organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1R,3S)-3-(1,3-Di­thian-2-yl)-2,2-di­methyl­cyclo­prop­yl]di­phenyl­methanol

aDepartment of Applied Chemistry, China Agricultural University, 100193 Beijing, People's Republic of China
*Correspondence e-mail: wangmincau@yahoo.com.cn

(Received 30 March 2009; accepted 29 April 2009; online 7 May 2009)

In the title compound, C22H26OS2, prepared from (–)-1R-cis-caronaldehyde, the 1,3-dithiane ring adopts a chair conformation. An intra­molecular O—H⋯S hydrogen bond influences the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [010].

Related literature

For the details of preparation of the analogous compound, (1R,3S)-methyl-3-(1,3-dithian-2-yl)-2,2-dimethyl­cyclo­propane carboxyl­ate, see: Mazzanti et al. (1997[Mazzanti, M., Marchon, J. C., Shang, M. Y., Scheidt, W. R., Jia, S. L. & Shelnutt, J. A. (1997). J. Am. Chem. Soc. 119, 12400-12401.]); Veyrat et al. (1997[Veyrat, M., Fantin, L., Desmoulins, S., Petitjean, A., Mazzanti, M., Ramasseul, R., Marchon, J. C. & Bau, R. (1997). Bull. Soc. Chim. Fr. 134, 703-711.]); Perollier et al. (1997[Perollier, C., Pecaut, J., Ramasseul, R. & Marchon, J. C. (1997). Bull. Soc. Chim. Fr. 134, 517-523.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26OS2

  • Mr = 370.55

  • Monoclinic, P 21

  • a = 9.5578 (19) Å

  • b = 11.199 (2) Å

  • c = 9.6512 (19) Å

  • β = 101.14 (3)°

  • V = 1013.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 123 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.924

  • 4303 measured reflections

  • 4303 independent reflections

  • 2920 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 0.84

  • 4303 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1878 Friedel pairs

  • Flack parameter: 0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2⋯S1 0.84 2.58 3.330 (2) 149
C7—H7A⋯S2i 0.99 2.89 3.736 (3) 144
C9—H9A⋯O1ii 0.99 2.60 3.236 (3) 122
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2000[Rigaku (2000). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We designed and prepared a novel type of chiral dithiane alcohol based with chiral cis-cyclopropane from (-)-1R-cis-Caronaldehyde. Details of preparation of the analogue compound were descussed in the literature (Mazzanti et al., 1997; Veyrat et al., 1997; Perollier et al., 1997).

In this paper, the crystal structure of the title compound, (I), is reported. In (I) (Fig. 1), the 1,3-dithiane ring adopts a chair conformation. Intramolecular O—H···S hydrogen bond (Table 1) influences the molecular conformation. In the crystal, weak intermolecular C—H···O and C—H···S hydrogen bonds (Table 1) link the molecules into chains propagated in direction [010].

Related literature top

For the details of preparation of the analogous compound, (1R,3S)-methyl-3-(1,3-dithian-2-yl)-2,2-dimethylcyclopropane carboxylate, see: Mazzanti et al. (1997); Veyrat et al. (1997); Perollier et al. (1997).

Experimental top

Magnesium (0.4 g, 15.6 mmol) was added to 15 ml of anhydrous THF. A solution of bromobenzene (2.0 g, 12.5 mmol in 5 ml of THF) was added dropwise into the above mixture. Once the reaction began, the rest of the bromobenzene solution was added at a rate that maintained a gentle reflux. When the addition of the bromobenzene solution was complete, the mixture was refluxed for 20 min, and was then cooled to 273 K. (1R,3S)-Methyl-3-(1,3-dithian-2-yl)-2,2-dimethylcyclopropane carboxylate (5 mmol) (Mazzanti et al., 1997; Veyrat et al., 1997; Perollier et al., 1997) was dissolved in 5 ml of anhydrous THF and added to the prepared Grignard mixture. After the solution of carboxylate had been added, the resulting mixture was stirred at room temperature for an additional 24 h. The reaction was quenched with saturated NH4Cl (aq), and the mixture was extracted several times with Et2O. The organic phases were combined, dried over MgSO4 and concentrated under reduced pressure. The residual yellow solid was purified by recrystallization in Et2O to yield compound (I) as colourless crystals. Colourless solid, m.p. 427 K; [α]20D =+19.93 (c 0.03, CHCl3).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.95 (Caromatic), 0.98 (Cmethyl), 0.99 (CH2) and 1.00 (CH) Å and O—H = 0.84 Å, and with Uiso (H) = 1.5Ueq (Cmethy,O) and 1.2Ueq (other C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids for non-H atoms.
[(1R,3S)-3-(1,3-Dithian-2-yl)-2,2- dimethylcyclopropyl]diphenylmethanol top
Crystal data top
C22H26OS2F(000) = 396
Mr = 370.55Dx = 1.214 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7560 reflections
a = 9.5578 (19) Åθ = 2.2–27.5°
b = 11.199 (2) ŵ = 0.27 mm1
c = 9.6512 (19) ÅT = 123 K
β = 101.14 (3)°Block, colourless
V = 1013.6 (4) Å30.40 × 0.40 × 0.30 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4303 independent reflections
Radiation source: fine-focus sealed tube2920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.900, Tmax = 0.924l = 1212
4303 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 0.84Δρmax = 0.28 e Å3
4303 reflectionsΔρmin = 0.30 e Å3
229 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.046 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1878 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (7)
Crystal data top
C22H26OS2V = 1013.6 (4) Å3
Mr = 370.55Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5578 (19) ŵ = 0.27 mm1
b = 11.199 (2) ÅT = 123 K
c = 9.6512 (19) Å0.40 × 0.40 × 0.30 mm
β = 101.14 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2920 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.924Rint = 0.000
4303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.28 e Å3
S = 0.84Δρmin = 0.30 e Å3
4303 reflectionsAbsolute structure: Flack (1983), 1878 Friedel pairs
229 parametersAbsolute structure parameter: 0.05 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6857 (3)0.2287 (2)0.2178 (3)0.0254 (6)
H10.65170.28250.13550.030*
C20.6466 (3)0.2775 (2)0.3516 (3)0.0287 (7)
C30.8003 (3)0.2893 (2)0.3280 (3)0.0238 (6)
H30.82460.37170.30050.029*
C40.5595 (3)0.3923 (3)0.3379 (3)0.0462 (9)
H4A0.45770.37270.31760.069*
H4B0.58270.44070.26090.069*
H4C0.58220.43730.42650.069*
C50.6172 (3)0.1950 (3)0.4668 (3)0.0369 (8)
H5A0.51560.17450.44920.055*
H5B0.64320.23500.55850.055*
H5C0.67390.12200.46740.055*
C60.9233 (2)0.2264 (2)0.4217 (3)0.0236 (6)
H60.88670.15490.46560.028*
C71.1962 (3)0.1241 (3)0.4492 (3)0.0351 (7)
H7A1.16320.05290.49440.042*
H7B1.27510.09870.40280.042*
C81.2536 (3)0.2153 (2)0.5636 (3)0.0354 (8)
H8A1.34040.18270.62450.042*
H8B1.28110.28870.51840.042*
C91.1470 (3)0.2472 (3)0.6542 (3)0.0354 (7)
H9A1.19580.29400.73660.042*
H9B1.11090.17290.69020.042*
C100.6776 (3)0.0972 (2)0.1726 (3)0.0235 (6)
C110.7437 (3)0.0754 (2)0.0414 (3)0.0258 (6)
C120.7434 (3)0.0429 (3)0.0102 (3)0.0389 (8)
H120.69950.10440.03410.047*
C130.8053 (3)0.0705 (3)0.1232 (3)0.0479 (9)
H130.80590.15070.15510.057*
C140.8676 (3)0.0196 (4)0.1912 (3)0.0522 (10)
H140.90910.00140.27050.063*
C150.8679 (4)0.1346 (3)0.1422 (4)0.0537 (10)
H150.91000.19580.18850.064*
C160.8079 (3)0.1635 (3)0.0258 (3)0.0404 (8)
H160.81080.24350.00740.048*
C170.5212 (3)0.0589 (2)0.1427 (3)0.0259 (6)
C180.4713 (3)0.0319 (3)0.2171 (3)0.0345 (7)
H180.53560.07370.28800.041*
C190.3262 (3)0.0628 (3)0.1886 (3)0.0412 (8)
H190.29330.12680.23850.049*
C200.2309 (3)0.0007 (3)0.0882 (3)0.0392 (8)
H200.13230.02030.07130.047*
C210.2790 (3)0.0895 (3)0.0129 (3)0.0410 (8)
H210.21410.13130.05750.049*
C220.4234 (3)0.1196 (3)0.0402 (3)0.0370 (8)
H220.45590.18250.01170.044*
O10.75071 (18)0.02068 (15)0.28301 (18)0.0294 (5)
H20.83810.03240.28630.035*
S11.05026 (7)0.17887 (6)0.31479 (7)0.02959 (18)
S20.99674 (7)0.33324 (6)0.55984 (8)0.0331 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0253 (14)0.0246 (14)0.0234 (16)0.0024 (12)0.0025 (12)0.0004 (11)
C20.0194 (14)0.0317 (15)0.0309 (17)0.0023 (12)0.0056 (12)0.0089 (13)
C30.0195 (13)0.0240 (14)0.0248 (15)0.0010 (11)0.0030 (11)0.0005 (11)
C40.0302 (17)0.0495 (19)0.053 (2)0.0138 (15)0.0065 (15)0.0172 (16)
C50.0221 (14)0.058 (2)0.0314 (16)0.0069 (14)0.0060 (12)0.0125 (16)
C60.0179 (13)0.0270 (14)0.0247 (15)0.0028 (11)0.0008 (11)0.0022 (11)
C70.0208 (15)0.0375 (17)0.045 (2)0.0002 (12)0.0011 (13)0.0007 (14)
C80.0220 (15)0.0344 (18)0.046 (2)0.0034 (13)0.0026 (14)0.0076 (14)
C90.0328 (16)0.0335 (16)0.0338 (18)0.0009 (14)0.0089 (14)0.0005 (13)
C100.0230 (14)0.0218 (14)0.0230 (15)0.0046 (12)0.0021 (11)0.0027 (11)
C110.0221 (14)0.0318 (15)0.0216 (14)0.0074 (13)0.0008 (11)0.0014 (12)
C120.0363 (18)0.0429 (18)0.0362 (18)0.0034 (15)0.0036 (14)0.0071 (15)
C130.0389 (19)0.068 (3)0.036 (2)0.0096 (18)0.0057 (16)0.0185 (19)
C140.0364 (19)0.093 (3)0.0271 (18)0.021 (2)0.0066 (15)0.013 (2)
C150.052 (2)0.069 (3)0.047 (2)0.0117 (18)0.0268 (18)0.0166 (18)
C160.0431 (18)0.0439 (19)0.0360 (18)0.0079 (17)0.0121 (14)0.0093 (16)
C170.0306 (15)0.0253 (15)0.0207 (14)0.0019 (12)0.0027 (12)0.0046 (12)
C180.0322 (16)0.0349 (17)0.0321 (17)0.0011 (14)0.0044 (13)0.0055 (13)
C190.0405 (19)0.0399 (18)0.0406 (19)0.0124 (15)0.0013 (15)0.0031 (15)
C200.0277 (16)0.050 (2)0.0367 (19)0.0058 (15)0.0003 (14)0.0071 (15)
C210.0308 (17)0.051 (2)0.0378 (19)0.0016 (16)0.0032 (14)0.0019 (15)
C220.0334 (17)0.0415 (18)0.0338 (18)0.0031 (14)0.0005 (14)0.0093 (14)
O10.0285 (11)0.0267 (10)0.0287 (11)0.0028 (8)0.0053 (9)0.0036 (9)
S10.0226 (3)0.0370 (4)0.0294 (4)0.0013 (3)0.0058 (3)0.0009 (3)
S20.0289 (4)0.0306 (4)0.0356 (4)0.0023 (3)0.0043 (3)0.0068 (4)
Geometric parameters (Å, º) top
C1—C21.515 (4)C9—H9B0.9900
C1—C31.531 (3)C10—O11.439 (3)
C1—C101.533 (4)C10—C171.529 (4)
C1—H11.0000C10—C111.540 (4)
C2—C51.513 (4)C11—C161.387 (4)
C2—C41.523 (4)C11—C121.415 (4)
C2—C31.536 (4)C12—C131.372 (4)
C3—C61.511 (3)C12—H120.9500
C3—H31.0000C13—C141.398 (5)
C4—H4A0.9800C13—H130.9500
C4—H4B0.9800C14—C151.371 (5)
C4—H4C0.9800C14—H140.9500
C5—H5A0.9800C15—C161.395 (4)
C5—H5B0.9800C15—H150.9500
C5—H5C0.9800C16—H160.9500
C6—S11.818 (3)C17—C181.382 (4)
C6—S21.827 (3)C17—C221.399 (4)
C6—H61.0000C18—C191.404 (4)
C7—C81.526 (4)C18—H180.9500
C7—S11.818 (3)C19—C201.382 (4)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.375 (4)
C8—C91.508 (4)C20—H200.9500
C8—H8A0.9900C21—C221.396 (4)
C8—H8B0.9900C21—H210.9500
C9—S21.821 (3)C22—H220.9500
C9—H9A0.9900O1—H20.8400
C2—C1—C360.55 (17)S2—C9—H9A109.0
C2—C1—C10125.6 (2)C8—C9—H9B109.0
C3—C1—C10127.8 (2)S2—C9—H9B109.0
C2—C1—H1111.3H9A—C9—H9B107.8
C3—C1—H1111.3O1—C10—C17106.8 (2)
C10—C1—H1111.3O1—C10—C1111.8 (2)
C5—C2—C1121.2 (2)C17—C10—C1108.5 (2)
C5—C2—C4113.8 (3)O1—C10—C11107.24 (19)
C1—C2—C4116.8 (2)C17—C10—C11110.0 (2)
C5—C2—C3118.7 (2)C1—C10—C11112.4 (2)
C1—C2—C360.24 (18)C16—C11—C12118.2 (3)
C4—C2—C3115.9 (2)C16—C11—C10124.1 (2)
C6—C3—C1125.3 (2)C12—C11—C10117.7 (2)
C6—C3—C2121.8 (2)C13—C12—C11121.2 (3)
C1—C3—C259.21 (17)C13—C12—H12119.4
C6—C3—H3113.3C11—C12—H12119.4
C1—C3—H3113.3C12—C13—C14119.9 (3)
C2—C3—H3113.3C12—C13—H13120.0
C2—C4—H4A109.5C14—C13—H13120.0
C2—C4—H4B109.5C15—C14—C13119.2 (3)
H4A—C4—H4B109.5C15—C14—H14120.4
C2—C4—H4C109.5C13—C14—H14120.4
H4A—C4—H4C109.5C14—C15—C16121.5 (3)
H4B—C4—H4C109.5C14—C15—H15119.3
C2—C5—H5A109.5C16—C15—H15119.3
C2—C5—H5B109.5C11—C16—C15120.0 (3)
H5A—C5—H5B109.5C11—C16—H16120.0
C2—C5—H5C109.5C15—C16—H16120.0
H5A—C5—H5C109.5C18—C17—C22118.3 (3)
H5B—C5—H5C109.5C18—C17—C10122.1 (2)
C3—C6—S1108.90 (19)C22—C17—C10119.5 (2)
C3—C6—S2106.04 (18)C17—C18—C19120.4 (3)
S1—C6—S2113.65 (13)C17—C18—H18119.8
C3—C6—H6109.4C19—C18—H18119.8
S1—C6—H6109.4C20—C19—C18120.4 (3)
S2—C6—H6109.4C20—C19—H19119.8
C8—C7—S1114.18 (19)C18—C19—H19119.8
C8—C7—H7A108.7C21—C20—C19119.9 (3)
S1—C7—H7A108.7C21—C20—H20120.1
C8—C7—H7B108.7C19—C20—H20120.1
S1—C7—H7B108.7C20—C21—C22119.8 (3)
H7A—C7—H7B107.6C20—C21—H21120.1
C9—C8—C7112.9 (2)C22—C21—H21120.1
C9—C8—H8A109.0C21—C22—C17121.2 (3)
C7—C8—H8A109.0C21—C22—H22119.4
C9—C8—H8B109.0C17—C22—H22119.4
C7—C8—H8B109.0C10—O1—H2105.8
H8A—C8—H8B107.8C7—S1—C6101.43 (13)
C8—C9—S2113.0 (2)C9—S2—C699.98 (13)
C8—C9—H9A109.0
C3—C1—C2—C5107.5 (3)C1—C10—C11—C12179.7 (2)
C10—C1—C2—C510.0 (4)C16—C11—C12—C130.4 (4)
C3—C1—C2—C4106.0 (3)C10—C11—C12—C13177.4 (3)
C10—C1—C2—C4136.5 (3)C11—C12—C13—C141.4 (4)
C10—C1—C2—C3117.5 (3)C12—C13—C14—C151.1 (5)
C2—C1—C3—C6109.2 (3)C13—C14—C15—C160.1 (5)
C10—C1—C3—C64.9 (4)C12—C11—C16—C150.9 (4)
C10—C1—C3—C2114.1 (3)C10—C11—C16—C15178.5 (3)
C5—C2—C3—C63.5 (4)C14—C15—C16—C111.1 (5)
C1—C2—C3—C6115.0 (3)O1—C10—C17—C181.3 (3)
C4—C2—C3—C6137.5 (3)C1—C10—C17—C18119.4 (3)
C5—C2—C3—C1111.5 (3)C11—C10—C17—C18117.4 (3)
C4—C2—C3—C1107.5 (3)O1—C10—C17—C22179.1 (2)
C1—C3—C6—S171.5 (3)C1—C10—C17—C2258.5 (3)
C2—C3—C6—S1144.1 (2)C11—C10—C17—C2264.8 (3)
C1—C3—C6—S2165.9 (2)C22—C17—C18—C190.8 (4)
C2—C3—C6—S293.3 (3)C10—C17—C18—C19178.6 (3)
S1—C7—C8—C966.4 (3)C17—C18—C19—C201.7 (5)
C7—C8—C9—S269.4 (3)C18—C19—C20—C211.9 (5)
C2—C1—C10—O151.7 (3)C19—C20—C21—C221.3 (5)
C3—C1—C10—O126.2 (4)C20—C21—C22—C170.4 (5)
C2—C1—C10—C1765.9 (3)C18—C17—C22—C210.2 (4)
C3—C1—C10—C17143.8 (3)C10—C17—C22—C21178.1 (3)
C2—C1—C10—C11172.3 (2)C8—C7—S1—C655.9 (2)
C3—C1—C10—C1194.4 (3)C3—C6—S1—C7173.11 (18)
O1—C10—C11—C16121.1 (3)S2—C6—S1—C755.16 (17)
C17—C10—C11—C16123.0 (3)C8—C9—S2—C661.1 (2)
C1—C10—C11—C162.1 (3)C3—C6—S2—C9176.75 (19)
O1—C10—C11—C1256.5 (3)S1—C6—S2—C957.17 (18)
C17—C10—C11—C1259.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···S10.842.583.330 (2)149
C7—H7A···S2i0.992.893.736 (3)144
C9—H9A···O1ii0.992.603.236 (3)122
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H26OS2
Mr370.55
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)9.5578 (19), 11.199 (2), 9.6512 (19)
β (°) 101.14 (3)
V3)1013.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.900, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
4303, 4303, 2920
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 0.84
No. of reflections4303
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30
Absolute structureFlack (1983), 1878 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···S10.842.583.330 (2)149.1
C7—H7A···S2i0.992.893.736 (3)144.0
C9—H9A···O1ii0.992.603.236 (3)121.7
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant Nos. 20472111 and20742004) is gratefully acknowledged.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMazzanti, M., Marchon, J. C., Shang, M. Y., Scheidt, W. R., Jia, S. L. & Shelnutt, J. A. (1997). J. Am. Chem. Soc. 119, 12400–12401.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerollier, C., Pecaut, J., Ramasseul, R. & Marchon, J. C. (1997). Bull. Soc. Chim. Fr. 134, 517–523.  CAS Google Scholar
First citationRigaku (2000). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeyrat, M., Fantin, L., Desmoulins, S., Petitjean, A., Mazzanti, M., Ramasseul, R., Marchon, J. C. & Bau, R. (1997). Bull. Soc. Chim. Fr. 134, 703–711.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds