organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4-meth­oxy­benzyl­­idene)cyclo­hexa­none

aLiaocheng Vocational and Technical College, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lcldy@163.com

(Received 12 March 2009; accepted 25 March 2009; online 31 March 2009)

In the title mol­ecule, C22H22O3, the central cyclo­hexa­none ring adopts an envelope conformation. The two outer aromatic rings form a dihedral angle of 19.3 (2)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background, see: Tanaka et al. (2000[Tanaka, T. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]). For a related structure, see: Brinda, Mudakavi et al. (2007[Brinda, Mudakavi, R., Chopra, D., Murthy, M. S. & Row, T. N. G. (2007). Acta Cryst. E63, o4494.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O3

  • Mr = 334.40

  • Monoclinic, P 21 /c

  • a = 9.0129 (8) Å

  • b = 9.4874 (10) Å

  • c = 20.9416 (17) Å

  • β = 100.518 (1)°

  • V = 1760.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.45 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.988

  • 9092 measured reflections

  • 3105 independent reflections

  • 1233 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.170

  • S = 0.87

  • 3105 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.67 3.512 (5) 146
C4—H4A⋯O1ii 0.97 2.61 3.510 (5) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of organic syntheses without volatile, often flammable, expensive and toxic solvents strongly reduces the waste production and many fundamental processes have proven to be achievable through efficient procedures characterized by high simplicity of set-up and work-up (Tanaka et al., 2000). In this paper, we describe a solvent-free protocol used in the synthesis of the title compound, (I), starting from the fragrant aldehydes and cyclohexanone in the presence of NaOH.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 4-methyl-2,6-bis(2-naphthylmethylene) cyclohexan-1-one (Brinda, Mudakavi et al., 2007). The central cyclohexanone ring adopts an envelope conformation. The mean planes of two rings - C8—C13 and C16—C21 - form a dihedral angle of 19.3 (2)°. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For background, see Tanaka et al. (2000). For similar crystal structures, see Brinda, Mudakavi et al. (2007).

Experimental top

2-Methoxylbenzaldehyde (4 mmol) and cyclohexanone (2.0 mmol), NaOH (4.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring for 15 min at 293 K, tthe resulting mixture was washed with water for several times for removing NaOH, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C22H22O3: C 79.02, H 6.63%; found: C 69.93, H 6.65%.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering scheme and 40% probability displacement ellipsoids.
2,6-Bis(4-methoxybenzylidene)cyclohexanone top
Crystal data top
C22H22O3F(000) = 712
Mr = 334.40Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0129 (8) ÅCell parameters from 935 reflections
b = 9.4874 (10) Åθ = 2.4–25.2°
c = 20.9416 (17) ŵ = 0.08 mm1
β = 100.518 (1)°T = 298 K
V = 1760.6 (3) Å3Prism, yellow
Z = 40.45 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube1233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.964, Tmax = 0.988k = 1111
9092 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C22H22O3V = 1760.6 (3) Å3
Mr = 334.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0129 (8) ŵ = 0.08 mm1
b = 9.4874 (10) ÅT = 298 K
c = 20.9416 (17) Å0.45 × 0.17 × 0.15 mm
β = 100.518 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1233 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.988Rint = 0.065
9092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.87Δρmax = 0.26 e Å3
3105 reflectionsΔρmin = 0.12 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1376 (3)0.1927 (3)0.02703 (11)0.1012 (9)
O20.4818 (3)0.0038 (2)0.41111 (13)0.0905 (8)
O30.0867 (3)0.0536 (3)0.35644 (17)0.1062 (9)
C10.1981 (4)0.0760 (4)0.02660 (19)0.0782 (10)
C20.2658 (4)0.0065 (3)0.0884 (2)0.0729 (10)
C30.3239 (4)0.1430 (3)0.08487 (18)0.0941 (12)
H3A0.30180.19630.12150.113*
H3B0.43270.14040.08830.113*
C40.2551 (5)0.2176 (4)0.02279 (19)0.1055 (14)
H4A0.14790.23050.02170.127*
H4B0.30070.31010.02200.127*
C50.2779 (5)0.1360 (4)0.03590 (18)0.0973 (12)
H5A0.38510.12630.03590.117*
H5B0.23310.18690.07480.117*
C60.2063 (4)0.0095 (3)0.0364 (2)0.0754 (10)
C70.2725 (4)0.0772 (3)0.1430 (2)0.0744 (10)
H70.22940.16620.13610.089*
C80.3302 (4)0.0512 (3)0.21109 (18)0.0655 (9)
C90.4222 (4)0.0636 (4)0.2354 (2)0.0812 (10)
H90.44950.12910.20660.097*
C100.4728 (4)0.0810 (3)0.30125 (19)0.0760 (10)
H100.53260.15850.31580.091*
C110.4371 (4)0.0127 (4)0.3454 (2)0.0746 (10)
C120.3475 (4)0.1281 (3)0.3233 (2)0.0753 (10)
H120.32100.19320.35250.090*
C130.2984 (4)0.1449 (3)0.2575 (2)0.0789 (10)
H130.24030.22380.24340.095*
C140.5918 (5)0.0992 (4)0.43567 (18)0.1055 (13)
H14A0.68290.08100.41940.158*
H14B0.61250.09510.48230.158*
H14C0.55450.19110.42200.158*
C150.1460 (4)0.0755 (3)0.0911 (2)0.0747 (10)
H150.10210.16140.08400.090*
C160.1343 (4)0.0418 (3)0.1593 (2)0.0709 (10)
C170.0221 (4)0.1023 (3)0.2053 (2)0.0777 (10)
H170.04280.16590.19070.093*
C180.0001 (4)0.0757 (4)0.2704 (2)0.0792 (10)
H180.07860.11840.29880.095*
C190.0973 (5)0.0166 (4)0.2928 (2)0.0862 (12)
C200.2143 (5)0.0738 (4)0.2494 (2)0.0884 (12)
H200.28230.13290.26460.106*
C210.2335 (4)0.0466 (4)0.1850 (2)0.0894 (11)
H210.31420.08740.15720.107*
C220.0240 (5)0.0063 (4)0.4044 (2)0.1223 (16)
H22A0.00360.10490.40820.184*
H22B0.02310.03950.44520.184*
H22C0.12130.00540.39250.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.117 (2)0.0614 (16)0.120 (2)0.0281 (15)0.0088 (15)0.0043 (14)
O20.097 (2)0.0870 (18)0.087 (2)0.0124 (15)0.0157 (15)0.0058 (14)
O30.128 (3)0.090 (2)0.104 (2)0.0029 (17)0.0314 (19)0.0034 (17)
C10.072 (3)0.059 (2)0.105 (3)0.0060 (19)0.019 (2)0.008 (2)
C20.066 (2)0.053 (2)0.098 (3)0.0002 (17)0.012 (2)0.004 (2)
C30.107 (3)0.061 (2)0.109 (3)0.011 (2)0.005 (2)0.003 (2)
C40.133 (4)0.053 (2)0.124 (3)0.019 (2)0.005 (3)0.003 (2)
C50.108 (3)0.063 (2)0.120 (3)0.018 (2)0.017 (2)0.002 (2)
C60.070 (3)0.054 (2)0.101 (3)0.0013 (17)0.012 (2)0.010 (2)
C70.065 (2)0.053 (2)0.107 (3)0.0008 (17)0.021 (2)0.001 (2)
C80.057 (2)0.047 (2)0.094 (3)0.0007 (17)0.018 (2)0.0063 (19)
C90.078 (3)0.069 (2)0.101 (3)0.010 (2)0.027 (2)0.010 (2)
C100.073 (3)0.064 (2)0.090 (3)0.0117 (18)0.014 (2)0.002 (2)
C110.070 (3)0.067 (2)0.091 (3)0.0036 (19)0.025 (2)0.009 (2)
C120.071 (3)0.053 (2)0.104 (3)0.0076 (18)0.022 (2)0.0050 (19)
C130.067 (3)0.056 (2)0.116 (3)0.0037 (17)0.021 (2)0.000 (2)
C140.103 (3)0.083 (3)0.126 (3)0.012 (2)0.008 (3)0.008 (2)
C150.067 (2)0.059 (2)0.101 (3)0.0070 (18)0.022 (2)0.001 (2)
C160.060 (2)0.050 (2)0.104 (3)0.0043 (18)0.019 (2)0.009 (2)
C170.072 (3)0.058 (2)0.106 (3)0.0068 (19)0.023 (2)0.007 (2)
C180.073 (3)0.065 (2)0.101 (3)0.010 (2)0.021 (2)0.008 (2)
C190.102 (4)0.065 (3)0.097 (4)0.026 (2)0.031 (3)0.001 (2)
C200.090 (3)0.069 (2)0.111 (4)0.011 (2)0.031 (3)0.010 (2)
C210.086 (3)0.076 (3)0.109 (4)0.007 (2)0.023 (3)0.009 (2)
C220.135 (4)0.134 (4)0.099 (3)0.024 (3)0.025 (3)0.013 (3)
Geometric parameters (Å, º) top
O1—C11.236 (4)C10—C111.363 (4)
O2—C111.364 (4)C10—H100.9300
O2—C141.420 (4)C11—C121.388 (4)
O3—C191.364 (4)C12—C131.377 (4)
O3—C221.400 (4)C12—H120.9300
C1—C61.477 (5)C13—H130.9300
C1—C21.481 (5)C14—H14A0.9600
C2—C71.318 (4)C14—H14B0.9600
C2—C31.518 (4)C14—H14C0.9600
C3—C41.510 (4)C15—C161.448 (4)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.388 (4)
C4—C51.498 (4)C16—C211.403 (5)
C4—H4A0.9700C17—C181.364 (4)
C4—H4B0.9700C17—H170.9300
C5—C61.523 (4)C18—C191.382 (5)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C19—C201.372 (5)
C6—C151.330 (4)C20—C211.352 (5)
C7—C81.447 (4)C20—H200.9300
C7—H70.9300C21—H210.9300
C8—C131.385 (4)C22—H22A0.9600
C8—C91.407 (4)C22—H22B0.9600
C9—C101.380 (4)C22—H22C0.9600
C9—H90.9300
C11—O2—C14117.8 (3)C10—C11—C12118.9 (4)
C19—O3—C22120.6 (4)O2—C11—C12115.6 (3)
O1—C1—C6118.9 (3)C13—C12—C11119.0 (3)
O1—C1—C2120.3 (3)C13—C12—H12120.5
C6—C1—C2120.7 (4)C11—C12—H12120.5
C7—C2—C1118.6 (3)C12—C13—C8123.9 (3)
C7—C2—C3123.8 (3)C12—C13—H13118.0
C1—C2—C3117.6 (3)C8—C13—H13118.0
C4—C3—C2112.9 (3)O2—C14—H14A109.5
C4—C3—H3A109.0O2—C14—H14B109.5
C2—C3—H3A109.0H14A—C14—H14B109.5
C4—C3—H3B109.0O2—C14—H14C109.5
C2—C3—H3B109.0H14A—C14—H14C109.5
H3A—C3—H3B107.8H14B—C14—H14C109.5
C5—C4—C3111.6 (3)C6—C15—C16133.6 (3)
C5—C4—H4A109.3C6—C15—H15113.2
C3—C4—H4A109.3C16—C15—H15113.2
C5—C4—H4B109.3C17—C16—C21114.5 (4)
C3—C4—H4B109.3C17—C16—C15120.4 (4)
H4A—C4—H4B108.0C21—C16—C15125.0 (4)
C4—C5—C6110.7 (3)C18—C17—C16124.9 (4)
C4—C5—H5A109.5C18—C17—H17117.5
C6—C5—H5A109.5C16—C17—H17117.5
C4—C5—H5B109.5C17—C18—C19118.1 (4)
C6—C5—H5B109.5C17—C18—H18121.0
H5A—C5—H5B108.1C19—C18—H18121.0
C15—C6—C1119.3 (3)O3—C19—C20117.0 (4)
C15—C6—C5122.6 (3)O3—C19—C18124.0 (4)
C1—C6—C5118.1 (3)C20—C19—C18118.9 (4)
C2—C7—C8136.0 (3)C21—C20—C19121.9 (4)
C2—C7—H7112.0C21—C20—H20119.0
C8—C7—H7112.0C19—C20—H20119.0
C13—C8—C9115.2 (3)C20—C21—C16121.5 (4)
C13—C8—C7119.9 (3)C20—C21—H21119.3
C9—C8—C7124.8 (3)C16—C21—H21119.3
C10—C9—C8121.3 (3)O3—C22—H22A109.5
C10—C9—H9119.3O3—C22—H22B109.5
C8—C9—H9119.3H22A—C22—H22B109.5
C11—C10—C9121.6 (3)O3—C22—H22C109.5
C11—C10—H10119.2H22A—C22—H22C109.5
C9—C10—H10119.2H22B—C22—H22C109.5
C10—C11—O2125.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.673.512 (5)146
C4—H4A···O1ii0.972.613.510 (5)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H22O3
Mr334.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.0129 (8), 9.4874 (10), 20.9416 (17)
β (°) 100.518 (1)
V3)1760.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9092, 3105, 1233
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.170, 0.87
No. of reflections3105
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.12

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.673.512 (5)146.0
C4—H4A···O1ii0.972.613.510 (5)153.8
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

Acknowledgements

This project was supported by the Foundation of Liaocheng Vocational and Technical College.

References

First citationBrinda, Mudakavi, R., Chopra, D., Murthy, M. S. & Row, T. N. G. (2007). Acta Cryst. E63, o4494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanaka, T. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds