organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-(2-chloro­phen­yl)-4-methyl-1-(3-oxobut­yl)-2-thioxo-1,2,3,6-tetra­hydro­pyrimidine-5-carboxyl­ate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: hxqqxh2008@yahoo.com.cn

(Received 5 December 2007; accepted 17 December 2007; online 4 January 2008)

In the title mol­ecule, C18H21ClN2O3S, the pyrimidine ring exhibits a half-chair conformation. The ethyl group is disordered between two positions in a ratio 0.74:0.26. In the crystal structure, the mol­ecules are linked into chains along the a axis by N—H⋯O hydrogen bonds.

Related literature

For the crystal structure of a related compound, see Jiang et al. (2007[Jiang, H., Yu, C.-X., Tu, S.-J., Wang, X.-S. & Yao, C.-S. (2007). Acta Cryst. E63, o298-o299.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21ClN2O3S

  • Mr = 380.88

  • Triclinic, [P \overline 1]

  • a = 7.5227 (12) Å

  • b = 9.7163 (15) Å

  • c = 14.122 (2) Å

  • α = 72.617 (6)°

  • β = 87.300 (6)°

  • γ = 71.296 (6)°

  • V = 931.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 273 (2) K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.967

  • 10470 measured reflections

  • 3233 independent reflections

  • 2743 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.166

  • S = 1.00

  • 3233 reflections

  • 242 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.16 2.984 (3) 160
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herewith we present the crystal strusture of the title compound, (I), which was synthesized through the reaction of 2-chlorobenzaldehyde and ethyl acetoacetate with urea derivative under solvent-free conditions.

In (I) (Fig. 1), bond lengths and angles are normal and comparable with those observed in reported compound (Jiang et al., 2007). The pyrimidine ring exhibits a half-chair conformation with the maximal deviation of 0.168 Å for C6 from mean plane.

In the crystal, the molecules related by translation along axis a are linked into chains by N—H···O hydrogen bonds (Table 1).

Related literature top

For the crystal structure of a related compound, see Jiang et al. (2007).

Experimental top

2-Chlorobenzaldehyde (2 mmol), ethyl acetoacetate (2 mmol), urea derivatives (2.4 mmol) and H3BO3(0.4 mmol), in glacial acetic acid (10 ml) was heated at 373 K, while stirring for 1 h, then cooled to room temperature, and poured into ice water (50 ml), and recrystallized from EtOH, affording the title compound as a colourless crystalline solid. Elemental analysis: calculated for C18H21ClN2O3S: C 56.76, H 5.56, N 7.35%; found: C 56.68, H 5.45, N 7.44%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86, C—H 0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C, N). Atoms C16 and C17 were treated as disordered between two positions with refined occupancies of 0.740 (1) and 0.26 (1), respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Only major parts of disordered atoms is shown. H atoms omitted for clarity.
Ethyl 6-(2-chlorophenyl)-4-methyl-1-(3-oxobutyl)-2-thioxo-1,2,3,6- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C18H21ClN2O3SZ = 2
Mr = 380.88F(000) = 400
Triclinic, P1Dx = 1.358 Mg m3
a = 7.5227 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7163 (15) ÅCell parameters from 5002 reflections
c = 14.122 (2) Åθ = 2.3–27.4°
α = 72.617 (6)°µ = 0.34 mm1
β = 87.300 (6)°T = 273 K
γ = 71.296 (6)°Block, colourless
V = 931.7 (3) Å30.14 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3233 independent reflections
Radiation source: fine-focus sealed tube2743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.954, Tmax = 0.967k = 1110
10470 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0856P)2 + 1.0486P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
3233 reflectionsΔρmax = 0.92 e Å3
242 parametersΔρmin = 0.71 e Å3
63 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (5)
Crystal data top
C18H21ClN2O3Sγ = 71.296 (6)°
Mr = 380.88V = 931.7 (3) Å3
Triclinic, P1Z = 2
a = 7.5227 (12) ÅMo Kα radiation
b = 9.7163 (15) ŵ = 0.34 mm1
c = 14.122 (2) ÅT = 273 K
α = 72.617 (6)°0.14 × 0.12 × 0.10 mm
β = 87.300 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2743 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.967Rint = 0.021
10470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05563 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.92 e Å3
3233 reflectionsΔρmin = 0.71 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.25980 (13)0.52300 (10)0.37239 (6)0.0576 (3)
C10.7929 (7)0.7860 (5)0.2049 (3)0.0787 (12)
H1A0.86450.79900.14670.094*
H1B0.84730.81050.25530.094*
H1C0.66570.85230.18850.094*
O20.8603 (4)0.1939 (5)0.0855 (2)0.0915 (11)
O30.5995 (5)0.2294 (6)0.0050 (3)0.1280 (14)
N10.3010 (3)0.4024 (3)0.22578 (18)0.0459 (6)
H10.18190.41880.22940.055*
N20.5778 (3)0.3881 (3)0.29602 (17)0.0409 (6)
O10.8827 (3)0.5317 (3)0.2018 (2)0.0647 (7)
C20.7951 (4)0.6252 (4)0.2424 (2)0.0507 (7)
C30.6906 (5)0.5828 (4)0.3335 (2)0.0505 (7)
H3A0.56210.65110.32180.061*
H3B0.74680.59940.38780.061*
C40.6868 (5)0.4201 (3)0.3659 (2)0.0465 (7)
H4A0.81480.35110.37310.056*
H4B0.63340.39990.43050.056*
C50.3905 (4)0.4316 (3)0.2963 (2)0.0419 (6)
C60.6877 (4)0.2778 (3)0.2446 (2)0.0378 (6)
H60.80020.30500.22110.045*
C70.5756 (4)0.2894 (3)0.1548 (2)0.0431 (7)
C80.3869 (4)0.3488 (3)0.1493 (2)0.0437 (7)
C90.7520 (4)0.1183 (3)0.3179 (2)0.0388 (6)
C100.9389 (4)0.0353 (3)0.3472 (2)0.0445 (7)
C110.9927 (5)0.1094 (4)0.4150 (3)0.0569 (8)
H111.11930.16250.43240.068*
C120.8590 (6)0.1737 (4)0.4562 (3)0.0592 (9)
H120.89420.27050.50200.071*
C130.6714 (5)0.0942 (4)0.4295 (3)0.0574 (8)
H130.58000.13730.45750.069*
C140.6196 (4)0.0488 (4)0.3613 (2)0.0483 (7)
H140.49280.10060.34380.058*
C150.6932 (5)0.2335 (5)0.0802 (3)0.0619 (9)
C160.7016 (11)0.2217 (13)0.0899 (6)0.1280 (14)0.740 (10)
H16A0.62530.29180.14890.154*0.740 (10)
H16B0.82110.23970.08920.154*0.740 (10)
C170.7244 (13)0.0688 (10)0.0813 (8)0.119 (3)0.740 (10)
H17A0.81240.00310.02680.178*0.740 (10)
H17B0.77080.04760.14170.178*0.740 (10)
H17C0.60550.05150.06960.178*0.740 (10)
C16'0.719 (3)0.101 (2)0.0367 (13)0.124 (4)0.260 (10)
H16C0.84340.04990.00340.148*0.260 (10)
H16D0.65740.02670.03490.148*0.260 (10)
C17'0.725 (3)0.195 (3)0.1337 (12)0.119 (5)0.260 (10)
H17D0.60470.27220.15320.179*0.260 (10)
H17E0.75260.13410.17860.179*0.260 (10)
H17F0.82000.24120.13540.179*0.260 (10)
C180.2497 (5)0.3678 (5)0.0689 (3)0.0608 (9)
H18A0.31700.34010.01440.073*
H18B0.17030.47210.04640.073*
H18C0.17400.30330.09460.073*
Cl11.11696 (11)0.11095 (11)0.30061 (7)0.0646 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0587 (5)0.0578 (5)0.0593 (5)0.0108 (4)0.0111 (4)0.0317 (4)
C10.097 (3)0.060 (2)0.081 (3)0.031 (2)0.015 (2)0.019 (2)
O20.0477 (15)0.158 (3)0.0847 (19)0.0197 (17)0.0138 (13)0.074 (2)
O30.0798 (19)0.245 (4)0.096 (2)0.039 (2)0.0175 (16)0.120 (3)
N10.0346 (12)0.0521 (15)0.0538 (14)0.0099 (11)0.0009 (10)0.0243 (12)
N20.0438 (13)0.0361 (12)0.0431 (12)0.0083 (10)0.0040 (10)0.0165 (10)
O10.0564 (14)0.0666 (16)0.0822 (17)0.0224 (12)0.0144 (12)0.0371 (14)
C20.0461 (17)0.0491 (18)0.0602 (18)0.0144 (14)0.0057 (14)0.0209 (15)
C30.0572 (19)0.0451 (17)0.0556 (18)0.0152 (14)0.0027 (14)0.0247 (14)
C40.0529 (17)0.0434 (16)0.0436 (15)0.0117 (13)0.0077 (13)0.0163 (13)
C50.0437 (16)0.0353 (14)0.0448 (15)0.0093 (12)0.0011 (12)0.0130 (12)
C60.0353 (14)0.0370 (14)0.0429 (14)0.0095 (11)0.0003 (11)0.0164 (12)
C70.0427 (16)0.0487 (17)0.0416 (15)0.0152 (13)0.0013 (12)0.0180 (13)
C80.0432 (16)0.0476 (17)0.0433 (15)0.0154 (13)0.0017 (12)0.0169 (13)
C90.0405 (15)0.0351 (14)0.0444 (14)0.0097 (11)0.0008 (11)0.0197 (12)
C100.0410 (15)0.0432 (16)0.0527 (17)0.0110 (12)0.0025 (12)0.0210 (13)
C110.0548 (19)0.0435 (18)0.065 (2)0.0028 (15)0.0165 (16)0.0176 (15)
C120.077 (2)0.0376 (17)0.0578 (19)0.0124 (16)0.0051 (17)0.0123 (14)
C130.069 (2)0.0486 (19)0.0612 (19)0.0262 (17)0.0147 (16)0.0200 (16)
C140.0410 (16)0.0449 (17)0.0612 (18)0.0123 (13)0.0065 (13)0.0216 (14)
C150.049 (2)0.093 (3)0.0526 (19)0.0214 (18)0.0071 (15)0.0365 (19)
C160.0798 (19)0.245 (4)0.096 (2)0.039 (2)0.0175 (16)0.120 (3)
C170.115 (5)0.119 (6)0.129 (7)0.028 (5)0.036 (5)0.063 (5)
C16'0.095 (6)0.222 (8)0.081 (6)0.025 (6)0.020 (6)0.116 (6)
C17'0.104 (9)0.196 (10)0.076 (8)0.034 (9)0.028 (7)0.088 (8)
C180.0491 (19)0.079 (2)0.0567 (19)0.0157 (17)0.0071 (15)0.0273 (18)
Cl10.0387 (5)0.0689 (6)0.0853 (6)0.0185 (4)0.0042 (4)0.0190 (5)
Geometric parameters (Å, º) top
S1—C51.680 (3)C8—C181.500 (4)
C1—C21.487 (5)C9—C101.388 (4)
C1—H1A0.9600C9—C141.396 (4)
C1—H1B0.9600C10—C111.387 (5)
C1—H1C0.9600C10—Cl11.740 (3)
O2—C151.189 (4)C11—C121.368 (5)
O3—C151.318 (5)C11—H110.9300
O3—C161.523 (7)C12—C131.381 (5)
O3—C16'1.545 (10)C12—H120.9300
N1—C51.371 (4)C13—C141.378 (5)
N1—C81.382 (4)C13—H130.9300
N1—H10.8600C14—H140.9300
N2—C51.335 (4)C16—C171.408 (11)
N2—C41.472 (4)C16—H16A0.9700
N2—C61.483 (3)C16—H16B0.9700
O1—C21.215 (4)C17—H17A0.9600
C2—C31.497 (5)C17—H17B0.9600
C3—C41.519 (4)C17—H17C0.9600
C3—H3A0.9700C16'—C17'1.407 (13)
C3—H3B0.9700C16'—H16C0.9700
C4—H4A0.9700C16'—H16D0.9700
C4—H4B0.9700C17'—H17D0.9600
C6—C71.512 (4)C17'—H17E0.9600
C6—C91.521 (4)C17'—H17F0.9600
C6—H60.9800C18—H18A0.9600
C7—C81.346 (4)C18—H18B0.9600
C7—C151.461 (4)C18—H18C0.9600
C2—C1—H1A109.5C10—C9—C14116.3 (3)
C2—C1—H1B109.5C10—C9—C6123.7 (3)
H1A—C1—H1B109.5C14—C9—C6120.0 (2)
C2—C1—H1C109.5C11—C10—C9122.3 (3)
H1A—C1—H1C109.5C11—C10—Cl1117.0 (2)
H1B—C1—H1C109.5C9—C10—Cl1120.8 (2)
C15—O3—C16117.8 (4)C12—C11—C10119.8 (3)
C15—O3—C16'109.7 (9)C12—C11—H11120.1
C16—O3—C16'44.4 (9)C10—C11—H11120.1
C5—N1—C8125.2 (2)C11—C12—C13119.6 (3)
C5—N1—H1117.4C11—C12—H12120.2
C8—N1—H1117.4C13—C12—H12120.2
C5—N2—C4120.3 (2)C14—C13—C12120.1 (3)
C5—N2—C6122.7 (2)C14—C13—H13120.0
C4—N2—C6115.6 (2)C12—C13—H13120.0
O1—C2—C1121.0 (3)C13—C14—C9121.9 (3)
O1—C2—C3121.7 (3)C13—C14—H14119.0
C1—C2—C3117.2 (3)C9—C14—H14119.0
C2—C3—C4115.6 (3)O2—C15—O3121.8 (3)
C2—C3—H3A108.4O2—C15—C7123.6 (3)
C4—C3—H3A108.4O3—C15—C7114.6 (3)
C2—C3—H3B108.4C17—C16—O397.9 (7)
C4—C3—H3B108.4C17—C16—H16A112.2
H3A—C3—H3B107.4O3—C16—H16A112.2
N2—C4—C3113.4 (2)C17—C16—H16B112.2
N2—C4—H4A108.9O3—C16—H16B112.2
C3—C4—H4A108.9H16A—C16—H16B109.8
N2—C4—H4B108.9C17'—C16'—O396.5 (10)
C3—C4—H4B108.9C17'—C16'—H16C112.5
H4A—C4—H4B107.7O3—C16'—H16C112.5
N2—C5—N1116.0 (2)C17'—C16'—H16D112.5
N2—C5—S1125.3 (2)O3—C16'—H16D112.5
N1—C5—S1118.7 (2)H16C—C16'—H16D110.0
N2—C6—C7110.4 (2)C16'—C17'—H17D109.5
N2—C6—C9109.7 (2)C16'—C17'—H17E109.5
C7—C6—C9113.2 (2)H17D—C17'—H17E109.5
N2—C6—H6107.8C16'—C17'—H17F109.5
C7—C6—H6107.8H17D—C17'—H17F109.5
C9—C6—H6107.8H17E—C17'—H17F109.5
C8—C7—C15126.8 (3)C8—C18—H18A109.5
C8—C7—C6120.1 (3)C8—C18—H18B109.5
C15—C7—C6113.1 (2)H18A—C18—H18B109.5
C7—C8—N1118.3 (3)C8—C18—H18C109.5
C7—C8—C18128.8 (3)H18A—C18—H18C109.5
N1—C8—C18112.9 (3)H18B—C18—H18C109.5
O1—C2—C3—C45.4 (4)C7—C6—C9—C10122.2 (3)
C1—C2—C3—C4176.6 (3)N2—C6—C9—C1464.6 (3)
C5—N2—C4—C379.4 (3)C7—C6—C9—C1459.2 (3)
C6—N2—C4—C3114.0 (3)C14—C9—C10—C110.7 (4)
C2—C3—C4—N267.4 (4)C6—C9—C10—C11179.3 (3)
C4—N2—C5—N1177.4 (2)C14—C9—C10—Cl1178.5 (2)
C6—N2—C5—N117.0 (4)C6—C9—C10—Cl10.1 (4)
C4—N2—C5—S10.3 (4)C9—C10—C11—C120.8 (5)
C6—N2—C5—S1165.4 (2)Cl1—C10—C11—C12178.4 (3)
C8—N1—C5—N27.7 (4)C10—C11—C12—C130.3 (5)
C8—N1—C5—S1170.1 (2)C11—C12—C13—C140.3 (5)
C5—N2—C6—C730.6 (4)C12—C13—C14—C90.4 (5)
C4—N2—C6—C7163.1 (2)C10—C9—C14—C130.1 (4)
C5—N2—C6—C994.8 (3)C6—C9—C14—C13178.7 (3)
C4—N2—C6—C971.4 (3)C16—O3—C15—O219.1 (9)
N2—C6—C7—C822.2 (4)C16'—O3—C15—O228.9 (11)
C9—C6—C7—C8101.3 (3)C16—O3—C15—C7161.1 (6)
N2—C6—C7—C15156.9 (3)C16'—O3—C15—C7150.9 (10)
C9—C6—C7—C1579.7 (3)C8—C7—C15—O2173.4 (4)
C15—C7—C8—N1176.9 (3)C6—C7—C15—O25.5 (6)
C6—C7—C8—N12.0 (4)C8—C7—C15—O36.8 (6)
C15—C7—C8—C182.5 (6)C6—C7—C15—O3174.3 (4)
C6—C7—C8—C18178.6 (3)C15—O3—C16—C17107.2 (7)
C5—N1—C8—C715.2 (4)C16'—O3—C16—C1716.9 (14)
C5—N1—C8—C18164.4 (3)C15—O3—C16'—C17'120.7 (15)
N2—C6—C9—C10114.0 (3)C16—O3—C16'—C17'10.6 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.162.984 (3)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H21ClN2O3S
Mr380.88
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.5227 (12), 9.7163 (15), 14.122 (2)
α, β, γ (°)72.617 (6), 87.300 (6), 71.296 (6)
V3)931.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.954, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10470, 3233, 2743
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.166, 1.00
No. of reflections3233
No. of parameters242
No. of restraints63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.71

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.162.984 (3)160.4
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (No. X051040).

References

First citationJiang, H., Yu, C.-X., Tu, S.-J., Wang, X.-S. & Yao, C.-S. (2007). Acta Cryst. E63, o298–o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds