Download citation
Download citation
link to html
The con­formational flexibilities are studied in two new organotin(IV) com­plexes, namely, trans-di­chlorido­dimethyl­bis­[N,N′,N′′-tris­(2-chloro­benz­yl)phospho­ric tri­amide]­tin(IV), [Sn(CH3)2(C21H21Cl3N3OP)2Cl2] or Sn(CH3)2Cl2{OP[NHCH2C6H4(2-Cl)]3}2, (I), and bis­(di­propyl­ammonium) tetra­chlorido­dimethyl­stan­nate(IV), [(CH3CH2CH2)2NH2]2[Sn(CH3)2Cl4], (II), and their analogous structures from the Cambridge Structural Database (CSD). The con­formations are considered based on the N—P=O—Sn torsion angles for (I) and the C—C—C—N, C—C—N—C, C—N—C—C and N—C—C—C torsion angles for the two symmetry-independent [CH3CH2CH2NH2CH2CH2CH3]+ cations in (II), and the ±ac±sp±ac (ac = anti­clinal and sp = synperiplanar) and ±ap±ap±ap±ap (ap = anti­periplanar) con­formations are observed, respectively. In both structures, the four atoms in the corners of the square-planar segment of the octa­hedral shape around the Sn atom participate in normal hydrogen-bonding inter­actions as acceptors, which include two O and two Cl atoms for (I), and four Cl atoms for (II). However, the phospho­ric tri­amide ligands block the environment around the Sn atom and limit the hydrogen-bond pattern to form a supra­molecular ribbon assembly, while in the presence of small organic cations in (II), a two-dimensional hydrogen-bonded architecture is achieved. The weak inter­actions π–π, C—H...π and C—Cl...π in (I), and C—H...Cl in (II) do not change the dimensionality of the hydrogen-bond pattern. The 62 CSD structures analogous to (I), i.e. with an SnOPN3 segment (including 83 entries) fall into four categories of con­formations based on the N—P=O—Sn torsion angles. The 132 [(CH3CH2CH2)2NH2]+ cations from 85 CSD structures are classified into seven groups based on the torsion angles noted for (II). Most of the CSD structures adopt the same associated con­formations noted for (I) and (II). 15 [Sn(CH3)2Cl4]2− anions extracted from the CSD are com­pared with the structure of (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620016502/cu3168sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620016502/cu3168Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620016502/cu3168IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620016502/cu3168sup4.pdf
Additional tables and figures

CCDC references: 2051766; 2051765

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for (I); CrystalClear-SM Expert (Rigaku, 2011) for (II). Cell refinement: CrysAlis PRO (Agilent, 2014) for (I); CrystalClear-SM Expert (Rigaku, 2011) for (II). Data reduction: CrysAlis PRO (Agilent, 2014) for (I); CrystalClear-SM Expert (Rigaku, 2011) for (II). For both structures, program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a). Program(s) used to refine structure: JANA2006 (Petříček et al., 2014) for (I); SHELXL2018 (Sheldrick, 2015b) for (II). Software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), SUPERFLIP (Palatinus & Chapuis, 2007) and pyMOL (Schrödinger, 2015) for (I); SHELXL2018 (Sheldrick, 2015b) for (II).

trans-Dichloridodimethylbis[N,N',N''-tris(2-chlorobenzyl)phosphoric triamide]tin(IV) (I) top
Crystal data top
[Sn(CH3)2(C21H21Cl3N3OP)2Cl2]F(000) = 1172
Mr = 1157.2Dx = 1.531 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yabcCell parameters from 9555 reflections
a = 15.4589 (4) Åθ = 4.2–67.0°
b = 8.1983 (3) ŵ = 8.92 mm1
c = 20.6655 (6) ÅT = 120 K
β = 106.556 (2)°Polygon shape, colour less
V = 2510.50 (14) Å30.18 × 0.13 × 0.10 mm
Z = 2
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
4433 independent reflections
Radiation source: X-ray tube4052 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 5.1873 pixels mm-1θmax = 67.1°, θmin = 3.2°
ω scansh = 1618
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
k = 89
Tmin = 0.304, Tmax = 0.523l = 2424
15856 measured reflections
Refinement top
Refinement on F284 constraints
R[F > 3σ(F)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.058Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.31(Δ/σ)max = 0.014
4433 reflectionsΔρmax = 0.30 e Å3
298 parametersΔρmin = 0.39 e Å3
2 restraints
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

The structure of (I) was refined with program Jana2006 (Petříček et al., 2014), the structure (II) was refined using SHELXL2018/3 (Sheldrick, 2015b), and the refinement parameters are summarized in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn100.500.01668 (6)
Cl10.13615 (3)0.38646 (6)0.03603 (3)0.02572 (16)
Cl20.34145 (3)0.14768 (6)0.01587 (3)0.02642 (16)
P10.08493 (3)0.12750 (6)0.04461 (2)0.01583 (14)
Cl30.25921 (5)0.01666 (8)0.23780 (3)0.0474 (2)
Cl40.22086 (5)0.08893 (11)0.26114 (4)0.0687 (3)
O10.04992 (9)0.24649 (16)0.00228 (7)0.0190 (4)
N10.11458 (11)0.2368 (2)0.10065 (8)0.0194 (5)
N20.16346 (11)0.0155 (2)0.00550 (9)0.0190 (5)
N30.01782 (12)0.0128 (2)0.08618 (9)0.0204 (5)
C160.06141 (14)0.0225 (3)0.14235 (11)0.0235 (6)
C170.06532 (14)0.0735 (2)0.20564 (10)0.0235 (6)
C50.12183 (17)0.1473 (3)0.33444 (12)0.0339 (8)
C20.16514 (13)0.1685 (3)0.14428 (10)0.0232 (6)
C140.37903 (14)0.3951 (3)0.01593 (12)0.0295 (7)
C150.32245 (13)0.3277 (3)0.01821 (11)0.0249 (7)
C90.24318 (13)0.0882 (3)0.05328 (10)0.0223 (6)
C80.04044 (14)0.2787 (3)0.24334 (11)0.0268 (7)
C30.11991 (13)0.1919 (2)0.21875 (10)0.0208 (6)
C200.0765 (2)0.2436 (3)0.32497 (13)0.0449 (9)
C40.15926 (15)0.1271 (3)0.26593 (11)0.0269 (7)
C100.30944 (13)0.1598 (2)0.01952 (10)0.0204 (6)
C130.42332 (14)0.2962 (3)0.05038 (11)0.0285 (7)
C120.41241 (13)0.1284 (3)0.04970 (11)0.0247 (6)
C220.00145 (15)0.1828 (3)0.20933 (12)0.0296 (7)
C210.00374 (18)0.2673 (3)0.26855 (13)0.0405 (9)
C110.35636 (13)0.0631 (2)0.01493 (10)0.0215 (6)
C190.1439 (2)0.1358 (3)0.32260 (13)0.0448 (9)
C70.00087 (15)0.2975 (3)0.31234 (12)0.0329 (7)
C60.04183 (17)0.2325 (3)0.35783 (12)0.0357 (8)
C180.13698 (16)0.0517 (3)0.26315 (13)0.0359 (8)
C10.07834 (15)0.4897 (3)0.10179 (11)0.0266 (7)
H1c160.0634160.137110.1522830.0282*
H2c160.1149610.0019930.1289240.0282*
H1c50.1511070.1026270.3656530.0407*
H1c20.1753520.0543230.1348060.0279*
H2c20.2244270.2156120.1327670.0279*
H1c140.3875190.5111410.0156560.0354*
H1c150.2916060.3981730.0414310.0299*
H1c90.2730690.007460.0855830.0267*
H2c90.2244150.1712420.0791390.0267*
H1c80.0121510.3267580.2121810.0322*
H1c200.0800170.3023660.3658260.0539*
H1c130.4615220.343610.0747160.0342*
H1c120.4433750.058560.0730570.0297*
H1c220.0520420.2003730.1703770.0356*
H1c210.0432160.3423020.2703560.0486*
H1c190.1948430.1192980.3614330.0538*
H1c70.0550230.355810.3283880.0395*
H1c60.0148550.2463370.4054540.0428*
H1c10.1132870.3910830.1093810.0319*
H2c10.1180830.5820750.1117780.0319*
H3c10.0393090.4911870.1305410.0319*
H1N30.0131 (16)0.098 (2)0.0650 (11)0.023 (6)*
H1N10.1277 (15)0.335 (2)0.0901 (12)0.019 (6)*
H1N20.1695 (16)0.081 (2)0.0059 (12)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01683 (10)0.01580 (10)0.01579 (10)0.00129 (6)0.00204 (7)0.00065 (6)
Cl10.0239 (2)0.0195 (2)0.0359 (3)0.00104 (18)0.0119 (2)0.00049 (19)
Cl20.0255 (2)0.0207 (2)0.0349 (3)0.00237 (19)0.0115 (2)0.0005 (2)
P10.0161 (2)0.0166 (2)0.0144 (2)0.00089 (18)0.00391 (18)0.00005 (18)
Cl30.0548 (4)0.0530 (4)0.0419 (4)0.0278 (3)0.0255 (3)0.0051 (3)
Cl40.0468 (4)0.0698 (5)0.0617 (5)0.0226 (4)0.0292 (3)0.0192 (4)
O10.0209 (6)0.0173 (6)0.0188 (7)0.0027 (5)0.0058 (5)0.0008 (5)
N10.0233 (8)0.0163 (8)0.0193 (8)0.0008 (7)0.0070 (7)0.0000 (7)
N20.0198 (8)0.0177 (8)0.0187 (8)0.0020 (6)0.0040 (7)0.0013 (6)
N30.0244 (9)0.0188 (9)0.0163 (8)0.0019 (7)0.0030 (7)0.0009 (6)
C160.0191 (10)0.0273 (11)0.0217 (11)0.0001 (8)0.0018 (8)0.0024 (8)
C170.0260 (10)0.0218 (10)0.0208 (10)0.0085 (8)0.0038 (8)0.0017 (8)
C50.0499 (14)0.0310 (12)0.0230 (11)0.0079 (11)0.0138 (10)0.0071 (9)
C20.0230 (10)0.0283 (11)0.0202 (10)0.0042 (8)0.0092 (8)0.0037 (8)
C140.0275 (11)0.0231 (11)0.0321 (12)0.0002 (9)0.0007 (9)0.0040 (9)
C150.0221 (10)0.0241 (11)0.0246 (11)0.0026 (8)0.0004 (8)0.0025 (8)
C90.0201 (9)0.0276 (11)0.0168 (10)0.0044 (8)0.0016 (8)0.0004 (8)
C80.0248 (10)0.0327 (11)0.0229 (11)0.0001 (9)0.0067 (9)0.0026 (9)
C30.0233 (10)0.0197 (9)0.0201 (10)0.0050 (8)0.0073 (8)0.0012 (8)
C200.0628 (17)0.0484 (15)0.0255 (13)0.0212 (14)0.0156 (12)0.0141 (11)
C40.0326 (11)0.0225 (10)0.0276 (11)0.0001 (9)0.0118 (9)0.0010 (9)
C100.0166 (9)0.0240 (10)0.0164 (9)0.0024 (8)0.0023 (7)0.0002 (8)
C130.0218 (10)0.0332 (12)0.0283 (11)0.0016 (9)0.0037 (9)0.0077 (9)
C120.0183 (9)0.0295 (11)0.0250 (11)0.0034 (8)0.0039 (8)0.0011 (9)
C220.0330 (11)0.0293 (11)0.0257 (11)0.0037 (9)0.0069 (9)0.0058 (9)
C210.0470 (14)0.0403 (14)0.0379 (14)0.0075 (12)0.0179 (12)0.0159 (11)
C110.0186 (9)0.0207 (10)0.0220 (10)0.0012 (8)0.0006 (8)0.0015 (8)
C190.0555 (16)0.0458 (15)0.0221 (12)0.0148 (13)0.0067 (11)0.0015 (11)
C70.0278 (11)0.0430 (13)0.0240 (11)0.0039 (10)0.0010 (9)0.0071 (10)
C60.0425 (13)0.0426 (13)0.0182 (11)0.0157 (11)0.0026 (10)0.0007 (10)
C180.0346 (12)0.0337 (12)0.0319 (13)0.0038 (10)0.0027 (10)0.0027 (10)
C10.0274 (11)0.0290 (11)0.0189 (10)0.0054 (8)0.0004 (9)0.0034 (8)
Geometric parameters (Å, º) top
Sn1—Cl12.5970 (5)C15—C101.393 (3)
Sn1—Cl1i2.5970 (5)C15—H1c150.96
Sn1—C12.109 (2)C9—C101.513 (3)
Sn1—C1i2.109 (2)C9—H1c90.96
Sn1—O12.2222 (13)C9—H2c90.96
P1—O11.5099 (15)C8—C31.385 (3)
P1—N11.6299 (19)C8—C71.391 (3)
P1—N21.6348 (16)C8—H1c80.96
P1—N31.6212 (16)C3—C41.393 (3)
N1—C21.462 (3)C20—C211.384 (3)
N1—H1N10.841 (17)C20—C191.378 (4)
N2—C91.468 (2)C20—H1c200.96
N2—H1N20.841 (18)C10—C111.398 (3)
N3—C161.457 (2)C13—C121.387 (3)
N3—H1N30.84 (2)C13—H1c130.96
C16—C171.513 (3)C12—C111.381 (3)
C16—H1c160.96C12—H1c120.96
C16—H2c160.96C22—C211.389 (4)
C17—C221.385 (3)C22—H1c220.96
C17—C181.386 (3)C21—H1c210.96
C5—C41.378 (3)C19—C181.386 (4)
C5—C61.382 (3)C19—H1c190.96
C5—H1c50.96C7—C61.381 (4)
C2—C31.510 (3)C7—H1c70.96
C2—H1c20.96C6—H1c60.96
C2—H2c20.96C1—H1c10.96
C14—C151.386 (3)C1—H2c10.96
C14—C131.382 (3)C1—H3c10.96
C14—H1c140.96
Sn1—O1—P1143.18 (9)C10—C15—H1c15119.34
N2—H1N2—Cl2113.1 (19)N2—C9—C10113.35 (17)
N2—H1N2—Cl1ii161 (2)N2—C9—H1c9109.47
Cl1—Sn1—Cl1i180N2—C9—H2c9109.47
Cl1—Sn1—C189.41 (7)C10—C9—H1c9109.47
Cl1—Sn1—C1i90.59 (7)C10—C9—H2c9109.47
Cl1i—Sn1—C190.59 (7)H1c9—C9—H2c9105.29
Cl1i—Sn1—C1i89.41 (7)C3—C8—C7121.2 (2)
C1—Sn1—C1i180C3—C8—H1c8119.39
Sn1—Cl1—N1i77.68 (3)C7—C8—H1c8119.39
O1—P1—N1106.04 (8)C2—C3—C8123.0 (2)
O1—P1—N2108.65 (8)C2—C3—C4119.79 (17)
O1—P1—N3118.97 (9)C8—C3—C4117.25 (18)
O1—Sn1—Cl189.17 (5)C21—C20—C19120.1 (3)
O1—Sn1—C192.61 (8)C21—C20—H1c20119.95
N1—P1—N2116.77 (9)C19—C20—H1c20119.95
N1—P1—N3106.29 (9)C5—C4—C3122.2 (2)
N2—P1—N3100.66 (8)C15—C10—C9120.87 (19)
P1—N1—C2122.37 (14)C15—C10—C11116.9 (2)
P1—N1—H1N1115.9 (18)C9—C10—C11122.18 (18)
C2—N1—H1N1113.2 (18)C14—C13—C12119.8 (2)
P1—N2—C9121.85 (13)C14—C13—H1c13120.1
P1—N2—H1N2118.3 (15)C12—C13—H1c13120.1
C9—N2—H1N2115.7 (15)C13—C12—C11119.1 (2)
P1—N3—C16123.18 (13)C13—C12—H1c12120.47
P1—N3—H1N3116.9 (14)C11—C12—H1c12120.47
C16—N3—H1N3113.8 (14)C17—C22—C21121.0 (2)
N3—C16—C17113.77 (17)C17—C22—H1c22119.52
N3—C16—H1c16109.47C21—C22—H1c22119.52
N3—C16—H2c16109.47C20—C21—C22120.1 (3)
C17—C16—H1c16109.47C20—C21—H1c21119.95
C17—C16—H2c16109.47C22—C21—H1c21119.95
H1c16—C16—H2c16104.81C10—C11—C12122.59 (19)
C16—C17—C22122.50 (17)C20—C19—C18118.8 (2)
C16—C17—C18120.0 (2)C20—C19—H1c19120.59
C22—C17—C18117.5 (2)C18—C19—H1c19120.59
C4—C5—C6119.5 (2)C8—C7—C6120.1 (2)
C4—C5—H1c5120.26C8—C7—H1c7119.94
C6—C5—H1c5120.26C6—C7—H1c7119.94
N1—C2—C3113.95 (16)C5—C6—C7119.7 (2)
N1—C2—H1c2109.47C5—C6—H1c6120.16
N1—C2—H2c2109.47C7—C6—H1c6120.16
C3—C2—H1c2109.47C17—C18—C19122.5 (2)
C3—C2—H2c2109.47Sn1—C1—H1c1109.47
H1c2—C2—H2c2104.59Sn1—C1—H2c1109.47
C15—C14—C13120.4 (2)Sn1—C1—H3c1109.47
C15—C14—H1c14119.81H1c1—C1—H2c1109.47
C13—C14—H1c14119.81H1c1—C1—H3c1109.47
C14—C15—C10121.3 (2)H2c1—C1—H3c1109.47
C14—C15—H1c15119.35
N3—C16—C17—C220.8 (3)N2—C9—C10—C15111.1 (2)
N1—C2—C3—C83.6 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1ii0.84 (2)2.26 (2)3.033 (2)152 (2)
N1—H1N1···Cl1i0.844 (17)2.529 (18)3.3437 (17)163 (2)
N2—H1N2···Cl20.838 (18)2.78 (3)3.2013 (18)113.1 (19)
N2—H1N2···Cl1ii0.841 (18)2.594 (17)3.4014 (17)161 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
Bis(dipropylammonium) tetrachloridodimethylstannate(IV) (II) top
Crystal data top
(C6H16N)2[Sn(CH3)2Cl4]F(000) = 1016
Mr = 494.95Dx = 1.347 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9199 (3) ÅCell parameters from 7502 reflections
b = 13.1459 (3) Åθ = 1.9–28.7°
c = 17.8167 (5) ŵ = 1.48 mm1
β = 107.328 (3)°T = 120 K
V = 2441.54 (12) Å3Block, colourless
Z = 40.25 × 0.15 × 0.10 mm
Data collection top
AFC11 (Right): Eulerian 3 circle CCD
diffractometer
3764 reflections with I > 2σ(I)
Radiation source: Rotating Anode MicroMax-007HF DW 1.2 kWRint = 0.040
Profile data from ω–scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
h = 1213
Tmin = 0.849, Tmax = 1.000k = 1515
15263 measured reflectionsl = 2121
4469 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.1521P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4469 reflectionsΔρmax = 0.76 e Å3
208 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure of (I) was refined with program Jana2006 (Petříček et al., 2014), the structure (II) was refined using SHELXL2018/3 (Sheldrick, 2015b), and the refinement parameters are summarized in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.52874 (2)0.06248 (2)0.80343 (2)0.02455 (8)
Cl10.74733 (7)0.14311 (6)0.81057 (6)0.0379 (2)
Cl20.30570 (7)0.01909 (6)0.78896 (6)0.0374 (2)
Cl30.62060 (7)0.12127 (6)0.80438 (5)0.03311 (19)
Cl40.43741 (7)0.24724 (6)0.80492 (5)0.03046 (18)
C10.5721 (4)0.0596 (3)0.9266 (2)0.0432 (9)
H1A0.6136220.0051130.9467520.065*
H1B0.4928600.0666290.9412500.065*
H1C0.6301870.1159100.9492890.065*
C20.4774 (3)0.0677 (2)0.67949 (19)0.0344 (8)
H2A0.4741610.0016080.6587080.052*
H2B0.5412590.1074010.6633670.052*
H2C0.3929750.0997030.6588520.052*
N10.6384 (2)0.3863 (2)0.75907 (16)0.0261 (6)
H1N10.698 (3)0.377 (3)0.745 (2)0.031*
H1N20.615 (3)0.327 (3)0.7726 (19)0.031*
C30.8191 (4)0.4699 (4)0.9683 (2)0.0625 (12)
H3A0.8815800.4341951.0112990.094*
H3B0.7441700.4884520.9848870.094*
H3C0.8584460.5315770.9549040.094*
C40.7773 (3)0.4004 (3)0.8964 (2)0.0418 (9)
H4A0.8521590.3849670.8778490.050*
H4B0.7448930.3354640.9113050.050*
C50.6739 (3)0.4497 (2)0.8310 (2)0.0330 (8)
H5A0.5971030.4609280.8485830.040*
H5B0.7043760.5167910.8187850.040*
C60.5339 (3)0.4304 (2)0.69333 (19)0.0299 (7)
H6A0.5596630.4988930.6805530.036*
H6B0.4555650.4379210.7100040.036*
C70.5046 (3)0.3643 (3)0.6212 (2)0.0408 (9)
H7A0.4809180.2952790.6342390.049*
H7B0.5821660.3582870.6036000.049*
C80.3962 (4)0.4079 (4)0.5554 (2)0.0560 (11)
H8A0.3799070.3637770.5090630.084*
H8B0.4196960.4760360.5421210.084*
H8C0.3186720.4120920.5721380.084*
N20.1338 (3)0.2421 (2)0.74957 (17)0.0293 (6)
H2N10.214 (3)0.248 (3)0.759 (2)0.035*
H2N20.101 (3)0.301 (3)0.735 (2)0.035*
C90.1422 (5)0.2318 (3)0.9650 (2)0.0621 (12)
H9A0.1798750.2776681.0092110.093*
H9B0.1828250.1647720.9761900.093*
H9C0.0499090.2252370.9573940.093*
C100.1640 (4)0.2749 (3)0.8907 (2)0.0418 (9)
H10A0.1229630.3426040.8793100.050*
H10B0.2571060.2833740.8988170.050*
C110.1083 (3)0.2047 (2)0.8220 (2)0.0321 (8)
H11A0.1461170.1360810.8347850.039*
H11B0.0145660.1989380.8125440.039*
C120.0760 (3)0.1783 (2)0.67894 (19)0.0312 (7)
H12A0.0177560.1735970.6701640.037*
H12B0.1118610.1087480.6886300.037*
C130.1005 (3)0.2205 (3)0.6060 (2)0.0401 (9)
H13A0.1939520.2221280.6133340.048*
H13B0.0676770.2911090.5970680.048*
C140.0344 (4)0.1552 (3)0.5348 (2)0.0604 (12)
H14A0.0528220.1825650.4881120.091*
H14B0.0584490.1557510.5264350.091*
H14C0.0663490.0852170.5439300.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02077 (12)0.02605 (12)0.02775 (13)0.00016 (9)0.00863 (9)0.00115 (9)
Cl10.0242 (4)0.0301 (4)0.0634 (6)0.0017 (3)0.0192 (4)0.0014 (4)
Cl20.0211 (4)0.0306 (4)0.0616 (6)0.0000 (3)0.0141 (4)0.0003 (4)
Cl30.0223 (4)0.0259 (4)0.0544 (6)0.0015 (3)0.0164 (4)0.0052 (4)
Cl40.0234 (4)0.0263 (4)0.0446 (5)0.0001 (3)0.0145 (4)0.0019 (3)
C10.040 (2)0.056 (2)0.030 (2)0.0008 (18)0.0042 (16)0.0051 (17)
C20.046 (2)0.0318 (18)0.0260 (19)0.0050 (15)0.0118 (16)0.0010 (14)
N10.0207 (13)0.0259 (14)0.0337 (17)0.0018 (12)0.0109 (12)0.0026 (12)
C30.058 (3)0.090 (3)0.037 (2)0.017 (3)0.010 (2)0.016 (2)
C40.0353 (19)0.055 (2)0.034 (2)0.0045 (18)0.0080 (17)0.0044 (18)
C50.0304 (17)0.0345 (18)0.037 (2)0.0072 (15)0.0136 (15)0.0085 (15)
C60.0218 (15)0.0301 (17)0.037 (2)0.0016 (14)0.0072 (14)0.0040 (15)
C70.0311 (18)0.050 (2)0.041 (2)0.0024 (17)0.0099 (17)0.0028 (17)
C80.038 (2)0.093 (3)0.034 (2)0.012 (2)0.0069 (18)0.002 (2)
N20.0196 (13)0.0281 (15)0.0406 (18)0.0009 (12)0.0097 (13)0.0029 (13)
C90.083 (3)0.064 (3)0.048 (3)0.001 (3)0.033 (2)0.001 (2)
C100.046 (2)0.044 (2)0.040 (2)0.0036 (18)0.0206 (18)0.0020 (17)
C110.0268 (16)0.0306 (17)0.043 (2)0.0013 (14)0.0175 (15)0.0086 (15)
C120.0244 (15)0.0280 (17)0.039 (2)0.0019 (14)0.0061 (14)0.0035 (15)
C130.0390 (19)0.041 (2)0.040 (2)0.0033 (17)0.0112 (17)0.0012 (16)
C140.069 (3)0.067 (3)0.041 (3)0.002 (2)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
Sn1—C12.104 (3)C4—C51.506 (5)
Sn1—C22.111 (3)C6—C71.505 (5)
Sn1—Cl12.5799 (8)C7—C81.509 (5)
Sn1—Cl22.6028 (8)N2—C111.482 (4)
Sn1—Cl32.6136 (8)N2—C121.487 (4)
Sn1—Cl42.6288 (8)C9—C101.522 (5)
N1—C51.480 (4)C10—C111.509 (5)
N1—C61.488 (4)C12—C131.508 (5)
C3—C41.528 (5)C13—C141.525 (5)
C1—Sn1—C2177.59 (13)Cl2—Sn1—Cl492.01 (2)
C1—Sn1—Cl192.19 (11)Cl3—Sn1—Cl4179.09 (3)
C2—Sn1—Cl189.53 (10)C5—N1—C6113.8 (3)
C1—Sn1—Cl290.53 (11)C5—C4—C3111.1 (3)
C2—Sn1—Cl287.75 (10)N1—C5—C4111.8 (3)
Cl1—Sn1—Cl2177.27 (3)N1—C6—C7111.4 (3)
C1—Sn1—Cl390.56 (11)C6—C7—C8111.3 (3)
C2—Sn1—Cl391.07 (9)C11—N2—C12114.0 (3)
Cl1—Sn1—Cl391.82 (2)C11—C10—C9110.4 (3)
Cl2—Sn1—Cl388.05 (2)N2—C11—C10111.7 (3)
C1—Sn1—Cl488.53 (11)N2—C12—C13112.4 (3)
C2—Sn1—Cl489.84 (9)C12—C13—C14110.4 (3)
Cl1—Sn1—Cl488.17 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl3i0.77 (3)2.40 (3)3.160 (3)170 (3)
N1—H1N2···Cl10.87 (3)2.80 (3)3.439 (3)132 (3)
N1—H1N2···Cl40.87 (3)2.42 (3)3.145 (3)141 (3)
N2—H2N1···Cl40.84 (3)2.33 (4)3.166 (3)170 (3)
N2—H2N2···Cl2ii0.86 (4)2.66 (3)3.321 (3)135 (3)
N2—H2N2···Cl3ii0.86 (4)2.53 (4)3.205 (3)136 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds