organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Hydr­­oxy-3-meth­oxy­benzaldehyde thio­semicarbazone

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bFeng Cheng Senior High School, 271100 Laiwu, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com

(Received 6 May 2008; accepted 14 May 2008; online 17 May 2008)

In the title compound, C9H11N3O2S, intra­molecular O—H⋯O and N—H⋯N hydrogen bonds contribute to the planarity of the mol­ecular skeleton. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the b axis; these mol­ecules are futher paired by ππ inter­actions [centroid–centroid distance 4.495 (5) Å]. The crystal structure also exhibits weak inter­molecular N—H⋯S and O—H⋯S hydrogen bonds.

Related literature

For related crystal structures, see: Joseph et al. (2006[Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61-70. ]). For biological activities of thio­semicarbazone Schiff bases, see: Kasuga et al. (2001[Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem. 84, 55-65.]); Fonari et al. (2003[Fonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129-140.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, P 21 /c

  • a = 7.057 (3) Å

  • b = 14.673 (5) Å

  • c = 10.738 (4) Å

  • β = 108.412 (7)°

  • V = 1055.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.972

  • 5510 measured reflections

  • 1872 independent reflections

  • 1023 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.163

  • S = 1.10

  • 1872 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 2.14 2.610 (4) 116
N3—H3A⋯N1 0.86 2.23 2.592 (5) 105
O1—H1⋯S1ii 0.82 2.69 3.290 (3) 131
N2—H2⋯S1iii 0.86 2.62 3.470 (4) 172
N3—H3B⋯O1iv 0.86 2.28 2.943 (4) 134
Symmetry codes: (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazone Schiff-bases have been investigated in terms of their chemistry and potentially beneficial biological activities, such as antitumor, antibacterial, antiviral and antimalarial activities (Kasuga et al., 2001; Fonari et al., 2003). In continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006). The intramolecular O—H···O and N—H···N hydrogen bonds (Table 2) contribute to the planarity of molecular skeleton. The intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into zigzag chains along b axis, which are futher paired by π···π interactions proved by short intermolecular C···C distances (Table 1). The crystal packing exhibits also weak intermolecular N—H···S and O—H···S hydrogen bonds (Table 2).

Related literature top

For related crystal structures, see: Joseph et al. (2006). For biological activities of thiosemicarbazone Schiff bases, see: Kasuga et al. (2001); Fonari et al. (2003).

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) and hydrazinecarbothioamide (0.091 g, 1 mmol) in ethanol solution and stirred under reflux conditions (353 K) for 6 h. When cooled to the room temperature, the solution was filtered off and after a week orange crystals suitable for X-ray diffraction study were obtained. Yield, 0.199 g, 82%. m.p. 358–360 K.

Analysis found: C 47.94, H 4.95, N 18.62%; C9H11N3O2S requires: C 47.99, H 4.92, N 18.65%.

Refinement top

The H-atoms were geometrically positioned (C-H 0.93-0.96 Å, N-H 0.86 Å, O-H 0.82 Å), and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C-aromatic and N) and Uiso(H) = 1.5Ueq(C-methyl and O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
(E)-2-Hydroxy-3-methoxybenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 511 reflections
a = 7.057 (3) Åθ = 2.4–19.8°
b = 14.673 (5) ŵ = 0.29 mm1
c = 10.738 (4) ÅT = 273 K
β = 108.412 (7)°Block, orange
V = 1055.0 (7) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1872 independent reflections
Radiation source: fine-focus sealed tube1023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.958, Tmax = 0.972k = 1717
5510 measured reflectionsl = 912
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0089P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1872 reflectionsΔρmax = 0.19 e Å3
138 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (2)
Crystal data top
C9H11N3O2SV = 1055.0 (7) Å3
Mr = 225.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.057 (3) ŵ = 0.29 mm1
b = 14.673 (5) ÅT = 273 K
c = 10.738 (4) Å0.15 × 0.12 × 0.10 mm
β = 108.412 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1872 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1023 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.071
5510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
1872 reflectionsΔρmin = 0.28 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.0171 (2)0.35387 (8)0.55909 (10)0.0534 (5)
O10.8111 (5)0.65121 (18)0.0190 (3)0.0600 (10)
H10.79150.69400.07060.090*
O20.6495 (5)0.6610 (2)0.2733 (3)0.0637 (10)
N10.8421 (5)0.4185 (2)0.1879 (3)0.0423 (10)
N20.9111 (5)0.4247 (2)0.3218 (3)0.0464 (10)
H20.93510.47710.35950.056*
N30.9079 (6)0.2710 (2)0.3278 (3)0.0583 (12)
H3A0.86920.27160.24340.070*
H3B0.92480.21990.36920.070*
C10.9411 (7)0.3481 (3)0.3936 (4)0.0425 (11)
C20.8215 (7)0.4935 (3)0.1257 (4)0.0442 (12)
H2A0.85800.54800.17120.053*
C30.7403 (6)0.4938 (3)0.0173 (4)0.0383 (11)
C40.7340 (7)0.5738 (3)0.0851 (4)0.0410 (11)
C50.6465 (7)0.5770 (3)0.2212 (4)0.0443 (12)
C60.5703 (8)0.4995 (3)0.2877 (4)0.0556 (14)
H60.51230.50110.37840.067*
C70.5789 (8)0.4183 (3)0.2207 (4)0.0625 (15)
H70.52750.36550.26690.075*
C80.6621 (7)0.4148 (3)0.0874 (4)0.0552 (14)
H80.66670.35990.04340.066*
C90.5673 (8)0.6720 (3)0.4120 (4)0.0628 (15)
H9A0.63350.63160.45510.094*
H9B0.58590.73390.43510.094*
H9C0.42720.65820.43920.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0790 (10)0.0454 (7)0.0340 (6)0.0035 (7)0.0154 (6)0.0006 (5)
O10.100 (3)0.0310 (16)0.0406 (17)0.0114 (18)0.0107 (17)0.0004 (14)
O20.092 (3)0.054 (2)0.0415 (19)0.0039 (19)0.0147 (17)0.0101 (15)
N10.055 (3)0.041 (2)0.0303 (19)0.0000 (18)0.0133 (17)0.0019 (16)
N20.068 (3)0.038 (2)0.032 (2)0.000 (2)0.0133 (18)0.0004 (16)
N30.098 (4)0.039 (2)0.032 (2)0.001 (2)0.012 (2)0.0005 (16)
C10.053 (3)0.037 (2)0.036 (2)0.003 (2)0.012 (2)0.005 (2)
C20.056 (4)0.035 (2)0.042 (2)0.000 (2)0.016 (2)0.0029 (19)
C30.046 (3)0.036 (3)0.032 (2)0.004 (2)0.011 (2)0.0028 (18)
C40.043 (3)0.038 (3)0.040 (2)0.003 (2)0.012 (2)0.001 (2)
C50.056 (3)0.042 (3)0.035 (2)0.001 (2)0.014 (2)0.008 (2)
C60.069 (4)0.061 (3)0.033 (3)0.004 (3)0.010 (2)0.006 (2)
C70.087 (4)0.045 (3)0.049 (3)0.006 (3)0.013 (3)0.011 (2)
C80.074 (4)0.043 (3)0.045 (3)0.003 (3)0.013 (2)0.001 (2)
C90.063 (4)0.074 (3)0.047 (3)0.004 (3)0.011 (2)0.017 (2)
Geometric parameters (Å, º) top
S1—C11.688 (4)C2—H2A0.9300
O1—C41.358 (4)C3—C41.375 (5)
O1—H10.8200C3—C81.396 (5)
O2—C51.357 (5)C4—C51.397 (5)
O2—C91.426 (5)C5—C61.360 (6)
N1—C21.271 (5)C6—C71.382 (6)
N1—N21.367 (4)C6—H60.9300
N2—C11.342 (5)C7—C81.365 (6)
N2—H20.8600C7—H70.9300
N3—C11.315 (5)C8—H80.9300
N3—H3A0.8600C9—H9A0.9600
N3—H3B0.8600C9—H9B0.9600
C2—C31.460 (5)C9—H9C0.9600
C1···C9i3.425 (7)C2···C4i3.445 (7)
C4—O1—H1109.5C3—C4—C5120.8 (4)
C5—O2—C9118.7 (3)O2—C5—C6126.7 (4)
C2—N1—N2116.0 (3)O2—C5—C4113.7 (4)
C1—N2—N1119.2 (3)C6—C5—C4119.5 (4)
C1—N2—H2120.4C5—C6—C7120.1 (4)
N1—N2—H2120.4C5—C6—H6119.9
C1—N3—H3A120.0C7—C6—H6119.9
C1—N3—H3B120.0C8—C7—C6120.8 (4)
H3A—N3—H3B120.0C8—C7—H7119.6
N3—C1—N2116.3 (4)C6—C7—H7119.6
N3—C1—S1123.5 (3)C7—C8—C3120.0 (4)
N2—C1—S1120.2 (3)C7—C8—H8120.0
N1—C2—C3119.8 (4)C3—C8—H8120.0
N1—C2—H2A120.1O2—C9—H9A109.5
C3—C2—H2A120.1O2—C9—H9B109.5
C4—C3—C8118.8 (4)H9A—C9—H9B109.5
C4—C3—C2119.7 (4)O2—C9—H9C109.5
C8—C3—C2121.4 (4)H9A—C9—H9C109.5
O1—C4—C3119.8 (4)H9B—C9—H9C109.5
O1—C4—C5119.4 (4)
C2—N1—N2—C1178.4 (4)C9—O2—C5—C4178.9 (4)
N1—N2—C1—N32.5 (6)O1—C4—C5—O20.0 (7)
N1—N2—C1—S1177.5 (3)C3—C4—C5—O2179.1 (4)
N2—N1—C2—C3177.3 (4)O1—C4—C5—C6179.6 (4)
N1—C2—C3—C4174.4 (4)C3—C4—C5—C61.3 (7)
N1—C2—C3—C87.7 (7)O2—C5—C6—C7179.7 (5)
C8—C3—C4—O1179.3 (4)C4—C5—C6—C70.2 (8)
C2—C3—C4—O12.8 (7)C5—C6—C7—C80.5 (9)
C8—C3—C4—C51.7 (7)C6—C7—C8—C30.2 (8)
C2—C3—C4—C5176.3 (4)C4—C3—C8—C70.9 (7)
C9—O2—C5—C60.6 (7)C2—C3—C8—C7177.0 (5)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.142.610 (4)116
N3—H3A···N10.862.232.592 (5)105
O1—H1···S1ii0.822.693.290 (3)131
N2—H2···S1iii0.862.623.470 (4)172
N3—H3B···O1iv0.862.282.943 (4)134
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.057 (3), 14.673 (5), 10.738 (4)
β (°) 108.412 (7)
V3)1055.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
5510, 1872, 1023
Rint0.071
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.163, 1.10
No. of reflections1872
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
C1···C9i3.425 (7)C2···C4i3.445 (7)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.142.610 (4)116.0
N3—H3A···N10.862.232.592 (5)105.3
O1—H1···S1ii0.822.693.290 (3)131.4
N2—H2···S1iii0.862.623.470 (4)171.8
N3—H3B···O1iv0.862.282.943 (4)134.4
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06–2-12).

References

First citationFonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129–140.  Web of Science CSD CrossRef CAS Google Scholar
First citationJoseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.   Web of Science CSD CrossRef CAS Google Scholar
First citationKasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem. 84, 55–65.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds