metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­copper(II)]-{μ-4,4′-[1,4-phenyl­enebis(methyl­ene­imino)]dibenzoato}] monohydrate]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: ouyang2162_cn@sina.com

(Received 21 June 2008; accepted 30 July 2008; online 6 August 2008)

The asymmetric unit of the title polymeric compound, {[Cu(C22H18N2O4)(H2O)2]·H2O}n, contains a Cu ion situated on an inversion center, half of a centrosymmetric 4,4′-[1,4-phenyl­enebis(methyl­eneimino)]dibenzoate ligand, a coordin­ated water mol­ecule in a general position and an uncoordin­ated water mol­ecule situated on a twofold rotation axis. The distorted octa­hedral coordination geometry of the CuII ion is formed by six O atoms. The –NH– groups of the ligand are involved in intra­molecular N—H⋯O hydrogen bonds, while the water mol­ecules participate in the formation of a three-dimensional supra­molecular framework via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For properties of 4,4′-(1,4-phenyl­enebis(methyl­ene))bis­(aza­nedi­yl)dibenzoic acid and its ramifications, see: Yamaguchi et al. (1991[Yamaguchi, K., Matsumura, G., Kagechika, H., Azumaya, I., Ito, Y., Itai, A. & Shudo, K. (1991). J. Am. Chem. Soc. 113, 5474-5475.]); Imhof & Göbel (2000[Imhof, W. & Göbel, A. (2000). J. Organomet. Chem. 610, 102-111.]). For supra­molecular networks in related structures, see: Jing et al. (2006[Jing, L.-H., Zhang, H.-X. & Gu, S.-J. (2006). Acta Cryst. E62, o4583-o4584.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C22H18N2O4)(H2O)2]·H2O

  • Mr = 491.98

  • Monoclinic, P 2/c

  • a = 16.127 (6) Å

  • b = 5.1535 (17) Å

  • c = 13.405 (8) Å

  • β = 92.76 (2)°

  • V = 1112.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 291 (2) K

  • 0.09 × 0.08 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.913, Tmax = 0.932

  • 10220 measured reflections

  • 2534 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.140

  • S = 1.03

  • 2534 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.992 (3)
Cu1—O2 2.006 (2)
Cu1—O3 2.582 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.84 2.00 2.676 (3) 137
O1—H1A⋯O3i 0.85 2.17 3.011 (3) 174
O1—H1B⋯O4ii 0.85 2.28 3.104 (3) 164
O4—H4A⋯O2iii 0.85 2.03 2.855 (3) 163
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+2; (iii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications have become an area of interest owing to their various properties (Yamaguchi et al., 1991; Imhof & Göbel, 2000). They are also used for building up supramolecular networks through hydrogen bonds (Jing et al., 2006). Of special interest are the low-dimensional structural motifs related with highly anisotropic physical properties. Here we report the crystal structure of the title compound, (I).

For the title polymeric compound, (I), structure determination revealed a presence in the asymmetric unit of a half of centrosymmetric 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand, one Cu ion lies on the inversion ctnter, one coordinated water molecule locates on the twofold axis and one lattice water molecule locates in the general positon. The Cu ion is coordinated by six oxygen atoms with four of which from 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand and the other two from water moleculers into a distorted octahedral geometry (Table 1). The neighbouring Cu ions are linked by 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand to form an infinite plolymeric zigzag chain (Fig. 1). The amino groups of the ligand are involved in intramolecular N—H···O hydrogen bonds, wihle water molecules participate in formation of three-dimensional supramolecular framework via intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For properties of 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications, see: Yamaguchi et al. (1991); Imhof & Göbel (2000). For supramolecular networks in related structures, see: Jing et al. (2006).

Experimental top

The 10 ml aqueous solution of CuCl2.2H2O (0.855 g, 5 mmol) was droped into a 10 ml DMF soution of 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid (1.882 g, 5 mmol). The mixture was stirred for half an hour. The resultant solution was filtered, and the filtrate was allowed to stand at room temperature for one week, to generate blue block crystals.

Refinement top

C-bound H atoms were geometrically positioned (C-H 0.93-0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) Water H atoms were positioned geometrically with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The N-bound H atom was located on a difference Fourier map, but placed in idealized position (N-H 0.84 Å) and refined as ridinh with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric chain in (I) with the atom numbering and 30% probalility displacement ellipsoids [symmetry codes: (A) 2-x, 1-y, 2-z; (B) 1-x, -y, 2-z]
catena-Poly[[[diaquacopper(II)]-{µ-4,4'-[1,4- phenylenebis(methyleneimino)]dibenzoato}] monohydrate] top
Crystal data top
[Cu(C22H18N2O4)(H2O)2]·H2OF(000) = 510
Mr = 491.98Dx = 1.468 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7833 reflections
a = 16.127 (6) Åθ = 3.1–27.5°
b = 5.1535 (17) ŵ = 1.03 mm1
c = 13.405 (8) ÅT = 291 K
β = 92.76 (2)°Block, blue
V = 1112.8 (8) Å30.09 × 0.08 × 0.07 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2534 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 66
Tmin = 0.913, Tmax = 0.932l = 1716
10220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.6974P]
where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C22H18N2O4)(H2O)2]·H2OV = 1112.8 (8) Å3
Mr = 491.98Z = 2
Monoclinic, P2/cMo Kα radiation
a = 16.127 (6) ŵ = 1.03 mm1
b = 5.1535 (17) ÅT = 291 K
c = 13.405 (8) Å0.09 × 0.08 × 0.07 mm
β = 92.76 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2534 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2008 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.932Rint = 0.040
10220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
2534 reflectionsΔρmin = 0.49 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63113 (17)0.1232 (5)0.8986 (2)0.0276 (6)
C20.69938 (16)0.1294 (5)0.82720 (19)0.0253 (5)
C30.69767 (18)0.0493 (6)0.7480 (2)0.0312 (6)
H30.65420.16760.74190.037*
C40.7583 (2)0.0552 (7)0.6790 (2)0.0383 (7)
H40.75540.17290.62640.046*
C50.82372 (19)0.1176 (7)0.6898 (2)0.0374 (7)
H50.86530.11430.64410.045*
C60.82859 (18)0.2944 (6)0.7668 (2)0.0333 (6)
H60.87330.40830.77240.040*
C70.76652 (16)0.3050 (5)0.8376 (2)0.0264 (5)
C80.83674 (18)0.6789 (5)0.9238 (2)0.0328 (6)
H8A0.81860.81260.96870.039*
H8B0.84270.75840.85900.039*
C90.92123 (18)0.5803 (6)0.9623 (2)0.0287 (6)
C100.9299 (2)0.3842 (8)1.0310 (3)0.0506 (9)
H100.88260.30311.05300.061*
C110.9926 (2)0.6965 (7)0.9314 (3)0.0484 (9)
H110.98880.83030.88480.058*
Cu10.50000.00001.00000.02769 (18)
N10.77292 (15)0.4809 (5)0.91439 (19)0.0326 (5)
H10.73050.49130.94840.049*
O10.56996 (16)0.2511 (5)1.07956 (19)0.0517 (6)
H1A0.58680.37651.04470.062*
H1B0.54460.31361.12820.062*
O20.57429 (13)0.0498 (4)0.88572 (16)0.0337 (5)
O30.62970 (13)0.2785 (4)0.97072 (15)0.0371 (5)
O40.50000.5811 (7)0.75000.0450 (8)
H4A0.52840.69940.77980.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (13)0.0338 (14)0.0275 (14)0.0043 (11)0.0040 (10)0.0018 (11)
C20.0218 (13)0.0306 (14)0.0237 (13)0.0036 (10)0.0039 (10)0.0019 (10)
C30.0263 (14)0.0380 (15)0.0293 (15)0.0004 (11)0.0023 (11)0.0025 (11)
C40.0366 (17)0.0494 (18)0.0294 (15)0.0018 (14)0.0073 (12)0.0090 (12)
C50.0325 (16)0.0504 (18)0.0303 (15)0.0016 (14)0.0114 (12)0.0013 (13)
C60.0259 (14)0.0403 (16)0.0345 (15)0.0032 (12)0.0080 (11)0.0032 (12)
C70.0222 (13)0.0308 (13)0.0264 (13)0.0051 (10)0.0016 (10)0.0035 (10)
C80.0263 (14)0.0307 (14)0.0410 (16)0.0006 (11)0.0027 (11)0.0008 (12)
C90.0269 (14)0.0273 (12)0.0318 (14)0.0003 (11)0.0005 (11)0.0023 (11)
C100.0249 (16)0.057 (2)0.070 (2)0.0083 (15)0.0041 (15)0.0301 (18)
C110.0311 (16)0.053 (2)0.061 (2)0.0044 (15)0.0001 (15)0.0326 (17)
Cu10.0237 (3)0.0304 (3)0.0297 (3)0.00293 (19)0.00892 (18)0.00458 (18)
N10.0225 (12)0.0392 (14)0.0365 (13)0.0030 (10)0.0055 (10)0.0070 (10)
O10.0498 (15)0.0521 (14)0.0537 (15)0.0052 (12)0.0086 (12)0.0021 (11)
O20.0267 (10)0.0391 (11)0.0361 (11)0.0065 (8)0.0102 (8)0.0065 (8)
O30.0335 (11)0.0444 (12)0.0346 (11)0.0045 (9)0.0133 (8)0.0111 (9)
O40.048 (2)0.0425 (16)0.0444 (19)0.0000.0024 (15)0.000
Geometric parameters (Å, º) top
C1—O31.257 (3)C9—C101.370 (4)
C1—O21.284 (4)C9—C111.379 (4)
C1—C21.493 (4)C10—C11i1.389 (5)
C2—C31.405 (4)C10—H100.9300
C2—C71.413 (4)C11—C10i1.389 (5)
C3—C41.378 (4)C11—H110.9300
C3—H30.9300Cu1—O1ii1.992 (3)
C4—C51.383 (5)Cu1—O11.992 (3)
C4—H40.9300Cu1—O22.006 (2)
C5—C61.376 (4)Cu1—O2ii2.006 (2)
C5—H50.9300Cu1—O32.582 (2)
C6—C71.413 (4)Cu1—O3ii2.582 (2)
C6—H60.9300Cu1—C1ii2.646 (3)
C7—N11.372 (4)N1—H10.8420
C8—N11.450 (4)O1—H1A0.8500
C8—C91.521 (4)O1—H1B0.8500
C8—H8A0.9700O4—H4A0.8500
C8—H8B0.9700
O3—C1—O2120.4 (3)C9—C11—C10i120.7 (3)
O3—C1—C2121.4 (3)C9—C11—H11119.7
O2—C1—C2118.2 (2)C10i—C11—H11119.7
C3—C2—C7118.8 (2)O1ii—Cu1—O1180.00 (13)
C3—C2—C1118.8 (2)O1ii—Cu1—O291.02 (10)
C7—C2—C1122.4 (2)O1—Cu1—O288.98 (10)
C4—C3—C2122.2 (3)O1ii—Cu1—O2ii88.98 (10)
C4—C3—H3118.9O1—Cu1—O2ii91.02 (10)
C2—C3—H3118.9O2—Cu1—O2ii180.000 (1)
C3—C4—C5118.5 (3)O1ii—Cu1—O389.98 (10)
C3—C4—H4120.7O1—Cu1—O390.02 (10)
C5—C4—H4120.7O2—Cu1—O355.75 (7)
C6—C5—C4121.4 (3)O2ii—Cu1—O3124.25 (7)
C6—C5—H5119.3O1ii—Cu1—O3ii90.02 (10)
C4—C5—H5119.3O1—Cu1—O3ii89.98 (10)
C5—C6—C7120.8 (3)O2—Cu1—O3ii124.25 (7)
C5—C6—H6119.6O2ii—Cu1—O3ii55.75 (7)
C7—C6—H6119.6O3—Cu1—O3ii180.0
N1—C7—C6120.0 (3)O1ii—Cu1—C1ii89.14 (10)
N1—C7—C2121.8 (2)O1—Cu1—C1ii90.86 (10)
C6—C7—C2118.3 (2)O2—Cu1—C1ii152.03 (9)
N1—C8—C9114.5 (2)O2ii—Cu1—C1ii27.97 (9)
N1—C8—H8A108.6O3—Cu1—C1ii152.22 (7)
C9—C8—H8A108.6O3ii—Cu1—C1ii27.78 (7)
N1—C8—H8B108.6C7—N1—C8123.9 (2)
C9—C8—H8B108.6C7—N1—H1114.5
H8A—C8—H8B107.6C8—N1—H1120.0
C10—C9—C11117.6 (3)Cu1—O1—H1A112.8
C10—C9—C8122.3 (3)Cu1—O1—H1B112.1
C11—C9—C8120.0 (3)H1A—O1—H1B108.2
C9—C10—C11i121.7 (3)C1—O2—Cu1104.92 (17)
C9—C10—H10119.1C1—O3—Cu178.92 (16)
C11i—C10—H10119.1
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.842.002.676 (3)137
O1—H1A···O3iii0.852.173.011 (3)174
O1—H1B···O4ii0.852.283.104 (3)164
O4—H4A···O2iv0.852.032.855 (3)163
Symmetry codes: (ii) x+1, y, z+2; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C22H18N2O4)(H2O)2]·H2O
Mr491.98
Crystal system, space groupMonoclinic, P2/c
Temperature (K)291
a, b, c (Å)16.127 (6), 5.1535 (17), 13.405 (8)
β (°) 92.76 (2)
V3)1112.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.09 × 0.08 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.913, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
10220, 2534, 2008
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.140, 1.03
No. of reflections2534
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.49

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—O11.992 (3)Cu1—O32.582 (2)
Cu1—O22.006 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.842.002.676 (3)137.3
O1—H1A···O3i0.852.173.011 (3)173.7
O1—H1B···O4ii0.852.283.104 (3)163.6
O4—H4A···O2iii0.852.032.855 (3)162.5
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 20771082).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationImhof, W. & Göbel, A. (2000). J. Organomet. Chem. 610, 102–111.  Web of Science CrossRef CAS Google Scholar
First citationJing, L.-H., Zhang, H.-X. & Gu, S.-J. (2006). Acta Cryst. E62, o4583–o4584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, K., Matsumura, G., Kagechika, H., Azumaya, I., Ito, Y., Itai, A. & Shudo, K. (1991). J. Am. Chem. Soc. 113, 5474–5475.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds