0.013 (2)0.007 (2)0.007 (2)
Geometric parameters (Å, º) top
Mn1—O42.150 (2)C1—H10.9300
Mn1—O12.192 (2)C2—C31.366 (5)
Mn1—O32.217 (3)C2—H2A0.9300
Mn1—N12.234 (3)C3—C41.377 (5)
Mn1—O22.253 (3)C3—H3A0.9300
Mn1—Cl12.4208 (11)C4—C51.366 (5)
N1—C11.335 (4)C4—H4A0.9300
N1—C51.344 (4)C5—C61.511 (5)
N2—C81.303 (4)C6—C71.392 (5)
N2—C91.452 (5)C7—C81.387 (5)
N2—C101.473 (5)C7—H70.9300
O1—C61.263 (4)C8—H80.9300
O2—H2B0.8500C9—H9A0.9600
O2—H2C0.8501C9—H9B0.9600
O3—H3B0.8500C9—H9C0.9600
O3—H3C0.8498C10—H10A0.9600
O4—H4B0.8500C10—H10B0.9600
O4—H4C0.8500C10—H10C0.9600
C1—C21.369 (5)
O4—Mn1—O189.04 (9)C3—C2—C1118.8 (4)
O4—Mn1—O384.40 (11)C3—C2—H2A120.6
O1—Mn1—O389.54 (10)C1—C2—H2A120.6
O4—Mn1—N1160.52 (10)C2—C3—C4118.8 (4)
O1—Mn1—N172.14 (10)C2—C3—H3A120.6
O3—Mn1—N1100.02 (12)C4—C3—H3A120.6
O4—Mn1—O281.56 (10)C5—C4—C3119.7 (4)
O1—Mn1—O286.99 (11)C5—C4—H4A120.1
O3—Mn1—O2165.59 (10)C3—C4—H4A120.1
N1—Mn1—O292.22 (11)N1—C5—C4121.8 (3)
O4—Mn1—Cl1100.99 (7)N1—C5—C6114.0 (3)
O1—Mn1—Cl1169.97 (8)C4—C5—C6124.2 (3)
O3—Mn1—Cl191.26 (8)O1—C6—C7124.3 (3)
N1—Mn1—Cl197.88 (8)O1—C6—C5115.6 (3)
O2—Mn1—Cl194.59 (8)C7—C6—C5120.1 (3)
C1—N1—C5118.0 (3)C8—C7—C6119.1 (4)
C1—N1—Mn1125.2 (3)C8—C7—H7120.4
C5—N1—Mn1116.8 (2)C6—C7—H7120.4
C8—N2—C9123.4 (3)N2—C8—C7127.8 (4)
C8—N2—C10120.5 (3)N2—C8—H8116.1
C9—N2—C10116.1 (3)C7—C8—H8116.1
C6—O1—Mn1120.2 (2)N2—C9—H9A109.5
Mn1—O2—H2B103.2N2—C9—H9B109.5
Mn1—O2—H2C99.5H9A—C9—H9B109.5
H2B—O2—H2C104.5N2—C9—H9C109.5
Mn1—O3—H3B111.7H9A—C9—H9C109.5
Mn1—O3—H3C103.7H9B—C9—H9C109.5
H3B—O3—H3C112.7N2—C10—H10A109.5
Mn1—O4—H4B107.9N2—C10—H10B109.5
Mn1—O4—H4C106.9H10A—C10—H10B109.5
H4B—O4—H4C106.9N2—C10—H10C109.5
N1—C1—C2123.0 (4)H10A—C10—H10C109.5
N1—C1—H1118.5H10B—C10—H10C109.5
C2—C1—H1118.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···Cl1i0.852.583.142 (3)125
O2—H2C···Cl20.852.643.188 (3)124
O3—H3B···Cl2ii0.852.463.228 (3)150
O3—H3C···Cl2iii0.852.483.090 (3)129
O4—H4B···O1ii0.852.272.659 (3)108
O4—H4C···Cl20.852.413.063 (3)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[MnCl(C10H12N2O)(H2O)3]Cl
Mr356.10
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.7039 (17), 9.3247 (18), 10.1407 (19)
α, β, γ (°)98.029 (4), 98.036 (4), 107.357 (3)
V3)763.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.710, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
3838, 2647, 1898
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.096, 0.90
No. of reflections2647
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···Cl1i0.852.583.142 (3)125.0
O2—H2C···Cl20.852.643.188 (3)124.0
O3—H3B···Cl2ii0.852.463.228 (3)150.0
O3—H3C···Cl2iii0.852.483.090 (3)129.0
O4—H4B···O1ii0.852.272.659 (3)108.0
O4—H4C···Cl20.852.413.063 (3)134.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The author acknowledges Anhui University of Technology for supporting of this work.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H.-Z., Chu, Z.-L. & Hu, N.-L. (2009). Acta Cryst. E65, m358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Y., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds