Download citation
Download citation
link to html
In the title compound, C15H17N3O2S, all bond lengths and angles are normal. Intra­molecular N—H...N hydrogen bonding influences the mol­ecular conformation. The benzene and phenyl rings make a dihedral angle of 75.80 (2)°. In the crystal structure, weak inter­molecular C—H...O hydrogen bonds link the mol­ecules into zigzag chains extended along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050040/cv2317sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050040/cv2317Isup2.hkl
Contains datablock I

CCDC reference: 667450

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.032
  • wR factor = 0.082
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Sulfonimide is an important kind of group in organic chemistry. Many compounds containing sulfonimide groups possess a broad spectrum of biological activities and can be widely used as herbicides (Kamoshita et al., 1987). In addition, some compounds containing sulfonimide groups can be used as catalyst (Zhang et al., 2007). Here, we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Henschel et al., 1996). The two rings - C4—C9 and C10—C15 - are oriented at angle of 75.80 (2)°. The intramolecular N1—H1A···N2 hydrogen bond influences the molecular conformation. In the crystal, the weak intermolecular C—H···O hydrogen bonds link the molecules into zigzag chains extended along the b axis.

Related literature top

For a related crystal structure, see: Henschel et al. (1996). For applications of sulfonimide derivatives, see: Kamoshita et al. (1987) and Zhang et al. (2007).

Experimental top

2-Amino-N-phenyl-benzenesulfonamide (10 mmol) was added dropwise to the solution of NaOH (25 mmol)in DMF(20 ml) and the mixture was heated under reflux for 2 h. Then the mixture was poured into water and extracted with CH2Cl2 (35 ml) and the organic layer was washed with 10% NaCl solution and water. The excess CH2Cl2 was removed on a water vacuum pump to obtain the final product (80% yield). Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

All H atoms were found on difference maps. C-bound H atoms were placed in idealized positions (C—H 0.95–0.98 Å) and refined as riding, with Uiso(H)= 1.2–1.5Ueq(C). Atom H1A was refined isotropically.

Structure description top

Sulfonimide is an important kind of group in organic chemistry. Many compounds containing sulfonimide groups possess a broad spectrum of biological activities and can be widely used as herbicides (Kamoshita et al., 1987). In addition, some compounds containing sulfonimide groups can be used as catalyst (Zhang et al., 2007). Here, we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Henschel et al., 1996). The two rings - C4—C9 and C10—C15 - are oriented at angle of 75.80 (2)°. The intramolecular N1—H1A···N2 hydrogen bond influences the molecular conformation. In the crystal, the weak intermolecular C—H···O hydrogen bonds link the molecules into zigzag chains extended along the b axis.

For a related crystal structure, see: Henschel et al. (1996). For applications of sulfonimide derivatives, see: Kamoshita et al. (1987) and Zhang et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labels and 40% probability displacement ellipsoids.
2-[(E)-(Dimethylamino)methyleneamino]-N-phenylbenzenesulfonamide top
Crystal data top
C15H17N3O2SF(000) = 1280
Mr = 303.38Dx = 1.371 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4407 reflections
a = 16.297 (3) Åθ = 2.9–26.4°
b = 8.9962 (18) ŵ = 0.23 mm1
c = 20.314 (4) ÅT = 153 K
β = 99.28 (3)°Block, colourless
V = 2939.3 (10) Å30.47 × 0.43 × 0.20 mm
Z = 8
Data collection top
Rigaku R0AXIS RAPID IP area-detector
diffractometer
2583 independent reflections
Radiation source: Rotating Anode2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.901, Tmax = 0.956k = 1010
11196 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0399P)2 + 3.4264P]
where P = (Fo2 + 2Fc2)/3
2583 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H17N3O2SV = 2939.3 (10) Å3
Mr = 303.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.297 (3) ŵ = 0.23 mm1
b = 8.9962 (18) ÅT = 153 K
c = 20.314 (4) Å0.47 × 0.43 × 0.20 mm
β = 99.28 (3)°
Data collection top
Rigaku R0AXIS RAPID IP area-detector
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2470 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.956Rint = 0.014
11196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.21 e Å3
2583 reflectionsΔρmin = 0.44 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15973 (2)0.20300 (4)0.133242 (16)0.02004 (12)
O10.12393 (7)0.31020 (12)0.17211 (5)0.0288 (3)
O20.15721 (7)0.22993 (12)0.06340 (5)0.0269 (3)
N10.25745 (8)0.18718 (14)0.16876 (6)0.0220 (3)
N20.16787 (7)0.03356 (13)0.26003 (6)0.0193 (3)
C30.14768 (9)0.01258 (16)0.31854 (7)0.0198 (3)
H3A0.09800.04050.32160.024*
C10.16694 (11)0.0447 (2)0.43857 (7)0.0313 (4)
H1C0.11430.01000.43310.047*
H1D0.15930.14290.45760.047*
H1E0.20940.01050.46860.047*
C110.35427 (9)0.02078 (17)0.18347 (7)0.0261 (3)
H11A0.34150.03500.22710.031*
C130.43044 (10)0.09194 (19)0.09645 (8)0.0319 (4)
H13A0.47030.15390.08070.038*
C20.27188 (10)0.13687 (19)0.37240 (8)0.0289 (4)
H2C0.30600.07640.34710.043*
H2D0.30130.15070.41800.043*
H2E0.26140.23400.35080.043*
C140.38898 (9)0.01647 (19)0.05553 (8)0.0274 (3)
H14A0.40000.02750.01130.033*
C60.04005 (9)0.24517 (18)0.15244 (8)0.0248 (3)
H6A0.01440.33890.15630.030*
C40.12052 (8)0.03763 (16)0.20566 (7)0.0183 (3)
C150.33173 (9)0.10892 (17)0.07828 (7)0.0226 (3)
H15A0.30500.18520.05040.027*
C100.31362 (9)0.08928 (16)0.14230 (7)0.0206 (3)
C120.41316 (10)0.10926 (18)0.16082 (8)0.0317 (4)
H12A0.44200.18230.18940.038*
C70.03399 (9)0.17763 (18)0.09029 (8)0.0265 (3)
H7A0.00430.22450.05180.032*
C80.07166 (9)0.04144 (18)0.08525 (7)0.0223 (3)
H8A0.06880.00490.04290.027*
N30.19335 (8)0.06204 (14)0.37424 (6)0.0217 (3)
C50.08311 (9)0.17730 (16)0.20879 (7)0.0212 (3)
H5A0.08740.22650.25060.025*
C90.11380 (8)0.02794 (16)0.14199 (7)0.0183 (3)
H1A0.2568 (12)0.168 (2)0.2103 (10)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (2)0.0200 (2)0.0155 (2)0.00066 (14)0.00152 (14)0.00187 (13)
O10.0367 (6)0.0235 (6)0.0263 (6)0.0051 (5)0.0050 (5)0.0020 (4)
O20.0321 (6)0.0304 (6)0.0173 (5)0.0008 (5)0.0016 (4)0.0070 (4)
N10.0236 (7)0.0263 (7)0.0153 (6)0.0056 (5)0.0012 (5)0.0005 (5)
N20.0205 (6)0.0221 (6)0.0147 (6)0.0008 (5)0.0013 (5)0.0011 (5)
C30.0193 (7)0.0201 (7)0.0198 (7)0.0008 (6)0.0028 (6)0.0024 (6)
C10.0368 (9)0.0412 (10)0.0161 (7)0.0076 (7)0.0049 (6)0.0016 (7)
C110.0286 (8)0.0257 (8)0.0223 (7)0.0077 (6)0.0013 (6)0.0060 (6)
C130.0271 (8)0.0293 (9)0.0376 (9)0.0000 (7)0.0006 (7)0.0067 (7)
C20.0265 (8)0.0352 (9)0.0242 (8)0.0098 (7)0.0016 (6)0.0012 (7)
C140.0256 (8)0.0340 (9)0.0221 (7)0.0052 (7)0.0019 (6)0.0038 (6)
C60.0192 (7)0.0247 (8)0.0316 (8)0.0031 (6)0.0070 (6)0.0048 (6)
C40.0144 (6)0.0225 (7)0.0181 (7)0.0019 (6)0.0032 (5)0.0011 (6)
C150.0223 (7)0.0249 (8)0.0192 (7)0.0048 (6)0.0007 (5)0.0031 (6)
C100.0200 (7)0.0207 (7)0.0200 (7)0.0078 (6)0.0004 (5)0.0001 (6)
C120.0316 (9)0.0237 (8)0.0362 (9)0.0020 (7)0.0051 (7)0.0051 (7)
C70.0204 (7)0.0343 (9)0.0244 (8)0.0028 (6)0.0021 (6)0.0102 (7)
C80.0181 (7)0.0315 (8)0.0171 (7)0.0018 (6)0.0020 (5)0.0024 (6)
N30.0236 (6)0.0264 (7)0.0151 (6)0.0047 (5)0.0029 (5)0.0011 (5)
C50.0180 (7)0.0238 (7)0.0227 (7)0.0012 (6)0.0059 (6)0.0013 (6)
C90.0156 (6)0.0216 (7)0.0177 (7)0.0013 (5)0.0030 (5)0.0004 (5)
Geometric parameters (Å, º) top
S1—O11.4291 (12)C2—N31.4519 (19)
S1—O21.4332 (11)C2—H2C0.9800
S1—N11.6451 (13)C2—H2D0.9800
S1—C91.7650 (15)C2—H2E0.9800
N1—C101.436 (2)C14—C151.384 (2)
N1—H1A0.86 (2)C14—H14A0.9500
N2—C31.2972 (18)C6—C51.384 (2)
N2—C41.3965 (18)C6—C71.390 (2)
C3—N31.3270 (19)C6—H6A0.9500
C3—H3A0.9500C4—C51.403 (2)
C1—N31.4487 (18)C4—C91.410 (2)
C1—H1C0.9800C15—C101.390 (2)
C1—H1D0.9800C15—H15A0.9500
C1—H1E0.9800C12—H12A0.9500
C11—C121.382 (2)C7—C81.382 (2)
C11—C101.393 (2)C7—H7A0.9500
C11—H11A0.9500C8—C91.391 (2)
C13—C141.385 (2)C8—H8A0.9500
C13—C121.390 (2)C5—H5A0.9500
C13—H13A0.9500
O1—S1—O2118.93 (7)C15—C14—H14A119.6
O1—S1—N1105.58 (7)C13—C14—H14A119.6
O2—S1—N1108.65 (7)C5—C6—C7120.70 (14)
O1—S1—C9109.20 (7)C5—C6—H6A119.7
O2—S1—C9107.80 (7)C7—C6—H6A119.7
N1—S1—C9105.96 (6)N2—C4—C5124.31 (13)
C10—N1—S1121.29 (10)N2—C4—C9119.01 (13)
C10—N1—H1A110.7 (13)C5—C4—C9116.52 (13)
S1—N1—H1A106.4 (13)C14—C15—C10119.49 (14)
C3—N2—C4117.93 (12)C14—C15—H15A120.3
N2—C3—N3122.84 (13)C10—C15—H15A120.3
N2—C3—H3A118.6C15—C10—C11119.99 (14)
N3—C3—H3A118.6C15—C10—N1121.10 (13)
N3—C1—H1C109.5C11—C10—N1118.77 (13)
N3—C1—H1D109.5C11—C12—C13120.38 (15)
H1C—C1—H1D109.5C11—C12—H12A119.8
N3—C1—H1E109.5C13—C12—H12A119.8
H1C—C1—H1E109.5C8—C7—C6119.18 (14)
H1D—C1—H1E109.5C8—C7—H7A120.4
C12—C11—C10119.87 (14)C6—C7—H7A120.4
C12—C11—H11A120.1C7—C8—C9120.16 (14)
C10—C11—H11A120.1C7—C8—H8A119.9
C14—C13—C12119.37 (15)C9—C8—H8A119.9
C14—C13—H13A120.3C3—N3—C1121.72 (13)
C12—C13—H13A120.3C3—N3—C2120.60 (12)
N3—C2—H2C109.5C1—N3—C2117.68 (12)
N3—C2—H2D109.5C6—C5—C4121.58 (14)
H2C—C2—H2D109.5C6—C5—H5A119.2
N3—C2—H2E109.5C4—C5—H5A119.2
H2C—C2—H2E109.5C8—C9—C4121.84 (14)
H2D—C2—H2E109.5C8—C9—S1118.53 (11)
C15—C14—C13120.85 (15)C4—C9—S1119.63 (11)
O1—S1—N1—C10179.13 (11)N2—C3—N3—C1176.32 (14)
O2—S1—N1—C1050.50 (13)N2—C3—N3—C23.2 (2)
C9—S1—N1—C1065.09 (12)C7—C6—C5—C41.3 (2)
C4—N2—C3—N3172.83 (13)N2—C4—C5—C6176.99 (13)
C12—C13—C14—C151.0 (2)C9—C4—C5—C61.6 (2)
C3—N2—C4—C532.9 (2)C7—C8—C9—C40.8 (2)
C3—N2—C4—C9151.77 (13)C7—C8—C9—S1179.14 (11)
C13—C14—C15—C102.2 (2)N2—C4—C9—C8176.20 (13)
C14—C15—C10—C111.3 (2)C5—C4—C9—C80.5 (2)
C14—C15—C10—N1177.14 (13)N2—C4—C9—S13.85 (18)
C12—C11—C10—C150.7 (2)C5—C4—C9—S1179.51 (10)
C12—C11—C10—N1175.25 (13)O1—S1—C9—C8119.83 (12)
S1—N1—C10—C1561.15 (17)O2—S1—C9—C810.70 (13)
S1—N1—C10—C11122.99 (13)N1—S1—C9—C8126.88 (12)
C10—C11—C12—C131.8 (2)O1—S1—C9—C460.12 (13)
C14—C13—C12—C111.0 (2)O2—S1—C9—C4169.35 (11)
C5—C6—C7—C80.1 (2)N1—S1—C9—C453.17 (13)
C6—C7—C8—C91.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.86 (2)2.249 (19)2.8899 (18)131.1 (17)
C11—H11A···O1i0.952.473.2724 (19)143
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3O2S
Mr303.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)16.297 (3), 8.9962 (18), 20.314 (4)
β (°) 99.28 (3)
V3)2939.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.47 × 0.43 × 0.20
Data collection
DiffractometerRigaku R0AXIS RAPID IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.901, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
11196, 2583, 2470
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.07
No. of reflections2583
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.44

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.86 (2)2.249 (19)2.8899 (18)131.1 (17)
C11—H11A···O1i0.952.473.2724 (19)142.7
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds