Download citation
Download citation
link to html
In the triclinic form of the title compound, [Cu(C2N3)(C10H8N2)2]ClO4, the CuII center is coordinated by five N atoms in a distorted square-pyramidal geometry, which is different from that observed earlier in an ortho­rhom­bic polymorph of the same compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026876/cv2256sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026876/cv2256Isup2.hkl
Contains datablock I

CCDC reference: 654714

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.069
  • wR factor = 0.168
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.29 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Bis(2,2'-bipyridine-κ2N,N1)copper(II) species is a very useful building block for constructuring coordination complexes and supramolecular frameworks. We have described several bis(2,2'-bipyridine-κ2N,N1)copper(II) based complexes in our early studies (Huang, Hu et al., 2003; Huang, Sun et al., 2003; Wang et al., 2007). The crystal structures of bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) divalent cation countered by one monodentate dicyanamide anion and another uncoordinated perchlorate, tetrafluoroborate and trifluoromethanesulfonate anions have been previously reported (Potočňák et al., 2001, 2002; Burcak et al., 2004). In this paper, we report a new triclinic polymorph of [Cu(C10H8N2)2(C2N3)]ClO4.

The atom-numbering scheme of the title compound (I) is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The title compound crystallizes in the triclinic P1 space group and the coordination configuration of Cu(II) center is distorted five-coordinate square pyramid. Atom N1 occupies the apical position with a longer Cu–N bond length of 2.163 (5) Å, while the other four Cu–N bond lengths vary within 1.978 (4)–2.019 (5) Å. The perchlorate anion is believed to be uncoordinated since the shortest distance between the oxygen atom and the central copper ion is 3.314 (10) Å (Cu1···O4).

The main difference between the title complex and the earlier reported orthorhombic polymorph (Potočňák et al., 2002) comes from the crystal symmetry and coordination geometry of the central metal ion. The reported bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) perchlorate and bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) tetrafluoroborate (Potočňák et al., 2001) are isostructural and they both crystallize in the orthorhombic Pbca space group. The values of τ parameter (Addison et al., 1984) for the two complexes are 0.508 and 0.542, respectively, showing distorted trigonal bipyramid geometry. In contrast, for the title complex, the τ value is 0.262, indicative of a distorted square pyramidal coordination sphere. As a result, the bond angle of Cu1–N5–C21 is 151.6 (5)°, which is significantly larger than that in the above-mentioned two complexes (143.5 (2)° for percholate and 141.7 (3)° for tetrafluoroborate). In addition, the coplanar monodentate dicyanamide ligand has a C21–N6–C22 bond angle of 121.1 (6)°, which is also a little bit larger than 119.4 (2)° in percholate and 119.6 (3)° in tetrafluoroborate.

Related literature top

For the crystal structure of the orthorhombic polymorph, see: Potočňák et al. (2002). For the crystal structures of related complexes, see: Huang, Hu et al. (2003); Huang, Sun et al. (2003); Wang et al. (2007); Potočňák et al. (2001); Burcak et al. (2004).

For related literature, see: Addison et al. (1984); Garribba et al. (2000).

Experimental top

The title compound (I) was obtained by refluxing an ethanol solution of equal molar ratio of [bis(2,2'-bipyridine-κ2N,N1)(percholate-κO) copper(II) percholate (0.575 g, 1.0 mmol) (Garribba et al., 2000) and Na[N(CN)2] (0.089 g, 1.0 mmol) for 1 h. The blue mixture was cooled to room temperature, and blue single-crystal sample of (I) suitable for X-ray diffraction measurement was grown in one week by slow evaporation in air at room temperature. Anal. Calcd. for C22H16ClCuN7O4: C, 48.81; H, 2.98; N, 18.11%. Found: C, 48.74; H, 3.04; N, 18.19%. Main FT–IR (KBr plates, cm-1): 2279 (m), 2219 (m), 2173 (versus), 2133 (s), 1608 (m), 1602 (m), 1595 (m), 1473 (m), 1444 (s), 1154 (m), 1108 (s), 1084 (versus), 774 (s), 766 (m) and 622 (m).

Refinement top

All H-atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2eq(C).

Structure description top

Bis(2,2'-bipyridine-κ2N,N1)copper(II) species is a very useful building block for constructuring coordination complexes and supramolecular frameworks. We have described several bis(2,2'-bipyridine-κ2N,N1)copper(II) based complexes in our early studies (Huang, Hu et al., 2003; Huang, Sun et al., 2003; Wang et al., 2007). The crystal structures of bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) divalent cation countered by one monodentate dicyanamide anion and another uncoordinated perchlorate, tetrafluoroborate and trifluoromethanesulfonate anions have been previously reported (Potočňák et al., 2001, 2002; Burcak et al., 2004). In this paper, we report a new triclinic polymorph of [Cu(C10H8N2)2(C2N3)]ClO4.

The atom-numbering scheme of the title compound (I) is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The title compound crystallizes in the triclinic P1 space group and the coordination configuration of Cu(II) center is distorted five-coordinate square pyramid. Atom N1 occupies the apical position with a longer Cu–N bond length of 2.163 (5) Å, while the other four Cu–N bond lengths vary within 1.978 (4)–2.019 (5) Å. The perchlorate anion is believed to be uncoordinated since the shortest distance between the oxygen atom and the central copper ion is 3.314 (10) Å (Cu1···O4).

The main difference between the title complex and the earlier reported orthorhombic polymorph (Potočňák et al., 2002) comes from the crystal symmetry and coordination geometry of the central metal ion. The reported bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) perchlorate and bis(2,2'-bipyridine-κ2N,N1)(dicyanamido-κN')χopper(II) tetrafluoroborate (Potočňák et al., 2001) are isostructural and they both crystallize in the orthorhombic Pbca space group. The values of τ parameter (Addison et al., 1984) for the two complexes are 0.508 and 0.542, respectively, showing distorted trigonal bipyramid geometry. In contrast, for the title complex, the τ value is 0.262, indicative of a distorted square pyramidal coordination sphere. As a result, the bond angle of Cu1–N5–C21 is 151.6 (5)°, which is significantly larger than that in the above-mentioned two complexes (143.5 (2)° for percholate and 141.7 (3)° for tetrafluoroborate). In addition, the coplanar monodentate dicyanamide ligand has a C21–N6–C22 bond angle of 121.1 (6)°, which is also a little bit larger than 119.4 (2)° in percholate and 119.6 (3)° in tetrafluoroborate.

For the crystal structure of the orthorhombic polymorph, see: Potočňák et al. (2002). For the crystal structures of related complexes, see: Huang, Hu et al. (2003); Huang, Sun et al. (2003); Wang et al. (2007); Potočňák et al. (2001); Burcak et al. (2004).

For related literature, see: Addison et al. (1984); Garribba et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.
bis(2,2'-bipyridine-κ2N,N')(dicyanamido-κN)copper(II) perchlorate top
Crystal data top
[Cu(C2N3)(C10H8N2)2]ClO4Z = 2
Mr = 541.41F(000) = 550
Triclinic, P1Dx = 1.629 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6881 (12) ÅCell parameters from 999 reflections
b = 9.0059 (14) Åθ = 2.4–20.1°
c = 17.737 (3) ŵ = 1.16 mm1
α = 79.953 (4)°T = 293 K
β = 78.131 (3)°Block, blue
γ = 67.468 (3)°0.16 × 0.15 × 0.10 mm
V = 1103.9 (3) Å3
Data collection top
Bruker 1K CCD area-detector
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube2781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
SADABS (Bruker, 2000)
h = 99
Tmin = 0.837, Tmax = 0.893k = 910
5551 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.65 e Å3
12 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C2N3)(C10H8N2)2]ClO4γ = 67.468 (3)°
Mr = 541.41V = 1103.9 (3) Å3
Triclinic, P1Z = 2
a = 7.6881 (12) ÅMo Kα radiation
b = 9.0059 (14) ŵ = 1.16 mm1
c = 17.737 (3) ÅT = 293 K
α = 79.953 (4)°0.16 × 0.15 × 0.10 mm
β = 78.131 (3)°
Data collection top
Bruker 1K CCD area-detector
diffractometer
3839 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2000)
2781 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.893Rint = 0.065
5551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06912 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
3839 reflectionsΔρmin = 0.38 e Å3
317 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19003 (9)0.56335 (8)0.25165 (4)0.0435 (3)
C10.3784 (8)0.6567 (7)0.3548 (3)0.0448 (14)
C20.4336 (10)0.7407 (9)0.3973 (3)0.0578 (17)
H20.53280.68740.42600.069*
C30.3381 (11)0.9058 (10)0.3964 (4)0.071 (2)
H30.36940.96510.42590.085*
C40.1994 (11)0.9799 (9)0.3522 (4)0.070 (2)
H40.13641.09130.35030.084*
C50.1504 (9)0.8919 (8)0.3100 (4)0.0582 (17)
H50.05360.94480.28010.070*
C60.4731 (7)0.4797 (7)0.3503 (3)0.0439 (14)
C70.6032 (8)0.3794 (9)0.3970 (3)0.0582 (17)
H70.63960.42190.43270.070*
C80.6785 (9)0.2178 (9)0.3909 (4)0.0660 (19)
H80.76590.14940.42270.079*
C90.6260 (8)0.1568 (8)0.3387 (4)0.0591 (17)
H90.67780.04670.33350.071*
C100.4953 (9)0.2600 (7)0.2937 (3)0.0553 (16)
H100.45810.21820.25800.066*
C110.2155 (8)0.6974 (6)0.0944 (3)0.0424 (13)
C120.2918 (9)0.7448 (7)0.0211 (3)0.0547 (16)
H120.21160.80910.01410.066*
C130.4845 (10)0.6975 (8)0.0002 (4)0.0653 (19)
H130.53660.72940.04920.078*
C140.5998 (9)0.6028 (8)0.0526 (4)0.0612 (17)
H140.73160.56990.03960.073*
C150.5196 (8)0.5572 (8)0.1239 (3)0.0534 (16)
H150.59910.49190.15920.064*
C160.0109 (8)0.7505 (7)0.1246 (3)0.0437 (14)
C170.1305 (9)0.8438 (7)0.0818 (3)0.0550 (16)
H170.10080.87320.02920.066*
C180.3177 (10)0.8934 (8)0.1180 (4)0.0618 (18)
H180.41570.95580.08990.074*
C190.3571 (9)0.8500 (8)0.1951 (4)0.0613 (18)
H190.48200.88470.22060.074*
C200.2115 (9)0.7551 (8)0.2341 (4)0.0599 (17)
H200.23890.72460.28670.072*
C210.0205 (8)0.4107 (8)0.3986 (4)0.0504 (14)
C220.1100 (10)0.2596 (9)0.5108 (4)0.0620 (14)
Cl10.0782 (2)0.2387 (2)0.14516 (10)0.0672 (5)
N10.2396 (6)0.7306 (6)0.3109 (3)0.0447 (11)
N20.4187 (6)0.4198 (6)0.2993 (3)0.0446 (11)
N30.3321 (7)0.6019 (6)0.1455 (3)0.0457 (11)
N40.0303 (6)0.7041 (5)0.1998 (2)0.0435 (11)
N50.0378 (7)0.4750 (6)0.3393 (3)0.0571 (14)
N60.0215 (8)0.3402 (7)0.4665 (3)0.0688 (13)
N70.2105 (9)0.1878 (8)0.5522 (3)0.0827 (19)
O10.140 (2)0.0985 (10)0.1153 (5)0.238 (6)
O20.0414 (9)0.3627 (8)0.0838 (3)0.127 (2)
O30.0722 (9)0.2517 (12)0.1995 (5)0.202 (5)
O40.2253 (10)0.2385 (12)0.1770 (4)0.167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0401 (4)0.0505 (5)0.0348 (4)0.0128 (3)0.0072 (3)0.0025 (3)
C10.043 (3)0.058 (4)0.036 (3)0.027 (3)0.003 (3)0.001 (3)
C20.067 (4)0.076 (5)0.039 (4)0.041 (4)0.002 (3)0.005 (3)
C30.089 (6)0.085 (6)0.053 (4)0.051 (5)0.007 (4)0.021 (4)
C40.074 (5)0.063 (5)0.071 (5)0.033 (4)0.022 (4)0.023 (4)
C50.050 (4)0.053 (4)0.064 (4)0.017 (3)0.005 (3)0.006 (3)
C60.037 (3)0.059 (4)0.034 (3)0.022 (3)0.002 (2)0.009 (3)
C70.047 (4)0.080 (5)0.044 (4)0.024 (4)0.009 (3)0.005 (3)
C80.047 (4)0.074 (5)0.061 (5)0.009 (4)0.017 (3)0.018 (4)
C90.044 (4)0.056 (4)0.065 (4)0.011 (3)0.007 (3)0.006 (3)
C100.052 (4)0.053 (4)0.054 (4)0.013 (3)0.008 (3)0.003 (3)
C110.048 (3)0.038 (3)0.036 (3)0.011 (3)0.001 (3)0.004 (2)
C120.063 (4)0.047 (4)0.044 (4)0.016 (3)0.000 (3)0.004 (3)
C130.066 (5)0.066 (4)0.048 (4)0.023 (4)0.018 (3)0.003 (3)
C140.051 (4)0.061 (4)0.069 (5)0.023 (3)0.007 (3)0.013 (3)
C150.046 (4)0.065 (4)0.046 (4)0.018 (3)0.002 (3)0.012 (3)
C160.048 (3)0.046 (3)0.035 (3)0.014 (3)0.010 (3)0.002 (2)
C170.065 (4)0.048 (4)0.045 (4)0.014 (3)0.014 (3)0.006 (3)
C180.060 (4)0.056 (4)0.064 (5)0.012 (3)0.026 (4)0.003 (3)
C190.041 (4)0.060 (4)0.069 (5)0.006 (3)0.008 (3)0.001 (3)
C200.045 (4)0.076 (5)0.046 (4)0.015 (3)0.001 (3)0.001 (3)
C210.048 (3)0.063 (4)0.045 (3)0.026 (3)0.010 (3)0.001 (3)
C220.062 (3)0.078 (3)0.048 (3)0.032 (3)0.011 (2)0.009 (2)
Cl10.0588 (11)0.0839 (13)0.0510 (10)0.0225 (9)0.0081 (8)0.0050 (9)
N10.037 (3)0.048 (3)0.046 (3)0.016 (2)0.001 (2)0.002 (2)
N20.043 (3)0.047 (3)0.042 (3)0.016 (2)0.010 (2)0.005 (2)
N30.045 (3)0.049 (3)0.039 (3)0.014 (2)0.004 (2)0.003 (2)
N40.038 (3)0.046 (3)0.037 (3)0.008 (2)0.006 (2)0.003 (2)
N50.060 (3)0.070 (4)0.042 (3)0.031 (3)0.009 (2)0.013 (3)
N60.065 (3)0.085 (3)0.053 (3)0.031 (3)0.009 (2)0.015 (2)
N70.084 (4)0.084 (5)0.073 (4)0.022 (4)0.031 (4)0.016 (3)
O10.482 (19)0.125 (7)0.126 (7)0.112 (9)0.082 (9)0.011 (5)
O20.107 (5)0.128 (5)0.098 (5)0.015 (4)0.013 (4)0.046 (4)
O30.076 (5)0.266 (11)0.160 (7)0.019 (5)0.032 (5)0.086 (7)
O40.119 (6)0.284 (11)0.118 (6)0.092 (7)0.058 (5)0.023 (6)
Geometric parameters (Å, º) top
Cu1—N41.978 (4)C11—C161.469 (7)
Cu1—N51.988 (5)C12—C131.364 (8)
Cu1—N21.991 (4)C12—H120.9300
Cu1—N32.019 (5)C13—C141.364 (9)
Cu1—N12.163 (5)C13—H130.9300
C1—N11.343 (7)C14—C151.357 (8)
C1—C21.377 (8)C14—H140.9300
C1—C61.486 (8)C15—N31.329 (7)
C2—C31.383 (9)C15—H150.9300
C2—H20.9300C16—N41.336 (6)
C3—C41.346 (9)C16—C171.372 (7)
C3—H30.9300C17—C181.382 (9)
C4—C51.372 (9)C17—H170.9300
C4—H40.9300C18—C191.359 (8)
C5—N11.346 (7)C18—H180.9300
C5—H50.9300C19—C201.358 (8)
C6—N21.336 (7)C19—H190.9300
C6—C71.375 (7)C20—N41.334 (7)
C7—C81.359 (9)C20—H200.9300
C7—H70.9300C21—N51.117 (7)
C8—C91.350 (9)C21—N61.299 (7)
C8—H80.9300C22—N71.112 (7)
C9—C101.366 (8)C22—N61.317 (8)
C9—H90.9300Cl1—O31.325 (6)
C10—N21.343 (7)Cl1—O11.331 (8)
C10—H100.9300Cl1—O41.364 (6)
C11—N31.355 (7)Cl1—O21.405 (6)
C11—C121.378 (7)
N4—Cu1—N595.2 (2)C12—C13—C14119.1 (6)
N4—Cu1—N2177.48 (18)C12—C13—H13120.5
N5—Cu1—N286.8 (2)C14—C13—H13120.5
N4—Cu1—N381.29 (18)C15—C14—C13119.1 (6)
N5—Cu1—N3161.8 (2)C15—C14—H14120.5
N2—Cu1—N396.32 (19)C13—C14—H14120.5
N4—Cu1—N1102.75 (18)N3—C15—C14122.8 (6)
N5—Cu1—N198.96 (19)N3—C15—H15118.6
N2—Cu1—N178.38 (18)C14—C15—H15118.6
N3—Cu1—N199.24 (18)N4—C16—C17121.0 (5)
N1—C1—C2122.2 (6)N4—C16—C11114.5 (5)
N1—C1—C6114.6 (5)C17—C16—C11124.4 (5)
C2—C1—C6123.1 (6)C16—C17—C18119.0 (6)
C1—C2—C3118.5 (6)C16—C17—H17120.5
C1—C2—H2120.8C18—C17—H17120.5
C3—C2—H2120.8C19—C18—C17119.3 (6)
C4—C3—C2119.2 (6)C19—C18—H18120.3
C4—C3—H3120.4C17—C18—H18120.3
C2—C3—H3120.4C20—C19—C18119.0 (6)
C3—C4—C5120.4 (7)C20—C19—H19120.5
C3—C4—H4119.8C18—C19—H19120.5
C5—C4—H4119.8N4—C20—C19122.4 (6)
N1—C5—C4121.4 (6)N4—C20—H20118.8
N1—C5—H5119.3C19—C20—H20118.8
C4—C5—H5119.3N5—C21—N6172.9 (7)
N2—C6—C7120.6 (6)N7—C22—N6174.5 (8)
N2—C6—C1115.8 (5)O3—Cl1—O1110.9 (7)
C7—C6—C1123.6 (5)O3—Cl1—O4109.8 (6)
C8—C7—C6119.8 (6)O1—Cl1—O4106.1 (7)
C8—C7—H7120.1O3—Cl1—O2113.1 (4)
C6—C7—H7120.1O1—Cl1—O2107.6 (5)
C9—C8—C7119.8 (6)O4—Cl1—O2109.1 (5)
C9—C8—H8120.1C1—N1—C5118.3 (5)
C7—C8—H8120.1C1—N1—Cu1112.6 (4)
C8—C9—C10118.7 (6)C5—N1—Cu1129.1 (4)
C8—C9—H9120.6C6—N2—C10118.8 (5)
C10—C9—H9120.6C6—N2—Cu1117.6 (4)
N2—C10—C9122.3 (6)C10—N2—Cu1122.3 (4)
N2—C10—H10118.9C15—N3—C11118.9 (5)
C9—C10—H10118.9C15—N3—Cu1127.7 (4)
N3—C11—C12120.0 (5)C11—N3—Cu1113.1 (4)
N3—C11—C16115.3 (5)C20—N4—C16119.2 (5)
C12—C11—C16124.6 (5)C20—N4—Cu1125.1 (4)
C13—C12—C11120.2 (6)C16—N4—Cu1115.7 (4)
C13—C12—H12119.9C21—N5—Cu1151.6 (5)
C11—C12—H12119.9C21—N6—C22121.1 (6)

Experimental details

Crystal data
Chemical formula[Cu(C2N3)(C10H8N2)2]ClO4
Mr541.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6881 (12), 9.0059 (14), 17.737 (3)
α, β, γ (°)79.953 (4), 78.131 (3), 67.468 (3)
V3)1103.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.16 × 0.15 × 0.10
Data collection
DiffractometerBruker 1K CCD area-detector
Absorption correctionMulti-scan
SADABS (Bruker, 2000)
Tmin, Tmax0.837, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
5551, 3839, 2781
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.168, 1.03
No. of reflections3839
No. of parameters317
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.38

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N41.978 (4)Cu1—N32.019 (5)
Cu1—N51.988 (5)Cu1—N12.163 (5)
Cu1—N21.991 (4)
N4—Cu1—N2177.48 (18)N4—Cu1—N1102.75 (18)
N5—Cu1—N286.8 (2)N5—Cu1—N198.96 (19)
N4—Cu1—N381.29 (18)N2—Cu1—N178.38 (18)
N5—Cu1—N3161.8 (2)N3—Cu1—N199.24 (18)
N2—Cu1—N396.32 (19)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds