Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The racemic title compound, C9H10Br2N2O3, crystallizes as an inversion twin with two symmetry-independent mol­ecules in the asymmetric unit; these are linked into pseudo-centrosymmetric dimers by inter­molecular N—H...O hydrogen bonds. Weaker N—H...O hydrogen bonds link these dimers into two-dimensional layers parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032497/cv2266sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032497/cv2266Isup2.hkl
Contains datablock I

CCDC reference: 657707

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.052
  • wR factor = 0.148
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.159 0.272 Tmin and Tmax expected: 0.071 0.172 RR = 1.411 Please check that your absorption correction is appropriate. STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.592 From the CIF: _refine_ls_abs_structure_Flack_su 0.016 PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.48 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.63 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.68 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT318_ALERT_2_C Check Hybridisation of N2 in Main Residue . ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C9 H10 Br2 N2 O3
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.633 Tmax scaled 0.172 Tmin scaled 0.101 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.95 From the CIF: _reflns_number_total 5111 Count of symmetry unique reflns 2658 Completeness (_total/calc) 192.29% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2453 Fraction of Friedel pairs measured 0.923 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.59 PLAT792_ALERT_1_G Check the Absolute Configuration of C6 = ... R PLAT792_ALERT_1_G Check the Absolute Configuration of C15 = ... S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on (S)-Methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-3-methylbutanoate (Zeng, 2006) and Methyl 3-(3,4,5-tribromo-1H-pyrrol-2-ylcarboxamido)propionate (Zeng et al., 2007).

In the crystal structure, the two independent molecules are disposed over a false center of inversion (Fig. 1); this feature has been noted in compounds beloning to the Pna21 group (Marsh et al., 1998). These two molecules being R– and S-enantiomers are linked through N1—H···O4 and N3—H···O1 hydrogen bonds (Table 1) to form pseudo-centrosymmetric dimer (also shown in Fig. 1), which graph-set analysis describes as an R22(10) motif (Bernstein et al., 1995). At the same time, the weaker N2—H···O5 and N4—H···O2 hydrogen bonds link the dimers into two-dimensional layers parallel to ab-plane (Fig. 2).

Related literature top

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Marsh et al. (1998); Sosa et al. (2002); Zeng (2006); Zeng et al. (2007).

Experimental top

The hydrochloric acid salt of DL-methyl 2-aminopropionate (0.70 g, 5 mmol) and 4,5-dibromo-2-trichloroacetylpyrrole (1.85 g, 5 mmol) were added to 12 ml of acetonitrile, followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 8 h, and then poured into water. After filtration, the precipitate was collected as a pale yellow solid. The impure product was dissolved in ethanol at room temperature. Colourless crystals suitable for X-ray analysis (m. p. 485 K, in 81.4% yield) grew over a period of several days when the solution was exposed to air. CH&N elemental analysis. Calc. for C9H10Br2N2O3: C 30.54, H 2.85, N 7.91%; found: C 30.27, H 2.69, N 8.07%.

Refinement top

The H atoms were positioned geometrically [C—H = 1.00 Å for CH, 0.98 Å for CH3, C—H = 0.95 Å for CH(aromatic), and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom. The highest residual peak [2.35 e Å-3] is situated 0.97 Å at Br4 atom.

Because of racemic twinning, the TWIN and BASF instructions were used in the final refinement.

Structure description top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). This is the reason why they have attracted our interest. This study follows our previous studies on (S)-Methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-3-methylbutanoate (Zeng, 2006) and Methyl 3-(3,4,5-tribromo-1H-pyrrol-2-ylcarboxamido)propionate (Zeng et al., 2007).

In the crystal structure, the two independent molecules are disposed over a false center of inversion (Fig. 1); this feature has been noted in compounds beloning to the Pna21 group (Marsh et al., 1998). These two molecules being R– and S-enantiomers are linked through N1—H···O4 and N3—H···O1 hydrogen bonds (Table 1) to form pseudo-centrosymmetric dimer (also shown in Fig. 1), which graph-set analysis describes as an R22(10) motif (Bernstein et al., 1995). At the same time, the weaker N2—H···O5 and N4—H···O2 hydrogen bonds link the dimers into two-dimensional layers parallel to ab-plane (Fig. 2).

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Marsh et al. (1998); Sosa et al. (2002); Zeng (2006); Zeng et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing the two-dimensional network formed by hydrogen bonds (dashed lines).
Methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate top
Crystal data top
C9H10Br2N2O3Dx = 1.964 Mg m3
Mr = 354.01Melting point: 485 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5810 reflections
a = 15.8880 (16) Åθ = 2.6–26.8°
b = 6.1274 (6) ŵ = 6.77 mm1
c = 24.593 (3) ÅT = 173 K
V = 2394.2 (4) Å3Plate, colourless
Z = 80.43 × 0.40 × 0.26 mm
F(000) = 1376
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5111 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.159, Tmax = 0.272k = 77
18530 measured reflectionsl = 3031
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0945P)2 + 0.3872P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5111 reflectionsΔρmax = 2.35 e Å3
294 parametersΔρmin = 0.88 e Å3
1 restraintAbsolute structure: Flack (1983), 2453 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.592 (16)
Crystal data top
C9H10Br2N2O3V = 2394.2 (4) Å3
Mr = 354.01Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 15.8880 (16) ŵ = 6.77 mm1
b = 6.1274 (6) ÅT = 173 K
c = 24.593 (3) Å0.43 × 0.40 × 0.26 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5111 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4233 reflections with I > 2σ(I)
Tmin = 0.159, Tmax = 0.272Rint = 0.053
18530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.148Δρmax = 2.35 e Å3
S = 1.09Δρmin = 0.88 e Å3
5111 reflectionsAbsolute structure: Flack (1983), 2453 Friedel pairs
294 parametersAbsolute structure parameter: 0.592 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br40.47977 (6)0.33319 (16)0.71923 (3)0.0387 (2)
Br30.36898 (6)0.12861 (15)0.66069 (4)0.0396 (2)
C120.4929 (5)0.3982 (13)0.6001 (4)0.0233 (16)
H120.52340.53150.60170.028*
O40.4423 (3)0.2217 (9)0.4619 (2)0.0237 (12)
C170.5665 (5)0.7947 (12)0.4204 (4)0.0285 (18)
H17A0.62010.80800.43990.043*
H17B0.52550.89650.43600.043*
H17C0.57510.82930.38190.043*
C140.4777 (4)0.3376 (12)0.4973 (3)0.0180 (15)
N40.5247 (4)0.5104 (10)0.4832 (3)0.0191 (13)
H40.54960.58900.50850.023*
C100.4226 (5)0.0981 (13)0.6243 (3)0.0211 (15)
C150.5345 (4)0.5679 (13)0.4257 (3)0.0205 (15)
H150.47810.55910.40770.025*
C110.4642 (5)0.2747 (13)0.6445 (3)0.0251 (17)
N30.4262 (4)0.1053 (10)0.5702 (3)0.0199 (13)
H3A0.40480.00750.54800.024*
C130.4689 (4)0.2907 (12)0.5548 (3)0.0187 (15)
O50.6450 (4)0.2933 (9)0.4192 (2)0.0271 (12)
O60.5853 (4)0.4267 (9)0.3443 (2)0.0275 (12)
C160.5944 (4)0.4079 (11)0.3973 (3)0.0172 (14)
C180.6420 (6)0.2931 (16)0.3116 (4)0.036 (2)
H18A0.63160.13850.31930.054*
H18B0.70040.32920.32070.054*
H18C0.63200.32190.27300.054*
Br10.40261 (6)0.14472 (15)0.32146 (4)0.0364 (2)
Br20.27815 (6)0.30292 (15)0.26376 (3)0.0382 (2)
C30.2788 (5)0.3833 (13)0.3805 (3)0.0227 (16)
H30.24750.51520.37890.027*
C50.3026 (4)0.3344 (11)0.4843 (3)0.0162 (14)
C20.3038 (5)0.2547 (14)0.3366 (3)0.0251 (17)
N20.2550 (4)0.5115 (10)0.4979 (2)0.0210 (13)
H20.23060.58970.47230.025*
C60.2446 (5)0.5711 (12)0.5552 (3)0.0203 (15)
H60.30040.56240.57400.024*
N10.3516 (4)0.0987 (10)0.4115 (2)0.0184 (12)
H10.37680.00640.43350.022*
C40.3084 (5)0.2816 (13)0.4269 (3)0.0202 (15)
O10.3378 (3)0.2291 (9)0.5192 (2)0.0252 (12)
O20.1322 (4)0.2991 (9)0.5614 (2)0.0269 (12)
C70.1833 (5)0.4166 (12)0.5826 (3)0.0202 (15)
O30.1928 (4)0.4370 (10)0.6358 (2)0.0306 (13)
C90.1369 (6)0.3109 (15)0.6690 (3)0.033 (2)
H9A0.15230.15640.66670.049*
H9B0.14110.36000.70680.049*
H9C0.07900.33020.65610.049*
C10.3490 (5)0.0837 (13)0.3566 (3)0.0223 (15)
C80.2118 (6)0.8018 (13)0.5586 (4)0.0299 (19)
H8A0.15640.80970.54120.045*
H8B0.20680.84490.59680.045*
H8C0.25080.90040.54000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br40.0490 (5)0.0491 (5)0.0180 (4)0.0051 (4)0.0040 (4)0.0074 (4)
Br30.0530 (6)0.0371 (5)0.0288 (5)0.0080 (4)0.0053 (4)0.0061 (4)
C120.020 (3)0.023 (4)0.027 (4)0.001 (3)0.003 (3)0.004 (3)
O40.031 (3)0.022 (3)0.018 (3)0.009 (2)0.003 (2)0.002 (2)
C170.036 (4)0.021 (4)0.028 (4)0.001 (3)0.003 (3)0.000 (3)
C140.018 (3)0.018 (3)0.018 (4)0.006 (3)0.003 (3)0.001 (3)
N40.018 (3)0.018 (3)0.022 (3)0.003 (2)0.004 (2)0.005 (2)
C100.023 (4)0.026 (4)0.014 (4)0.002 (3)0.001 (3)0.003 (3)
C150.018 (3)0.025 (4)0.019 (4)0.004 (3)0.003 (3)0.000 (3)
C110.025 (4)0.034 (4)0.016 (4)0.000 (3)0.002 (3)0.004 (3)
N30.017 (3)0.024 (3)0.019 (3)0.002 (2)0.001 (3)0.001 (3)
C130.013 (3)0.016 (4)0.027 (4)0.006 (3)0.004 (3)0.001 (3)
O50.033 (3)0.025 (3)0.023 (3)0.010 (2)0.001 (2)0.004 (2)
O60.037 (3)0.031 (3)0.015 (3)0.016 (3)0.002 (2)0.000 (2)
C160.021 (3)0.015 (3)0.016 (3)0.001 (3)0.002 (3)0.001 (3)
C180.043 (5)0.047 (5)0.018 (5)0.021 (4)0.011 (4)0.001 (4)
Br10.0495 (5)0.0368 (5)0.0231 (4)0.0152 (4)0.0014 (4)0.0042 (4)
Br20.0462 (5)0.0514 (5)0.0172 (4)0.0163 (4)0.0014 (4)0.0087 (4)
C30.025 (4)0.021 (4)0.022 (4)0.010 (3)0.001 (3)0.007 (3)
C50.015 (3)0.013 (3)0.021 (4)0.001 (3)0.004 (3)0.004 (3)
C20.029 (4)0.030 (4)0.016 (4)0.005 (4)0.000 (3)0.010 (3)
N20.028 (3)0.017 (3)0.018 (3)0.005 (2)0.004 (3)0.005 (2)
C60.020 (3)0.015 (4)0.025 (4)0.001 (3)0.001 (3)0.002 (3)
N10.021 (3)0.019 (3)0.015 (3)0.005 (2)0.004 (2)0.002 (2)
C40.027 (4)0.027 (4)0.007 (3)0.007 (3)0.003 (3)0.004 (3)
O10.032 (3)0.022 (3)0.021 (3)0.010 (2)0.002 (2)0.002 (2)
O20.036 (3)0.026 (3)0.019 (3)0.008 (2)0.000 (2)0.003 (2)
C70.025 (4)0.016 (3)0.020 (4)0.004 (3)0.002 (3)0.002 (3)
O30.041 (3)0.034 (3)0.016 (3)0.013 (3)0.002 (2)0.010 (2)
C90.043 (5)0.042 (5)0.013 (4)0.013 (4)0.011 (4)0.001 (3)
C10.025 (4)0.028 (4)0.014 (4)0.006 (3)0.002 (3)0.001 (3)
C80.037 (5)0.018 (4)0.035 (5)0.003 (3)0.001 (4)0.008 (3)
Geometric parameters (Å, º) top
Br4—C111.889 (8)Br1—C11.853 (7)
Br3—C101.859 (8)Br2—C21.861 (8)
C12—C131.350 (12)C3—C41.382 (10)
C12—C111.404 (12)C3—C21.394 (12)
C12—H120.9500C3—H30.9500
O4—C141.256 (9)C5—O11.210 (9)
C17—C151.486 (11)C5—N21.364 (9)
C17—H17A0.9800C5—C41.451 (10)
C17—H17B0.9800C2—C11.362 (11)
C17—H17C0.9800N2—C61.467 (10)
C14—N41.341 (9)N2—H20.8800
C14—C131.450 (11)C6—C81.509 (10)
N4—C151.468 (10)C6—C71.516 (10)
N4—H40.8800C6—H61.0000
C10—N31.332 (10)N1—C11.352 (10)
C10—C111.362 (11)N1—C41.368 (10)
C15—C161.534 (10)N1—H10.8800
C15—H151.0000O2—C71.203 (9)
N3—C131.376 (10)C7—O31.322 (9)
N3—H3A0.8800O3—C91.433 (10)
O5—C161.196 (9)C9—H9A0.9800
O6—C161.317 (9)C9—H9B0.9800
O6—C181.458 (9)C9—H9C0.9800
C18—H18A0.9800C8—H8A0.9800
C18—H18B0.9800C8—H8B0.9800
C18—H18C0.9800C8—H8C0.9800
C13—C12—C11106.6 (7)C4—C3—C2106.7 (7)
C13—C12—H12126.7C4—C3—H3126.6
C11—C12—H12126.7C2—C3—H3126.6
C15—C17—H17A109.5O1—C5—N2120.4 (7)
C15—C17—H17B109.5O1—C5—C4122.8 (7)
H17A—C17—H17B109.5N2—C5—C4116.8 (6)
C15—C17—H17C109.5C1—C2—C3107.8 (7)
H17A—C17—H17C109.5C1—C2—Br2125.8 (6)
H17B—C17—H17C109.5C3—C2—Br2126.4 (6)
O4—C14—N4121.1 (7)C5—N2—C6119.7 (6)
O4—C14—C13121.4 (7)C5—N2—H2120.1
N4—C14—C13117.5 (7)C6—N2—H2120.1
C14—N4—C15119.9 (6)N2—C6—C8109.0 (6)
C14—N4—H4120.1N2—C6—C7110.1 (6)
C15—N4—H4120.1C8—C6—C7109.8 (6)
N3—C10—C11108.5 (7)N2—C6—H6109.3
N3—C10—Br3121.7 (6)C8—C6—H6109.3
C11—C10—Br3129.9 (6)C7—C6—H6109.3
N4—C15—C17110.2 (7)C1—N1—C4108.5 (6)
N4—C15—C16110.5 (6)C1—N1—H1125.8
C17—C15—C16110.2 (6)C4—N1—H1125.8
N4—C15—H15108.6N1—C4—C3108.1 (7)
C17—C15—H15108.6N1—C4—C5119.0 (6)
C16—C15—H15108.6C3—C4—C5132.9 (7)
C10—C11—C12107.6 (7)O2—C7—O3124.1 (7)
C10—C11—Br4124.7 (6)O2—C7—C6128.0 (7)
C12—C11—Br4127.7 (6)O3—C7—C6107.9 (6)
C10—N3—C13108.8 (7)C7—O3—C9116.2 (6)
C10—N3—H3A125.6O3—C9—H9A109.5
C13—N3—H3A125.6O3—C9—H9B109.5
C12—C13—N3108.4 (7)H9A—C9—H9B109.5
C12—C13—C14132.9 (7)O3—C9—H9C109.5
N3—C13—C14118.6 (7)H9A—C9—H9C109.5
C16—O6—C18115.4 (6)H9B—C9—H9C109.5
O5—C16—O6124.8 (7)N1—C1—C2108.9 (7)
O5—C16—C15126.0 (7)N1—C1—Br1120.2 (6)
O6—C16—C15109.1 (6)C2—C1—Br1130.9 (6)
O6—C18—H18A109.5C6—C8—H8A109.5
O6—C18—H18B109.5C6—C8—H8B109.5
H18A—C18—H18B109.5H8A—C8—H8B109.5
O6—C18—H18C109.5C6—C8—H8C109.5
H18A—C18—H18C109.5H8A—C8—H8C109.5
H18B—C18—H18C109.5H8B—C8—H8C109.5
O4—C14—N4—C150.8 (10)C4—C3—C2—C11.4 (9)
C13—C14—N4—C15178.8 (6)C4—C3—C2—Br2177.2 (6)
C14—N4—C15—C17163.4 (6)O1—C5—N2—C61.6 (11)
C14—N4—C15—C1674.6 (8)C4—C5—N2—C6178.5 (7)
N3—C10—C11—C121.4 (9)C5—N2—C6—C8163.9 (7)
Br3—C10—C11—C12179.7 (6)C5—N2—C6—C775.7 (8)
N3—C10—C11—Br4178.0 (6)C1—N1—C4—C30.4 (9)
Br3—C10—C11—Br40.9 (11)C1—N1—C4—C5179.6 (7)
C13—C12—C11—C100.9 (9)C2—C3—C4—N11.1 (9)
C13—C12—C11—Br4178.5 (6)C2—C3—C4—C5179.8 (9)
C11—C10—N3—C131.4 (9)O1—C5—C4—N13.6 (12)
Br3—C10—N3—C13179.6 (5)N2—C5—C4—N1176.5 (6)
C11—C12—C13—N30.1 (8)O1—C5—C4—C3175.4 (8)
C11—C12—C13—C14178.1 (8)N2—C5—C4—C34.5 (13)
C10—N3—C13—C120.8 (8)N2—C6—C7—O218.8 (11)
C10—N3—C13—C14177.6 (6)C8—C6—C7—O2101.1 (10)
O4—C14—C13—C12172.8 (8)N2—C6—C7—O3163.4 (6)
N4—C14—C13—C126.9 (12)C8—C6—C7—O376.6 (8)
O4—C14—C13—N35.1 (10)O2—C7—O3—C90.9 (12)
N4—C14—C13—N3175.2 (6)C6—C7—O3—C9177.0 (7)
C18—O6—C16—O50.7 (12)C4—N1—C1—C20.5 (9)
C18—O6—C16—C15176.5 (7)C4—N1—C1—Br1179.3 (5)
N4—C15—C16—O520.3 (11)C3—C2—C1—N11.2 (10)
C17—C15—C16—O5101.7 (9)Br2—C2—C1—N1177.4 (6)
N4—C15—C16—O6163.9 (6)C3—C2—C1—Br1178.5 (6)
C17—C15—C16—O674.1 (8)Br2—C2—C1—Br12.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.882.253.122 (8)169
N3—H3A···O10.881.932.784 (8)162
N2—H2···O5ii0.882.263.127 (8)168
N1—H1···O40.881.882.734 (8)164
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H10Br2N2O3
Mr354.01
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)15.8880 (16), 6.1274 (6), 24.593 (3)
V3)2394.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)6.77
Crystal size (mm)0.43 × 0.40 × 0.26
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.159, 0.272
No. of measured, independent and
observed [I > 2σ(I)] reflections
18530, 5111, 4233
Rint0.053
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.09
No. of reflections5111
No. of parameters294
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.35, 0.88
Absolute structureFlack (1983), 2453 Friedel pairs
Absolute structure parameter0.592 (16)

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.882.253.122 (8)169
N3—H3A···O10.881.932.784 (8)162
N2—H2···O5ii0.882.263.127 (8)168
N1—H1···O40.881.882.734 (8)164
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds