organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1057

Methyl 2,3-(3,6,9-trioxaundecane-1,11-diyldi­thio)-1,4,5,8-tetra­thia­fulvalene-6-carboxyl­ate

aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 20 March 2009; accepted 7 April 2009; online 18 April 2009)

In the title mol­ecule, C16H20O5S6, the two five-membered rings form a dihedral angle of 4.7 (3)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into chains propagating in [1[\overline{1}]0], and ππ inter­actions, indicated by the short distances [3.756 (5) Å] between the centroids of five-membered rings from mol­ecules related by translation along the b axis.

Related literature

For background to tetra­thia­fulvalene derivatives, see Hansen et al. (1992[Hansen, T. K., Jørgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403-6409.]); Trippé et al. (2002[Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461-2464.]). For details of the synthesis, see Liu et al. (2000[Liu, S. G., Liu, H. Y., Bandyopadhyay, K., Gao, Z. Q. & Echegoyen, L. (2000). J. Org. Chem. 65, 3292-3298.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20O5S6

  • Mr = 484.68

  • Monoclinic, C c

  • a = 22.604 (5) Å

  • b = 5.2048 (10) Å

  • c = 17.801 (4) Å

  • β = 90.65 (3)°

  • V = 2094.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 291 K

  • 0.20 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.876, Tmax = 0.923

  • 9505 measured reflections

  • 4254 independent reflections

  • 3370 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.172

  • S = 0.96

  • 4254 reflections

  • 245 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1855 Friedel pairs

  • Flack parameter: −0.12 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.35 3.127 (7) 141
Symmetry code: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cation sensors based on tetrathiafulvalene (TTF) derivatives have currently attracted widespread attention because such molecules show electrochemical recognition of various metal cations (Trippé et al., 2002). We incorporated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind lithium ion (Hansen et al., 1992). We report herein the synthesis and structure of the title compound, (I).

The molecular structure of (I),C16H20O5S6, is shown in Fig.1. Every molecule contains one TTF moiety and one dithia-15-crown-5 ring.TTF moiety is composed of two nearly coplanar five-membered rings with a dehedral angle of 4.68 (27) °. The dithia-15-crown-5 ring adopt a twiste conformation and situated almost perpendicular to TTF moiety. Owing to the absence of strong hydrogen bond donors, the crystal packing is stabilized by weak C—H···O hydrogen bonds, involving the O atoms of the crown ether as acceptors, and the methyl C—H groups as donors (Table 1). The crystal packing exhibits also ππ interactions, proved by short distance Cg1···Cg2ii of 3.756 (5) Å, where Cg1 and Cg2 are centroids of S1/C3/C4/S2/C5 and S3/C6/S4/C7/C8 rings, respectively [symmetry code: (ii) x, 1+y, z].

Related literature top

For background to tetrathiafulvalene derivatives, see Hansen et al. (1992); Trippé et al. (2002). For details of the synthesis, see Liu et al. (2000).

Experimental top

6,7-Dimethoxycarbonyl-2,3- bis(3',6',9'-trioxoundecylthio)-1,4,5,8-tetrathiafulvalene (Liu et al., 2000) (500 mg, 0.92 mmol) were dissovled in DMF (40 ml), LiBr (0.91 g, 10.5 mmol) and a drop of water was added. The mixture was heated at 80 °C for 2 h. After cooling to room temperature, saturated aqueous sodium chloride was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried (MgSO4) and then concentrated under reduced pressure. The resulting red oil was purified by column chromatography [silica gel, eluent CH2Cl2-AcOEt (4: 1 v/v)] to afford the title compound as a red solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of dichloromethane-n-hexane solution at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probalility level. H atoms omitted for clarity.
Methyl 2,3-(3,6,9-trioxaundecane-1,11-diyldithio)-1,4,5,8- tetrathiafulvalene-6-carboxylate top
Crystal data top
C16H20O5S6F(000) = 1008
Mr = 484.68Dx = 1.537 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 7343 reflections
a = 22.604 (5) Åθ = 3.4–27.1°
b = 5.2048 (10) ŵ = 0.68 mm1
c = 17.801 (4) ÅT = 291 K
β = 90.65 (3)°Block, red
V = 2094.1 (7) Å30.20 × 0.13 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4254 independent reflections
Radiation source: fine-focus sealed tube3370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2828
Tmin = 0.876, Tmax = 0.923k = 66
9505 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0878P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4254 reflectionsΔρmax = 0.49 e Å3
245 parametersΔρmin = 0.46 e Å3
2 restraintsAbsolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (12)
Crystal data top
C16H20O5S6V = 2094.1 (7) Å3
Mr = 484.68Z = 4
Monoclinic, CcMo Kα radiation
a = 22.604 (5) ŵ = 0.68 mm1
b = 5.2048 (10) ÅT = 291 K
c = 17.801 (4) Å0.20 × 0.13 × 0.12 mm
β = 90.65 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4254 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3370 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.923Rint = 0.101
9505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.172Δρmax = 0.49 e Å3
S = 0.96Δρmin = 0.46 e Å3
4254 reflectionsAbsolute structure: Flack (1983), 1855 Friedel pairs
245 parametersAbsolute structure parameter: 0.12 (12)
2 restraints
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4826 (4)1.8931 (13)0.5758 (4)0.0638 (17)
H1A0.44191.88580.55980.096*
H1B0.50761.85460.53400.096*
H1C0.49152.06220.59420.096*
C20.4534 (3)1.7154 (11)0.6912 (3)0.0426 (12)
C30.4679 (2)1.5069 (10)0.7458 (3)0.0388 (11)
C40.4324 (2)1.4479 (11)0.8031 (3)0.0413 (11)
H40.39791.54040.81150.050*
C50.5199 (2)1.1345 (9)0.8157 (3)0.0368 (10)
C60.5581 (2)0.9558 (10)0.8382 (3)0.0392 (11)
C70.6165 (2)0.6004 (9)0.9111 (3)0.0361 (10)
C80.6520 (2)0.6615 (10)0.8524 (3)0.0405 (11)
C90.7699 (3)0.7676 (12)0.8282 (3)0.0507 (13)
H9A0.80860.70110.81540.061*
H9B0.75800.88880.78950.061*
C100.7740 (3)0.9042 (10)0.9022 (3)0.0438 (12)
H10A0.73720.99300.91220.053*
H10B0.78130.78180.94230.053*
C110.8288 (3)1.2375 (11)0.9635 (4)0.0546 (15)
H11A0.79011.27830.98340.066*
H11B0.84741.39780.94920.066*
C120.8653 (3)1.1139 (13)1.0241 (4)0.0609 (16)
H12A0.90371.07071.00390.073*
H12B0.87151.23731.06430.073*
C130.7993 (3)0.9435 (13)1.1131 (4)0.0578 (15)
H13A0.76921.06161.09490.069*
H13B0.82021.02451.15470.069*
C140.7710 (3)0.7016 (13)1.1390 (4)0.0606 (16)
H14A0.80200.57761.14970.073*
H14B0.75110.73681.18580.073*
C150.6760 (3)0.7176 (13)1.0822 (3)0.0577 (16)
H15A0.67840.84291.04200.069*
H15B0.66770.80861.12840.069*
C160.6266 (3)0.5309 (13)1.0653 (3)0.0519 (14)
H16A0.58940.62401.06490.062*
H16B0.62500.40581.10560.062*
O10.49274 (19)1.7087 (8)0.6344 (2)0.0524 (10)
O20.4141 (2)1.8633 (9)0.6967 (2)0.0571 (11)
O30.82120 (18)1.0828 (8)0.8984 (2)0.0526 (10)
O40.8395 (2)0.8877 (8)1.0548 (2)0.0560 (10)
O50.7302 (2)0.5875 (8)1.0894 (2)0.0587 (11)
S10.53276 (5)1.3254 (3)0.73569 (7)0.0415 (3)
S20.45240 (6)1.1969 (3)0.86052 (7)0.0456 (3)
S30.62439 (6)0.8944 (3)0.78907 (7)0.0453 (3)
S40.54731 (6)0.7502 (3)0.91476 (7)0.0417 (3)
S50.71732 (7)0.5055 (3)0.83051 (8)0.0492 (4)
S60.63337 (7)0.3600 (3)0.97634 (7)0.0486 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.081 (5)0.063 (4)0.047 (3)0.001 (4)0.006 (3)0.016 (3)
C20.043 (3)0.044 (3)0.040 (3)0.004 (2)0.003 (2)0.004 (2)
C30.031 (3)0.049 (3)0.036 (3)0.000 (2)0.0000 (19)0.000 (2)
C40.028 (3)0.050 (3)0.046 (3)0.001 (2)0.005 (2)0.005 (2)
C50.032 (3)0.042 (2)0.037 (3)0.002 (2)0.0045 (19)0.0003 (19)
C60.044 (3)0.038 (2)0.035 (2)0.013 (2)0.005 (2)0.0006 (18)
C70.038 (3)0.033 (2)0.038 (2)0.005 (2)0.002 (2)0.0025 (18)
C80.045 (3)0.038 (2)0.038 (3)0.006 (2)0.006 (2)0.0047 (19)
C90.046 (3)0.064 (3)0.042 (3)0.000 (3)0.014 (2)0.004 (2)
C100.039 (3)0.044 (3)0.049 (3)0.002 (2)0.011 (2)0.003 (2)
C110.048 (3)0.043 (3)0.074 (4)0.003 (3)0.021 (3)0.001 (3)
C120.049 (4)0.062 (4)0.072 (4)0.008 (3)0.008 (3)0.001 (3)
C130.058 (4)0.063 (4)0.053 (3)0.005 (3)0.007 (3)0.009 (3)
C140.065 (4)0.070 (4)0.047 (3)0.009 (3)0.003 (3)0.007 (3)
C150.071 (4)0.061 (3)0.042 (3)0.011 (3)0.006 (3)0.006 (3)
C160.048 (3)0.071 (4)0.038 (3)0.003 (3)0.018 (2)0.006 (2)
O10.050 (2)0.060 (2)0.048 (2)0.014 (2)0.0091 (18)0.0153 (18)
O20.050 (2)0.064 (2)0.058 (3)0.024 (2)0.0010 (19)0.0008 (19)
O30.043 (2)0.058 (2)0.057 (2)0.007 (2)0.0155 (18)0.0001 (18)
O40.061 (3)0.052 (2)0.054 (2)0.006 (2)0.0100 (19)0.0062 (17)
O50.056 (3)0.062 (2)0.058 (3)0.001 (2)0.001 (2)0.0022 (19)
S10.0371 (7)0.0476 (7)0.0400 (6)0.0027 (6)0.0104 (5)0.0065 (5)
S20.0393 (7)0.0540 (7)0.0439 (7)0.0046 (6)0.0138 (5)0.0040 (6)
S30.0413 (7)0.0513 (7)0.0436 (7)0.0017 (6)0.0109 (5)0.0095 (5)
S40.0392 (7)0.0459 (7)0.0403 (6)0.0028 (5)0.0083 (5)0.0052 (5)
S50.0482 (8)0.0440 (7)0.0557 (9)0.0045 (6)0.0117 (6)0.0058 (6)
S60.0592 (9)0.0414 (7)0.0452 (7)0.0013 (6)0.0026 (6)0.0061 (5)
Geometric parameters (Å, º) top
C1—O11.434 (7)C10—O31.418 (7)
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—O31.420 (7)
C2—O21.182 (7)C11—C121.496 (10)
C2—O11.354 (7)C11—H11A0.9700
C2—C31.491 (7)C11—H11B0.9700
C3—C41.342 (7)C12—O41.425 (8)
C3—S11.754 (5)C12—H12A0.9700
C4—S21.716 (6)C12—H12B0.9700
C4—H40.9300C13—O41.418 (7)
C5—C61.328 (7)C13—C141.487 (9)
C5—S21.761 (5)C13—H13A0.9700
C5—S11.763 (5)C13—H13B0.9700
C6—S41.752 (5)C14—O51.403 (8)
C6—S31.772 (6)C14—H14A0.9700
C7—C81.362 (7)C14—H14B0.9700
C7—S61.747 (5)C15—O51.404 (8)
C7—S41.749 (6)C15—C161.507 (10)
C8—S51.733 (6)C15—H15A0.9700
C8—S31.765 (6)C15—H15B0.9700
C9—C101.498 (8)C16—S61.824 (6)
C9—S51.811 (6)C16—H16A0.9700
C9—H9A0.9700C16—H16B0.9700
C9—H9B0.9700
O1—C1—H1A109.5C12—C11—H11B108.8
O1—C1—H1B109.5H11A—C11—H11B107.7
H1A—C1—H1B109.5O4—C12—C11114.1 (5)
O1—C1—H1C109.5O4—C12—H12A108.7
H1A—C1—H1C109.5C11—C12—H12A108.7
H1B—C1—H1C109.5O4—C12—H12B108.7
O2—C2—O1125.4 (5)C11—C12—H12B108.7
O2—C2—C3125.5 (6)H12A—C12—H12B107.6
O1—C2—C3109.1 (5)O4—C13—C14109.6 (5)
C4—C3—C2122.2 (5)O4—C13—H13A109.8
C4—C3—S1117.6 (4)C14—C13—H13A109.8
C2—C3—S1120.2 (4)O4—C13—H13B109.8
C3—C4—S2118.1 (4)C14—C13—H13B109.8
C3—C4—H4121.0H13A—C13—H13B108.2
S2—C4—H4121.0O5—C14—C13116.4 (5)
C6—C5—S2123.8 (4)O5—C14—H14A108.2
C6—C5—S1121.7 (4)C13—C14—H14A108.2
S2—C5—S1114.4 (3)O5—C14—H14B108.2
C5—C6—S4124.5 (4)C13—C14—H14B108.2
C5—C6—S3121.9 (4)H14A—C14—H14B107.3
S4—C6—S3113.6 (3)O5—C15—C16110.5 (5)
C8—C7—S6123.4 (4)O5—C15—H15A109.5
C8—C7—S4117.4 (4)C16—C15—H15A109.5
S6—C7—S4118.9 (3)O5—C15—H15B109.5
C7—C8—S5125.0 (4)C16—C15—H15B109.5
C7—C8—S3116.3 (4)H15A—C15—H15B108.1
S5—C8—S3118.3 (3)C15—C16—S6114.7 (4)
C10—C9—S5111.8 (4)C15—C16—H16A108.6
C10—C9—H9A109.3S6—C16—H16A108.6
S5—C9—H9A109.3C15—C16—H16B108.6
C10—C9—H9B109.3S6—C16—H16B108.6
S5—C9—H9B109.3H16A—C16—H16B107.6
H9A—C9—H9B107.9C2—O1—C1115.2 (5)
O3—C10—C9107.9 (4)C10—O3—C11114.6 (4)
O3—C10—H10A110.1C13—O4—C12112.3 (5)
C9—C10—H10A110.1C14—O5—C15114.9 (5)
O3—C10—H10B110.1C3—S1—C594.3 (2)
C9—C10—H10B110.1C4—S2—C595.4 (2)
H10A—C10—H10B108.4C8—S3—C695.9 (3)
O3—C11—C12113.9 (5)C7—S4—C696.3 (3)
O3—C11—H11A108.8C8—S5—C9102.3 (3)
C12—C11—H11A108.8C7—S6—C16102.0 (3)
O3—C11—H11B108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.353.127 (7)141
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H20O5S6
Mr484.68
Crystal system, space groupMonoclinic, Cc
Temperature (K)291
a, b, c (Å)22.604 (5), 5.2048 (10), 17.801 (4)
β (°) 90.65 (3)
V3)2094.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.20 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.876, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
9505, 4254, 3370
Rint0.101
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.172, 0.96
No. of reflections4254
No. of parameters245
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.46
Absolute structureFlack (1983), 1855 Friedel pairs
Absolute structure parameter0.12 (12)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.353.127 (7)141.4
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 20060184001) and the Open Project of the State Key Laboratory of Supramolecular Structures and Materials, Jilin University.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHansen, T. K., Jørgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403–6409.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, S. G., Liu, H. Y., Bandyopadhyay, K., Gao, Z. Q. & Echegoyen, L. (2000). J. Org. Chem. 65, 3292–3298.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461–2464.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1057
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds