organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-Hydr­­oxy-N′-[(E)-(3-hydr­­oxy-2-naphth­yl)methyl­ene]benzohydrazide

aAnalytical and Testing Center of Beihua University, Jilin 132013, People's Republic of China, bClinical Medicine Department, Weifang Medical University, Weifang, Shangdong 261042, People's Republic of China, and cDepartment of Chemistry, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: wdq@lcu.edu.cn

(Received 13 December 2008; accepted 27 December 2008; online 8 January 2009)

In the title mol­ecule, C18H14N2O3, O—H⋯N and N—H⋯O hydrogen bonds influence the mol­ecular conformation; the benzene and naphthalene planes are inclined at a dihedral angle of 11.54 (5)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains running in the [01[\overline{1}]] direction.

Related literature

For useful applications of salicyloyl hydrazide derivatives, see: Sumita et al. (1999[Sumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491-2497.]). For the crystal structure of (E)-2-hydr­oxy-N′-(3-hydr­oxy-4-methoxy­benzyl­idene)benzohydrazide, see: Luo (2007[Luo, Z.-G. (2007). Acta Cryst. E63, o3672.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.31

  • Orthorhombic, P n a 21

  • a = 21.124 (2) Å

  • b = 11.6212 (13) Å

  • c = 5.9826 (8) Å

  • V = 1468.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.32 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.986

  • 6099 measured reflections

  • 1422 independent reflections

  • 896 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.076

  • S = 1.04

  • 1422 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.90 2.623 (5) 146
N1—H1⋯O2 0.86 1.92 2.620 (4) 137
O2—H2⋯O1i 0.82 1.81 2.573 (4) 155
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salicyloyl hydrazide is an important organic intermediate, it can act as moulding board in inorganic complex (Sumita et al., 1999). In this paper, we present the title compound (I), which was synthesized by the reaction of 2-hydroxyl naphthaldehyde and salicyloyl hydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Luo, 2007). In the crystal structure, the C8=N2 bond length is 1.279 (5) Å showing the double-bond character. The dihedral angle between the naphthalene ring and C8/N2/N1 is 10.14 (3) Å, the C1/N1/N2 and benzene ring form a dihedral angle of 6.70 (4) Å showing that intramolecular O—H···N and N—H···O hydrogen bonds (Table 1) influence the molecular conformation.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains running in direction [01–1].

Related literature top

For useful applications of salicyloyl hydrazide derivatives, see: Sumita et al. (1999). For the crystal structure of (E)-2-hydroxy-N'-(3-hydroxy-4-methoxybenzylidene)benzohydrazide, see: Luo (2007).

Experimental top

Salicyloyl hydrazide (0.5 mmol) and freshly 2-hydroxyl naphthaldehyde (0.5 mmol) were mixed in 50 ml flash. After stirring 30 min at 353 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a green crystalline solid. Elemental analysis: calculated for C18H14N2O3: C 70.58, H 4.61, N 9.15%; found: C 70.53, H 4.55, N 9.24%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.82 and C—H=0.93 Å) and treated as riding, with Uiso(H) = 1.2 Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, the 1353 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title molecule with atomic numbering scheme and displacement ellipsoids at 30% probability level.
2-Hydroxy-N'-[(E)-(3-hydroxy-2-naphthyl)methylene]benzohydrazide top
Crystal data top
C18H14N2O3Dx = 1.385 Mg m3
Mr = 306.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1119 reflections
a = 21.124 (2) Åθ = 2.6–25.4°
b = 11.6212 (13) ŵ = 0.10 mm1
c = 5.9826 (8) ÅT = 298 K
V = 1468.6 (3) Å3Block, yellow
Z = 40.32 × 0.18 × 0.15 mm
F(000) = 640
Data collection top
Bruker SMART CCD area-detector
diffractometer
1422 independent reflections
Radiation source: fine-focus sealed tube896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.970, Tmax = 0.986k = 138
6099 measured reflectionsl = 76
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0012P)2 + 0.7621P]
where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C18H14N2O3V = 1468.6 (3) Å3
Mr = 306.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.124 (2) ŵ = 0.10 mm1
b = 11.6212 (13) ÅT = 298 K
c = 5.9826 (8) Å0.32 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1422 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
896 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.986Rint = 0.057
6099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1422 reflectionsΔρmin = 0.16 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22373 (16)0.9395 (3)0.7320 (6)0.0514 (10)
H10.21720.87130.78280.062*
N20.19138 (18)0.9753 (3)0.5434 (6)0.0536 (11)
O10.27673 (14)1.1075 (2)0.7748 (6)0.0703 (10)
O20.25278 (12)0.7725 (2)1.0077 (6)0.0574 (9)
H20.25260.71071.07390.086*
O30.16012 (13)1.1067 (3)0.2045 (6)0.0664 (10)
H30.17871.08920.31990.100*
C10.2649 (2)1.0079 (4)0.8375 (8)0.0504 (12)
C20.2955 (2)0.9611 (3)1.0404 (8)0.0447 (11)
C30.2891 (2)0.8497 (3)1.1229 (7)0.0441 (12)
C40.3185 (2)0.8179 (4)1.3196 (8)0.0544 (13)
H40.31350.74351.37400.065*
C50.3548 (2)0.8948 (5)1.4348 (9)0.0672 (15)
H50.37500.87181.56550.081*
C60.3618 (2)1.0054 (5)1.3596 (10)0.0718 (16)
H60.38631.05781.43920.086*
C70.3321 (2)1.0378 (4)1.1646 (10)0.0614 (14)
H70.33661.11301.11420.074*
C80.1536 (2)0.8994 (4)0.4641 (8)0.0546 (13)
H80.15070.82880.53630.066*
C90.1152 (2)0.9189 (4)0.2659 (8)0.0493 (12)
C100.1211 (2)1.0193 (4)0.1429 (8)0.0495 (12)
C110.0868 (2)1.0370 (4)0.0549 (8)0.0560 (13)
H110.09141.10540.13390.067*
C120.0468 (2)0.9542 (4)0.1312 (9)0.0607 (14)
H120.02550.96530.26560.073*
C130.0369 (2)0.8510 (4)0.0089 (9)0.0548 (13)
C140.07102 (19)0.8331 (4)0.1920 (8)0.0511 (12)
C150.0568 (2)0.7320 (4)0.3138 (9)0.0656 (15)
H150.07800.71730.44700.079*
C160.0128 (2)0.6564 (5)0.2396 (11)0.0790 (19)
H160.00440.59090.32390.095*
C170.0202 (2)0.6734 (5)0.0415 (12)0.0771 (17)
H170.05000.61990.00670.093*
C180.0082 (2)0.7700 (4)0.0809 (9)0.0686 (16)
H180.03010.78250.21360.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.053 (2)0.058 (2)0.043 (3)0.005 (2)0.001 (2)0.022 (2)
N20.051 (2)0.070 (3)0.040 (2)0.016 (2)0.000 (2)0.017 (2)
O10.086 (2)0.0454 (18)0.079 (3)0.0026 (17)0.004 (2)0.0291 (19)
O20.076 (2)0.0427 (16)0.053 (2)0.0038 (16)0.012 (2)0.0166 (17)
O30.063 (2)0.081 (2)0.056 (3)0.0053 (18)0.0055 (19)0.029 (2)
C10.052 (3)0.049 (3)0.050 (3)0.007 (2)0.006 (3)0.012 (2)
C20.046 (3)0.043 (3)0.044 (3)0.005 (2)0.001 (2)0.009 (2)
C30.050 (3)0.042 (3)0.040 (3)0.000 (2)0.001 (2)0.005 (2)
C40.060 (3)0.058 (3)0.045 (3)0.008 (3)0.001 (3)0.017 (3)
C50.062 (3)0.087 (4)0.053 (4)0.012 (3)0.010 (3)0.003 (3)
C60.065 (3)0.073 (4)0.077 (4)0.006 (3)0.012 (3)0.011 (3)
C70.066 (3)0.050 (3)0.068 (4)0.002 (3)0.002 (3)0.007 (3)
C80.055 (3)0.062 (3)0.047 (3)0.013 (3)0.007 (3)0.018 (3)
C90.047 (3)0.063 (3)0.037 (3)0.011 (2)0.005 (2)0.014 (3)
C100.044 (3)0.068 (3)0.037 (3)0.007 (2)0.007 (3)0.016 (3)
C110.054 (3)0.075 (3)0.039 (3)0.011 (3)0.001 (3)0.020 (3)
C120.059 (3)0.088 (4)0.035 (3)0.009 (3)0.000 (3)0.007 (3)
C130.049 (3)0.064 (3)0.051 (3)0.009 (3)0.009 (3)0.001 (3)
C140.049 (3)0.059 (3)0.046 (3)0.017 (2)0.006 (3)0.004 (3)
C150.056 (3)0.071 (3)0.070 (4)0.008 (3)0.000 (3)0.017 (3)
C160.069 (4)0.068 (4)0.100 (6)0.003 (3)0.001 (4)0.018 (4)
C170.068 (4)0.067 (4)0.096 (5)0.003 (3)0.002 (4)0.001 (4)
C180.060 (3)0.079 (4)0.066 (4)0.007 (3)0.008 (3)0.008 (4)
Geometric parameters (Å, º) top
N1—C11.336 (5)C8—C91.455 (6)
N1—N21.383 (5)C8—H80.9300
N1—H10.8600C9—C101.386 (5)
N2—C81.280 (5)C9—C141.435 (5)
O1—C11.242 (5)C10—C111.403 (6)
O2—C31.366 (5)C11—C121.360 (6)
O2—H20.8200C11—H110.9300
O3—C101.359 (5)C12—C131.420 (6)
O3—H30.8200C12—H120.9300
C1—C21.479 (6)C13—C181.407 (6)
C2—C31.392 (5)C13—C141.417 (6)
C2—C71.395 (6)C14—C151.415 (6)
C3—C41.381 (6)C15—C161.354 (6)
C4—C51.364 (6)C15—H150.9300
C4—H40.9300C16—C171.389 (7)
C5—C61.370 (7)C16—H160.9300
C5—H50.9300C17—C181.364 (6)
C6—C71.377 (7)C17—H170.9300
C6—H60.9300C18—H180.9300
C7—H70.9300
C1—N1—N2121.8 (4)C10—C9—C14118.7 (4)
C1—N1—H1119.1C10—C9—C8120.9 (4)
N2—N1—H1119.1C14—C9—C8120.4 (4)
C8—N2—N1113.8 (4)O3—C10—C9122.7 (4)
C3—O2—H2109.5O3—C10—C11115.7 (4)
C10—O3—H3109.5C9—C10—C11121.6 (5)
O1—C1—N1122.9 (4)C12—C11—C10120.1 (5)
O1—C1—C2120.2 (5)C12—C11—H11120.0
N1—C1—C2116.9 (4)C10—C11—H11120.0
C3—C2—C7117.3 (4)C11—C12—C13121.1 (5)
C3—C2—C1126.2 (4)C11—C12—H12119.5
C7—C2—C1116.4 (4)C13—C12—H12119.5
O2—C3—C4120.5 (4)C18—C13—C14120.4 (5)
O2—C3—C2119.1 (4)C18—C13—C12120.4 (5)
C4—C3—C2120.5 (4)C14—C13—C12119.1 (5)
C5—C4—C3120.6 (5)C15—C14—C13116.8 (5)
C5—C4—H4119.7C15—C14—C9123.8 (5)
C3—C4—H4119.7C13—C14—C9119.4 (4)
C4—C5—C6120.6 (5)C16—C15—C14121.1 (5)
C4—C5—H5119.7C16—C15—H15119.5
C6—C5—H5119.7C14—C15—H15119.5
C5—C6—C7119.0 (5)C15—C16—C17122.1 (6)
C5—C6—H6120.5C15—C16—H16118.9
C7—C6—H6120.5C17—C16—H16118.9
C6—C7—C2122.0 (5)C18—C17—C16118.8 (6)
C6—C7—H7119.0C18—C17—H17120.6
C2—C7—H7119.0C16—C17—H17120.6
N2—C8—C9122.9 (4)C17—C18—C13120.8 (6)
N2—C8—H8118.6C17—C18—H18119.6
C9—C8—H8118.6C13—C18—H18119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.902.623 (5)146
N1—H1···O20.861.922.620 (4)137
O2—H2···O1i0.821.812.573 (4)155
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)21.124 (2), 11.6212 (13), 5.9826 (8)
V3)1468.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6099, 1422, 896
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.076, 1.04
No. of reflections1422
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.902.623 (5)146.4
N1—H1···O20.861.922.620 (4)137.3
O2—H2···O1i0.821.812.573 (4)154.7
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

References

First citationLuo, Z.-G. (2007). Acta Cryst. E63, o3672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds