metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(2-iodo­acetato-κO)(1,10-phenanthroline-κ2N,N′)copper(II)

aDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Applied and Science Technology, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 15 January 2009; accepted 22 January 2009; online 31 January 2009)

In the title compound, [Cu(C2H2IO2)2(C12H8N2)(H2O)], the CuII ion is coordinated by two N atoms [Cu—N = 2.013 (4) and 2.024 (4) Å] from a 1,10-phenanthroline ligand and three O atoms [Cu—O = 1.940 (4)–2.261 (4) Å] from two carboxyl ligands and a water mol­ecule in a distorted square-pyramidal geometry. One iodo­acetate O atom [Cu—O = 2.775 (4) Å] completes the coordination to form a distorted octa­hedron. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed by ππ inter­actions between the 1,10-phenanthroline ligands into layers parallel to the ab plane. The crystal packing also exhibits short inter­molecular I⋯I contacts of 3.6772 (9) Å and weak C—H⋯O hydrogen bonds.

Related literature

The related crystal structure of aqua­bis(2,4-dichlorophenoxy­acetato-O)(1,10-phenanthroline-κ2N,N′)copper(II) has been reported by Liu et al. (2006[Liu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030-m2032.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H2IO2)2(C12H8N2)(H2O)]

  • Mr = 631.63

  • Triclinic, [P \overline 1]

  • a = 9.5156 (11) Å

  • b = 10.6293 (12) Å

  • c = 11.3441 (13) Å

  • α = 65.803 (2)°

  • β = 65.598 (2)°

  • γ = 72.451 (2)°

  • V = 940.94 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 273 (2) K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.389, Tmax = 0.454 (expected range = 0.336–0.391)

  • 4948 measured reflections

  • 3305 independent reflections

  • 2934 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.01

  • 3305 reflections

  • 237 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −1.68 e Å−3

Table 1
Selected interatomic distances (Å)

Cg1, Cg2 and Cg3 are the centroids of the C4–C7/C11/C12, C6–C10/N2 and C1–C5/N1 rings, respectively.

Cg1⋯Cg3i 3.505 (6)
Cg1⋯Cg1ii 3.584 (6)
Cg2⋯Cg3i 3.625 (6)
Cg2⋯Cg1ii 3.634 (6)
I2⋯I2iii 3.6772 (9)
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3 0.85 1.84 2.639 (6) 156
O1—H1C⋯O4iv 0.85 1.97 2.785 (5) 161
C3—H3⋯O1ii 0.93 2.44 3.240 (7) 144
C11—H11⋯O5i 0.93 2.71 3.508 (8) 144
C10—H10⋯O3iv 0.93 2.68 3.431 (8) 138
C14—H14B⋯O2v 0.97 2.59 3.436 (8) 146
C14—H14A⋯O5v 0.97 2.64 3.219 (8) 119
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear monomeric and polymeric complexes (Liu et al., 2006). In order to develop some new topological structures, we study the reaction of the copper(II) ion and 2-iodoacetic acid with the presence of 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig.1. The Cu atom exhibits a six-coordinated distorted octahedral pyramidal geometry with two carboxyl O atoms from (Cu2—O4 2.000 (4) Å, Cu2—O5 2.775 (4) Å), a water molecule (Cu—O 2.261 (4) Å) and a nitrogen atom (Cu2—N2 2.024 (4) Å) occupying the equatorial planar position. A nitrogen atom N2 (Cu2—N2 2.013 (4) Å) and a carboxyl O atom (Cu2—O2 1.940 (4) Å) occupy the apical positions. The displacement of the metal atom from the basal plane is 0.0640 (2) Å. The crystal packing exhibits short intermolecular I···I contacts (Table 1) and weak C—H···O hydrogen bonds (Table 2).

Related literature top

The related crystal structure of aquabis(2,4-dichlorophenoxyacetato-O) (1,10-phenanthroline-κ2N,N')copper(II) has been reported by Liu et al. (2006).

Experimental top

The reaction was carried out by the solvothermal method. 2-iodoacetic acid(0.372 g,2 mmol) and cupric acetate(0.199 g, 1 mmol) and 1,10-phenanthroline(0.180 g, 1 mmol) were added to the airtight vessel with 20 ml water. The resulting green solution was filtered. The filtrate was placed for sevaral days yielding blue block-shaped crystals.

The yield is 81%. Elemental analysis: calc. for C16H14CuI2N2O5: C 30.42, H 2.23, N 4.43; found: C 30.15, H 2.49, N 4.22. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement top

All the H atoms were found in Fourier map, but placed in idealized positions(C—H 0.93–0.97 Å, O—H 0.85 Å), with the Uiso(H) values were set at 1.2Ueq(C,O) of the parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
Aquabis(2-iodoacetato-κO)(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C2H2IO2)2(C12H8N2)(H2O)]Z = 2
Mr = 631.63F(000) = 598
Triclinic, P1Dx = 2.229 Mg m3
a = 9.5156 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6293 (12) ÅCell parameters from 3047 reflections
c = 11.3441 (13) Åθ = 2.6–28.1°
α = 65.803 (2)°µ = 4.47 mm1
β = 65.598 (2)°T = 273 K
γ = 72.451 (2)°Block, blue
V = 940.94 (19) Å30.26 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII
diffractometer
3305 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.389, Tmax = 0.454k = 1210
4948 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.056P)2 + 3.6149P]
where P = (Fo2 + 2Fc2)/3
3305 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.53 e Å3
3 restraintsΔρmin = 1.68 e Å3
Crystal data top
[Cu(C2H2IO2)2(C12H8N2)(H2O)]γ = 72.451 (2)°
Mr = 631.63V = 940.94 (19) Å3
Triclinic, P1Z = 2
a = 9.5156 (11) ÅMo Kα radiation
b = 10.6293 (12) ŵ = 4.47 mm1
c = 11.3441 (13) ÅT = 273 K
α = 65.803 (2)°0.26 × 0.23 × 0.21 mm
β = 65.598 (2)°
Data collection top
Bruker APEXII
diffractometer
3305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2934 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.454Rint = 0.016
4948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 1.53 e Å3
3305 reflectionsΔρmin = 1.68 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.76967 (7)0.67482 (6)0.13753 (6)0.02670 (17)
I10.95532 (7)0.21497 (5)0.43653 (6)0.06644 (19)
I20.43146 (5)0.18948 (4)0.45215 (4)0.04345 (15)
N10.6118 (5)0.8490 (4)0.1546 (4)0.0255 (9)
N20.9024 (5)0.8189 (4)0.0095 (4)0.0280 (9)
O10.7777 (4)0.6019 (4)0.0268 (4)0.0341 (9)
H1C0.87110.56710.06350.031 (15)*
H1B0.72720.53400.02310.06 (2)*
O20.6142 (4)0.5607 (4)0.2794 (4)0.0359 (9)
O30.6083 (7)0.4189 (6)0.1825 (5)0.0661 (15)
O40.9474 (4)0.5270 (4)0.1793 (4)0.0329 (8)
O50.8852 (5)0.6118 (4)0.3468 (4)0.0429 (10)
C10.4672 (6)0.8592 (6)0.2411 (5)0.0307 (11)
H1A0.42650.77820.30290.037*
C20.3740 (7)0.9891 (6)0.2417 (6)0.0382 (13)
H20.27250.99340.30320.046*
C30.4311 (7)1.1090 (6)0.1529 (6)0.0382 (13)
H30.36931.19540.15360.046*
C40.5840 (6)1.1012 (5)0.0602 (6)0.0302 (11)
C50.6710 (6)0.9677 (5)0.0657 (5)0.0241 (10)
C60.8265 (6)0.9512 (5)0.0244 (5)0.0249 (10)
C70.8936 (6)1.0689 (6)0.1235 (5)0.0305 (11)
C81.0481 (7)1.0437 (6)0.2087 (6)0.0380 (13)
H81.09901.11810.27420.046*
C91.1228 (7)0.9109 (6)0.1952 (6)0.0392 (13)
H91.22400.89360.25350.047*
C101.0475 (6)0.8002 (6)0.0934 (6)0.0356 (12)
H101.10120.70960.08410.043*
C110.8014 (8)1.2041 (6)0.1279 (7)0.0432 (14)
H110.84401.28300.19350.052*
C120.6551 (7)1.2204 (6)0.0396 (6)0.0381 (13)
H120.59971.30980.04360.046*
C130.5693 (6)0.4601 (6)0.2801 (6)0.0336 (12)
C140.4522 (9)0.3957 (7)0.4171 (7)0.0550 (19)
H14A0.35070.45390.42280.066*
H14B0.48250.39500.48910.066*
C150.9541 (6)0.5230 (5)0.2913 (5)0.0293 (11)
C161.0576 (7)0.3988 (6)0.3569 (6)0.0354 (12)
H16A1.07000.41440.43030.043*
H16B1.16020.38720.28940.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0264 (3)0.0205 (3)0.0253 (3)0.0018 (2)0.0022 (3)0.0080 (2)
I10.0913 (4)0.0355 (3)0.0650 (3)0.0196 (2)0.0323 (3)0.0035 (2)
I20.0464 (3)0.0329 (2)0.0460 (3)0.01190 (17)0.00496 (18)0.01484 (18)
N10.028 (2)0.025 (2)0.022 (2)0.0010 (17)0.0070 (17)0.0096 (17)
N20.029 (2)0.026 (2)0.026 (2)0.0039 (18)0.0058 (18)0.0100 (18)
O10.036 (2)0.032 (2)0.0267 (19)0.0013 (18)0.0049 (16)0.0137 (17)
O20.040 (2)0.031 (2)0.031 (2)0.0118 (17)0.0021 (17)0.0139 (16)
O30.093 (4)0.070 (3)0.038 (3)0.050 (3)0.012 (2)0.030 (2)
O40.034 (2)0.0286 (19)0.0270 (19)0.0040 (16)0.0075 (16)0.0095 (16)
O50.049 (2)0.034 (2)0.044 (2)0.0013 (19)0.0081 (19)0.0224 (19)
C10.028 (3)0.035 (3)0.024 (3)0.003 (2)0.003 (2)0.012 (2)
C20.031 (3)0.046 (3)0.032 (3)0.003 (3)0.007 (2)0.018 (3)
C30.036 (3)0.037 (3)0.043 (3)0.009 (2)0.019 (3)0.019 (3)
C40.034 (3)0.027 (3)0.037 (3)0.001 (2)0.019 (2)0.013 (2)
C50.031 (3)0.022 (2)0.025 (2)0.002 (2)0.014 (2)0.009 (2)
C60.025 (3)0.025 (3)0.025 (2)0.000 (2)0.010 (2)0.010 (2)
C70.035 (3)0.029 (3)0.030 (3)0.011 (2)0.013 (2)0.006 (2)
C80.040 (3)0.042 (3)0.032 (3)0.020 (3)0.010 (2)0.005 (2)
C90.031 (3)0.049 (4)0.032 (3)0.010 (3)0.001 (2)0.016 (3)
C100.032 (3)0.038 (3)0.031 (3)0.002 (2)0.002 (2)0.017 (2)
C110.055 (4)0.024 (3)0.051 (4)0.013 (3)0.025 (3)0.001 (3)
C120.042 (3)0.025 (3)0.050 (4)0.002 (2)0.022 (3)0.010 (3)
C130.033 (3)0.030 (3)0.031 (3)0.010 (2)0.001 (2)0.010 (2)
C140.071 (5)0.048 (4)0.039 (4)0.034 (4)0.013 (3)0.022 (3)
C150.029 (3)0.024 (3)0.028 (3)0.007 (2)0.002 (2)0.007 (2)
C160.040 (3)0.034 (3)0.033 (3)0.003 (2)0.015 (3)0.010 (2)
Geometric parameters (Å, º) top
Cu2—O21.940 (4)C3—C41.402 (8)
Cu2—O42.000 (4)C3—H30.9300
Cu2—O52.775 (4)C4—C51.402 (7)
Cu2—N22.013 (4)C4—C121.433 (8)
Cu2—N12.024 (4)C5—C61.416 (7)
Cu2—O12.261 (4)C6—C71.404 (7)
I1—C162.134 (6)C7—C81.403 (8)
I2—I2i3.6772 (9)C7—C111.434 (8)
I2—C142.117 (6)C8—C91.352 (8)
N1—C11.322 (6)C8—H80.9300
N1—C51.357 (6)C9—C101.394 (8)
N2—C101.325 (7)C9—H90.9300
N2—C61.349 (6)C10—H100.9300
O1—H1C0.8500C11—C121.348 (9)
O1—H1B0.8500C11—H110.9300
O2—C131.262 (7)C12—H120.9300
O3—C131.230 (7)C13—C141.511 (8)
O4—C151.282 (6)C14—H14A0.9700
O5—C151.221 (6)C14—H14B0.9700
C1—C21.399 (8)C15—C161.510 (7)
C1—H1A0.9300C16—H16A0.9700
C2—C31.359 (9)C16—H16B0.9700
C2—H20.9300
Cg1···Cg3ii3.505 (6)Cg2···Cg4iii3.634 (6)
Cg1···Cg4iii3.584 (6)I2···I2i3.6772 (9)
Cg2···Cg3ii3.625 (6)
O2—Cu2—O492.78 (16)C7—C6—C5120.1 (4)
O2—Cu2—N2170.83 (17)C8—C7—C6116.6 (5)
O4—Cu2—N296.04 (17)C8—C7—C11125.3 (5)
O2—Cu2—N189.71 (17)C6—C7—C11118.1 (5)
O4—Cu2—N1153.55 (16)C9—C8—C7119.8 (5)
N2—Cu2—N181.29 (17)C9—C8—H8120.1
O2—Cu2—O193.26 (15)C7—C8—H8120.1
O4—Cu2—O192.60 (14)C8—C9—C10119.7 (5)
N2—Cu2—O188.81 (16)C8—C9—H9120.2
N1—Cu2—O1113.56 (15)C10—C9—H9120.2
C1—N1—C5118.9 (4)N2—C10—C9122.7 (5)
C1—N1—Cu2128.7 (4)N2—C10—H10118.7
C5—N1—Cu2112.3 (3)C9—C10—H10118.7
C10—N2—C6117.8 (5)C12—C11—C7122.0 (5)
C10—N2—Cu2129.0 (4)C12—C11—H11119.0
C6—N2—Cu2113.1 (3)C7—C11—H11119.0
Cu2—O1—H1C109.3C11—C12—C4120.6 (5)
Cu2—O1—H1B99.7C11—C12—H12119.7
H1C—O1—H1B106.6C4—C12—H12119.7
C13—O2—Cu2130.1 (3)O3—C13—O2126.2 (5)
C15—O4—Cu2108.2 (3)O3—C13—C14122.0 (5)
N1—C1—C2121.5 (5)O2—C13—C14111.7 (5)
N1—C1—H1A119.2C13—C14—I2113.9 (4)
C2—C1—H1A119.2C13—C14—H14A108.8
C3—C2—C1120.4 (5)I2—C14—H14A108.8
C3—C2—H2119.8C13—C14—H14B108.8
C1—C2—H2119.8I2—C14—H14B108.8
C2—C3—C4119.3 (5)H14A—C14—H14B107.7
C2—C3—H3120.4O5—C15—O4125.0 (5)
C4—C3—H3120.4O5—C15—C16118.5 (5)
C5—C4—C3117.3 (5)O4—C15—C16116.5 (4)
C5—C4—C12118.6 (5)C15—C16—I1109.7 (4)
C3—C4—C12124.1 (5)C15—C16—H16A109.7
N1—C5—C4122.6 (5)I1—C16—H16A109.7
N1—C5—C6116.8 (4)C15—C16—H16B109.7
C4—C5—C6120.6 (5)I1—C16—H16B109.7
N2—C6—C7123.4 (5)H16A—C16—H16B108.2
N2—C6—C5116.5 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+2, z; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.851.842.639 (6)156
O1—H1C···O4iv0.851.972.785 (5)161
C3—H3···O1iii0.932.443.240 (7)144
C11—H11···O5ii0.932.713.508 (8)144
C10—H10···O3iv0.932.683.431 (8)138
C14—H14B···O2v0.972.593.436 (8)146
C14—H14A···O5v0.972.643.219 (8)119
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y+2, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H2IO2)2(C12H8N2)(H2O)]
Mr631.63
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.5156 (11), 10.6293 (12), 11.3441 (13)
α, β, γ (°)65.803 (2), 65.598 (2), 72.451 (2)
V3)940.94 (19)
Z2
Radiation typeMo Kα
µ (mm1)4.47
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.389, 0.454
No. of measured, independent and
observed [I > 2σ(I)] reflections
4948, 3305, 2934
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.01
No. of reflections3305
No. of parameters237
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 1.68

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg3i3.505 (6)Cg2···Cg4ii3.634 (6)
Cg1···Cg4ii3.584 (6)I2···I2iii3.6772 (9)
Cg2···Cg3i3.625 (6)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.851.842.639 (6)156.4
O1—H1C···O4iv0.851.972.785 (5)161.2
C3—H3···O1ii0.932.443.240 (7)143.6
C11—H11···O5i0.932.713.508 (8)144.0
C10—H10···O3iv0.932.683.431 (8)138.4
C14—H14B···O2v0.972.593.436 (8)145.5
C14—H14A···O5v0.972.643.219 (8)118.8
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y07-2-15) for financial support.

References

First citationLiu, J.-W., Zhu, B., Tian, Y. & Gu, C.-S. (2006). Acta Cryst. E62, m2030–m2032.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds