Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C14H8Cl2F3N5OS, all bond lengths and angles are normal. Intra­molecular N—H...O hydrogen bonding influences the mol­ecular conformation. The pyrazole and benzene rings make a dihedral angle of 72.5 (1)°. Weak inter­molecular N—H...S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020715/cv2236sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020715/cv2236Isup2.hkl
Contains datablock I

CCDC reference: 654861

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.078
  • wR factor = 0.151
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 3.01 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C10 - C14 ... 1.45 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Cl2 .. F3 .. 3.03 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 47 N2 -C10 -C14 -N3 -128.00 12.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 48 C9 -C10 -C14 -N3 51.00 12.00 1.555 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Acyl thiourea derivatives show good bioactivities and may be used in many fields, such as in antimicrobial, sterilization, insecticide and herbicidal (Guo, 2004; Sun et al., 2006). Futhermore, the pyrazoles with the groups of chloride and trifluoromethyl, like 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4- trifluoromethylsulphenylpyrazole, show good bioactivities too (Hatton et al., 1993). Herewith we present the crystal structure of the title compound, (I), synthesized from 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole and acetyl chloride.

The molecular structure of the title compound,(I), is shown in Fig.1, with the atom-numbering scheme. It is an acylthioureas with an overall U-shape. In the crystal structure, the dihedral angle between the pyrazole and attached benzene ring is 72.5 (1)°. There is an intramolecular N4—H4—O1 hydrogen bond with an N4.·O1 separation of 2.577 (4) Å. Besides that, the weak intermolecular N—H···S hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing is further stabilized by the van der Waals forces.

Related literature top

For related literature, see: Gong et al. (2006); Hatton et al. (1993); Guo (2004); Sun et al. (2006).

Experimental top

Following the method of Hatton et al. (1993), reaction of 2,6-dichloro-4-trifluoromethylamine(0.01 mol) with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate(0.01 mol) in acetic acid, gave 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole (about 0.005 mol) (product 1). Further, in accordance with the method of Gong et al. (2006), acetyl chloride (0.007 mol) with dry potassium thiocyanate(0.1 mol)was refluxed in anhydrous CH3CN for 2 h at the temperature 80, then filtrated to obtain acylisothiocyanate solution (product 2). The obtained products 1 and 2 were then reacted in anhydrous CH3CN for about 4 h to get the title compound(I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solution in acetone (m.p. 473–475 K). IR (KBr, ν cm-1): 3253, 2244, 1698, 1610,1530, 1310; 1H NMR (CD3COCD3, δ, p.p.m.): 13.19 (s,1H), 10.87 (s, 1H), 8.21 (S, 2H), 7.74(s, 1H), 2.16(s, 3H); 13C NMR (CD3COCD3, δ, p.p.m.): 178.0(1 C), 173.9(1 C), 140.2(1 C), 136.1(2 C), 135.9 (1 C, J28.7 Hz),134.8(1 C), 127.0(1 C), 126.9(2 C),123.2(1 C, J271 Hz),113.0(1 C), 103.2(1 C),23.0(1 C).

Refinement top

The H atoms were positioned geometrically [C—H 0.93–0.97 Å, N—H 0.86 Å] and allowed to ride on their parent atoms with Uiso=1.5Ueq(parent atom).

Structure description top

Acyl thiourea derivatives show good bioactivities and may be used in many fields, such as in antimicrobial, sterilization, insecticide and herbicidal (Guo, 2004; Sun et al., 2006). Futhermore, the pyrazoles with the groups of chloride and trifluoromethyl, like 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4- trifluoromethylsulphenylpyrazole, show good bioactivities too (Hatton et al., 1993). Herewith we present the crystal structure of the title compound, (I), synthesized from 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole and acetyl chloride.

The molecular structure of the title compound,(I), is shown in Fig.1, with the atom-numbering scheme. It is an acylthioureas with an overall U-shape. In the crystal structure, the dihedral angle between the pyrazole and attached benzene ring is 72.5 (1)°. There is an intramolecular N4—H4—O1 hydrogen bond with an N4.·O1 separation of 2.577 (4) Å. Besides that, the weak intermolecular N—H···S hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing is further stabilized by the van der Waals forces.

For related literature, see: Gong et al. (2006); Hatton et al. (1993); Guo (2004); Sun et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme and displacement ellipsoids at the 50% probability level.
N-Acetyl-N'-{3-cyano-1-[2,6-dichloro-4- (trifluoromethyl)phenyl]pyrazol-5-yl}thiourea top
Crystal data top
C14H8Cl2F3N5OSF(000) = 848
Mr = 422.21Dx = 1.633 Mg m3
Monoclinic, P21/nMelting point: 473 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.0015 (8) ÅCell parameters from 2413 reflections
b = 14.3443 (13) Åθ = 2.9–24.1°
c = 13.3019 (12) ŵ = 0.55 mm1
β = 90.803 (2)°T = 298 K
V = 1717.4 (3) Å3Block, colourless
Z = 40.31 × 0.15 × 0.11 mm
Data collection top
Bruker APEX area-detector
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 109
Tmin = 0.849, Tmax = 0.943k = 1717
8974 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0397P)2 + 2.7124P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H8Cl2F3N5OSV = 1717.4 (3) Å3
Mr = 422.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0015 (8) ŵ = 0.55 mm1
b = 14.3443 (13) ÅT = 298 K
c = 13.3019 (12) Å0.31 × 0.15 × 0.11 mm
β = 90.803 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2820 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.943Rint = 0.036
8974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.28Δρmax = 0.37 e Å3
3084 reflectionsΔρmin = 0.28 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19256 (12)0.07962 (8)0.07071 (9)0.0462 (3)
Cl20.15095 (15)0.25247 (10)0.19982 (9)0.0594 (4)
S10.49154 (13)0.38450 (9)0.11126 (9)0.0471 (3)
F10.3483 (3)0.1067 (3)0.2227 (2)0.0727 (10)
F20.4383 (4)0.0369 (3)0.0978 (3)0.1039 (15)
O10.1254 (4)0.3302 (2)0.1182 (2)0.0486 (8)
F30.4768 (4)0.1812 (3)0.1170 (3)0.0994 (13)
N10.1295 (4)0.1653 (2)0.1297 (2)0.0315 (8)
N20.1306 (4)0.1098 (2)0.2123 (3)0.0400 (9)
N30.3220 (6)0.0631 (4)0.4320 (4)0.095 (2)
N40.2570 (4)0.2851 (2)0.0481 (2)0.0356 (8)
H40.19220.27710.00080.043*
N50.3241 (4)0.4064 (2)0.0514 (2)0.0361 (8)
H50.38560.45080.06320.043*
C10.3749 (6)0.1154 (4)0.1262 (4)0.0534 (13)
C20.2382 (5)0.1359 (3)0.0640 (3)0.0379 (10)
C30.1013 (5)0.1057 (3)0.0955 (3)0.0353 (10)
H30.09100.07770.15810.042*
C40.0206 (4)0.1179 (3)0.0325 (3)0.0320 (9)
C50.0069 (4)0.1597 (3)0.0609 (3)0.0298 (9)
C60.1312 (5)0.1933 (3)0.0876 (3)0.0360 (10)
C70.2547 (5)0.1810 (3)0.0264 (3)0.0421 (11)
H70.34720.20270.04590.051*
C80.2489 (4)0.2236 (3)0.1272 (3)0.0307 (9)
C90.3325 (5)0.2050 (3)0.2112 (3)0.0364 (10)
H90.42190.23240.23090.044*
C100.2538 (5)0.1357 (3)0.2605 (3)0.0366 (10)
C110.3520 (4)0.3560 (3)0.0346 (3)0.0329 (9)
C120.2119 (5)0.3956 (3)0.1205 (3)0.0392 (10)
C130.2015 (7)0.4701 (4)0.1981 (4)0.0686 (17)
H13A0.12690.45370.24720.103*
H13B0.29570.47660.23040.103*
H13C0.17540.52800.16680.103*
C140.2918 (6)0.0928 (4)0.3560 (4)0.0558 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0337 (6)0.0556 (7)0.0495 (7)0.0009 (5)0.0069 (5)0.0065 (5)
Cl20.0590 (8)0.0703 (9)0.0489 (7)0.0053 (7)0.0012 (6)0.0223 (6)
S10.0407 (7)0.0483 (7)0.0519 (7)0.0184 (5)0.0136 (5)0.0133 (6)
F10.060 (2)0.112 (3)0.0456 (18)0.0136 (18)0.0190 (14)0.0019 (17)
F20.080 (3)0.131 (3)0.099 (3)0.066 (2)0.044 (2)0.046 (2)
O10.051 (2)0.050 (2)0.0447 (19)0.0142 (17)0.0137 (15)0.0100 (15)
F30.058 (2)0.145 (4)0.094 (3)0.038 (2)0.0370 (19)0.022 (2)
N10.0293 (18)0.0338 (18)0.0315 (18)0.0089 (15)0.0034 (14)0.0050 (15)
N20.047 (2)0.037 (2)0.036 (2)0.0092 (17)0.0003 (17)0.0122 (16)
N30.086 (4)0.128 (5)0.069 (3)0.039 (4)0.028 (3)0.058 (3)
N40.0326 (19)0.039 (2)0.0347 (19)0.0127 (16)0.0074 (15)0.0060 (16)
N50.039 (2)0.0356 (19)0.0337 (19)0.0106 (16)0.0001 (16)0.0070 (15)
C10.042 (3)0.070 (4)0.047 (3)0.006 (3)0.013 (2)0.012 (3)
C20.039 (3)0.037 (2)0.038 (2)0.0044 (19)0.0033 (19)0.0080 (19)
C30.038 (2)0.037 (2)0.031 (2)0.0028 (19)0.0008 (18)0.0005 (18)
C40.030 (2)0.031 (2)0.035 (2)0.0036 (18)0.0030 (17)0.0045 (18)
C50.028 (2)0.029 (2)0.032 (2)0.0095 (17)0.0021 (17)0.0045 (17)
C60.041 (2)0.035 (2)0.032 (2)0.0025 (19)0.0011 (19)0.0019 (18)
C70.035 (2)0.045 (3)0.046 (3)0.004 (2)0.001 (2)0.000 (2)
C80.030 (2)0.031 (2)0.031 (2)0.0049 (18)0.0015 (17)0.0004 (18)
C90.033 (2)0.037 (2)0.039 (2)0.0090 (19)0.0077 (19)0.0033 (19)
C100.035 (2)0.041 (2)0.034 (2)0.005 (2)0.0062 (18)0.0048 (19)
C110.031 (2)0.031 (2)0.036 (2)0.0022 (18)0.0050 (18)0.0031 (18)
C120.048 (3)0.038 (2)0.032 (2)0.001 (2)0.003 (2)0.0011 (19)
C130.081 (4)0.065 (4)0.059 (3)0.021 (3)0.026 (3)0.024 (3)
C140.050 (3)0.066 (3)0.052 (3)0.020 (3)0.009 (2)0.022 (3)
Geometric parameters (Å, º) top
Cl1—C41.726 (4)C1—C21.502 (6)
Cl2—C61.729 (4)C2—C71.375 (6)
S1—C111.658 (4)C2—C31.376 (6)
F1—C11.315 (6)C3—C41.383 (6)
F2—C11.320 (6)C3—H30.9300
O1—C121.220 (5)C4—C51.387 (6)
F3—C11.323 (6)C5—C61.385 (6)
N1—N21.356 (4)C6—C71.380 (6)
N1—C81.362 (5)C7—H70.9300
N1—C51.426 (5)C8—C91.364 (5)
N2—C101.327 (5)C9—C101.389 (6)
N3—C141.127 (6)C9—H90.9300
N4—C111.342 (5)C10—C141.449 (6)
N4—C81.377 (5)C12—C131.487 (6)
N4—H40.8600C13—H13A0.9600
N5—C121.365 (5)C13—H13B0.9600
N5—C111.374 (5)C13—H13C0.9600
N5—H50.8600
N2—N1—C8112.5 (3)C7—C6—C5121.5 (4)
N2—N1—C5118.9 (3)C7—C6—Cl2118.8 (3)
C8—N1—C5128.6 (3)C5—C6—Cl2119.7 (3)
C10—N2—N1102.9 (3)C2—C7—C6118.7 (4)
C11—N4—C8129.0 (3)C2—C7—H7120.6
C11—N4—H4115.5C6—C7—H7120.6
C8—N4—H4115.5N1—C8—C9106.7 (3)
C12—N5—C11128.8 (4)N1—C8—N4117.5 (3)
C12—N5—H5115.6C9—C8—N4135.8 (4)
C11—N5—H5115.6C8—C9—C10104.3 (4)
F1—C1—F2106.5 (5)C8—C9—H9127.8
F1—C1—F3107.1 (4)C10—C9—H9127.8
F2—C1—F3106.2 (5)N2—C10—C9113.6 (4)
F1—C1—C2113.4 (4)N2—C10—C14119.4 (4)
F2—C1—C2111.3 (4)C9—C10—C14127.0 (4)
F3—C1—C2111.9 (4)N4—C11—N5113.6 (4)
C7—C2—C3121.5 (4)N4—C11—S1125.7 (3)
C7—C2—C1118.4 (4)N5—C11—S1120.7 (3)
C3—C2—C1120.1 (4)O1—C12—N5122.4 (4)
C2—C3—C4118.8 (4)O1—C12—C13122.4 (4)
C2—C3—H3120.6N5—C12—C13115.1 (4)
C4—C3—H3120.6C12—C13—H13A109.5
C3—C4—C5121.2 (4)C12—C13—H13B109.5
C3—C4—Cl1119.2 (3)H13A—C13—H13B109.5
C5—C4—Cl1119.5 (3)C12—C13—H13C109.5
C6—C5—C4118.1 (4)H13A—C13—H13C109.5
C6—C5—N1120.4 (4)H13B—C13—H13C109.5
C4—C5—N1121.5 (4)N3—C14—C10177.1 (6)
C8—N1—N2—C100.1 (5)C3—C2—C7—C62.0 (7)
C5—N1—N2—C10177.3 (4)C1—C2—C7—C6174.9 (4)
F1—C1—C2—C7155.1 (4)C5—C6—C7—C21.5 (7)
F2—C1—C2—C784.8 (6)Cl2—C6—C7—C2178.5 (3)
F3—C1—C2—C733.8 (6)N2—N1—C8—C90.5 (5)
F1—C1—C2—C327.9 (6)C5—N1—C8—C9177.6 (4)
F2—C1—C2—C392.1 (6)N2—N1—C8—N4178.1 (3)
F3—C1—C2—C3149.3 (4)C5—N1—C8—N41.0 (6)
C7—C2—C3—C42.7 (6)C11—N4—C8—N1171.3 (4)
C1—C2—C3—C4174.1 (4)C11—N4—C8—C96.8 (8)
C2—C3—C4—C50.0 (6)N1—C8—C9—C100.9 (5)
C2—C3—C4—Cl1179.5 (3)N4—C8—C9—C10177.4 (5)
C3—C4—C5—C63.3 (6)N1—N2—C10—C90.8 (5)
Cl1—C4—C5—C6177.2 (3)N1—N2—C10—C14178.3 (4)
C3—C4—C5—N1174.6 (4)C8—C9—C10—N21.1 (5)
Cl1—C4—C5—N14.9 (5)C8—C9—C10—C14177.9 (5)
N2—N1—C5—C670.7 (5)C8—N4—C11—N5177.1 (4)
C8—N1—C5—C6106.3 (5)C8—N4—C11—S12.6 (6)
N2—N1—C5—C4107.2 (4)C12—N5—C11—N42.6 (6)
C8—N1—C5—C475.9 (5)C12—N5—C11—S1177.2 (4)
C4—C5—C6—C74.1 (6)C11—N5—C12—O17.1 (7)
N1—C5—C6—C7173.9 (4)C11—N5—C12—C13172.1 (4)
C4—C5—C6—Cl2175.9 (3)N2—C10—C14—N3128 (12)
N1—C5—C6—Cl26.2 (5)C9—C10—C14—N351 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.861.852.577 (4)141
N5—H5···S1i0.862.693.524 (3)164
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H8Cl2F3N5OS
Mr422.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.0015 (8), 14.3443 (13), 13.3019 (12)
β (°) 90.803 (2)
V3)1717.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.31 × 0.15 × 0.11
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.849, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
8974, 3084, 2820
Rint0.036
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.151, 1.28
No. of reflections3084
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.861.852.577 (4)141
N5—H5···S1i0.862.693.524 (3)164
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds