organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,2,3,4-tetra­carboxylic acid dihydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 5 March 2009; accepted 18 March 2009; online 25 March 2009)

The asymmetric unit of the title compound, C8H10O8·2H2O, contains one half-mol­ecule of butane-1,2,3,4-tetra­carboxylic acid and a water mol­ecule, with the complete tetra-acid generated by crystallographic inversion symmetry. Inter­molecular O—H⋯O hydrogen bonds form an extensive three-dimensional network, which consolidates the crystal packing.

Related literature

For applications of butane-1,2,3,4-tetra­carboxylic acid in metal -organic coordination polymers, see: Delgado et al. (2007[Delgado, L. C., Fabelo, O., Pasàn, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2007). Inorg. Chem. 46, 7458-7465.]); Liu et al. (2008[Liu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Su, Z. M. (2008). CrystEngComm, 10, 894-904.]). For related crystal structures, see: McKee et al. (2007[McKee, V. & Najafpour, M. M. (2007). Acta Cryst. E63, o741-o743.]); Najafpour et al. (2008[Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10O8·2H2O

  • Mr = 270.19

  • Monoclinic, P 21 /c

  • a = 7.4668 (15) Å

  • b = 9.3385 (19) Å

  • c = 8.8406 (18) Å

  • β = 109.60 (3)°

  • V = 580.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.55 × 0.46 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.921, Tmax = 0.965

  • 5478 measured reflections

  • 1327 independent reflections

  • 960 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.17

  • 1327 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O5i 0.85 1.87 2.707 (2) 167
O4—H4A⋯O5ii 0.86 1.83 2.689 (2) 178
O5—H5A⋯O3 0.83 1.93 2.754 (2) 172
O5—H5B⋯O1iii 0.81 2.01 2.814 (2) 170
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A search of the Cambridge Structural Database (Version 5.30, February 2009) showed that most of literature dealing with butane-1,2,3,4-tetracarboxylic acid mainly concentrated in the metal organic coordination polymers (Delgado et al., 2007; Liu et al., 2008). In this paper, we report the crystal structure of butane–1,2,3,4–tetracarboxylic acid dihydrate (Fig. 1).

The asymmetric unit of the title compound contains a half of the butane-1,2,3,4-tetracarboxylic acid molecule and one water molecule. The carboxylic acid group with C1 and C4 atoms are gauche with the C1—C2—C3—C4 torsion angle being 62.13 (1)°, which match well with that in the reported structures (McKee et al., 2007; Najafpour et al., 2008). Intermolecular O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network, which consolidate the crystal packing.

Related literature top

For applications of butane-1,2,3,4-tetracarboxylic acid in metal -organic coordination polymers, see: Delgado et al. (2007); Liu et al. (2008). For related crystal structures, see: McKee et al. (2007); Najafpour et al. (2008).

Experimental top

Zn(NO3)2.6H2O (0.1461 g, 1.0 mmol) was added to a stirred aqueous solution of butane-1,2,3,4-tetracarboxylic acid (0.1176 g, 0.50 mmol) in 15 ml H2O, the resulting mixture was stirred for 20 min and then was filtered out. Colorless crystals were obtained from the filtrate (pH=2.80) after standing at room temperature for three months.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry code: (i) -x + 1, -y + 1, -z]. H atoms omitted for clarity.
Butane-1,2,3,4-tetracarboxylic acid dihydrate top
Crystal data top
C8H10O8·2H2OF(000) = 284
Mr = 270.19Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5478 reflections
a = 7.4668 (15) Åθ = 3.3–27.4°
b = 9.3385 (19) ŵ = 0.15 mm1
c = 8.8406 (18) ÅT = 293 K
β = 109.60 (3)°Platelet, colorless
V = 580.7 (2) Å30.55 × 0.46 × 0.26 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1327 independent reflections
Radiation source: fine-focus sealed tube960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.921, Tmax = 0.965l = 1111
5478 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.3695P]
where P = (Fo2 + 2Fc2)/3
1327 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H10O8·2H2OV = 580.7 (2) Å3
Mr = 270.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4668 (15) ŵ = 0.15 mm1
b = 9.3385 (19) ÅT = 293 K
c = 8.8406 (18) Å0.55 × 0.46 × 0.26 mm
β = 109.60 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1327 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
960 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.965Rint = 0.027
5478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.17Δρmax = 0.26 e Å3
1327 reflectionsΔρmin = 0.23 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1296 (3)0.38628 (19)0.1509 (2)0.0561 (5)
O20.0636 (2)0.20225 (18)0.0167 (2)0.0494 (5)
H2C0.01320.18080.03270.074*
C10.1546 (3)0.3207 (2)0.0422 (2)0.0319 (5)
C20.2916 (3)0.3636 (2)0.0416 (2)0.0371 (5)
H2A0.22010.39910.14790.044*
H2B0.36130.27950.05470.044*
C30.4336 (3)0.4784 (2)0.0479 (2)0.0294 (4)
H3A0.36400.56300.06330.035*
C40.5554 (3)0.4210 (2)0.2107 (2)0.0299 (4)
O30.6322 (3)0.30568 (17)0.23027 (19)0.0510 (5)
O40.5724 (2)0.50976 (17)0.33017 (16)0.0454 (4)
H4A0.64700.47370.41860.068*
O50.8064 (2)0.09678 (15)0.10900 (16)0.0369 (4)
H5A0.76390.16160.15180.055*
H5B0.83210.03090.17250.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0693 (12)0.0600 (11)0.0536 (10)0.0267 (9)0.0398 (9)0.0219 (8)
O20.0483 (9)0.0517 (10)0.0578 (10)0.0243 (8)0.0303 (8)0.0182 (8)
C10.0289 (10)0.0377 (11)0.0272 (9)0.0048 (8)0.0069 (8)0.0003 (8)
C20.0337 (10)0.0477 (13)0.0309 (10)0.0117 (9)0.0124 (8)0.0073 (9)
C30.0267 (9)0.0347 (11)0.0286 (9)0.0025 (8)0.0116 (8)0.0012 (8)
C40.0275 (9)0.0348 (11)0.0294 (9)0.0040 (8)0.0122 (8)0.0023 (8)
O30.0669 (11)0.0366 (9)0.0451 (9)0.0151 (8)0.0126 (8)0.0019 (7)
O40.0549 (10)0.0470 (9)0.0278 (7)0.0170 (7)0.0054 (7)0.0057 (6)
O50.0434 (8)0.0352 (8)0.0358 (7)0.0005 (6)0.0182 (6)0.0018 (6)
Geometric parameters (Å, º) top
O1—C11.206 (2)C3—C3i1.559 (3)
O2—C11.311 (2)C3—H3A0.9800
O2—H2C0.8523C4—O31.205 (2)
C1—C21.505 (3)C4—O41.315 (2)
C2—C31.528 (3)O4—H4A0.8618
C2—H2A0.9700O5—H5A0.8314
C2—H2B0.9700O5—H5B0.8111
C3—C41.518 (3)
C1—O2—H2C110.1C4—C3—C3i108.55 (18)
O1—C1—O2123.13 (18)C2—C3—C3i110.94 (19)
O1—C1—C2124.71 (18)C4—C3—H3A109.3
O2—C1—C2112.15 (17)C2—C3—H3A109.3
C1—C2—C3113.57 (16)C3i—C3—H3A109.3
C1—C2—H2A108.9O3—C4—O4122.30 (18)
C3—C2—H2A108.9O3—C4—C3123.80 (18)
C1—C2—H2B108.9O4—C4—C3113.89 (17)
C3—C2—H2B108.9C4—O4—H4A110.0
H2A—C2—H2B107.7H5A—O5—H5B105.9
C4—C3—C2109.54 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O5ii0.851.872.707 (2)167
O4—H4A···O5iii0.861.832.689 (2)178
O5—H5A···O30.831.932.754 (2)172
O5—H5B···O1iv0.812.012.814 (2)170
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10O8·2H2O
Mr270.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4668 (15), 9.3385 (19), 8.8406 (18)
β (°) 109.60 (3)
V3)580.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.55 × 0.46 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.921, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
5478, 1327, 960
Rint0.027
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.17
No. of reflections1327
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O5i0.851.872.707 (2)167
O4—H4A···O5ii0.861.832.689 (2)178
O5—H5A···O30.831.932.754 (2)172
O5—H5B···O1iii0.812.012.814 (2)170
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project for Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationDelgado, L. C., Fabelo, O., Pasàn, J., Delgado, F. S., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2007). Inorg. Chem. 46, 7458–7465.  Web of Science PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J., Ma, J. C. & Su, Z. M. (2008). CrystEngComm, 10, 894–904.  Web of Science CrossRef CAS Google Scholar
First citationMcKee, V. & Najafpour, M. M. (2007). Acta Cryst. E63, o741–o743.  CSD CrossRef IUCr Journals Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds