Download citation
Download citation
link to html
The crystal structures of 2-methyl-4-phenyl-1H-imidazole, C10H10N2, (3a), 4-(4-chloro­phen­yl)-2-methyl-1H-imidazole hemihydrate, C10H9ClN2·0.5H2O, (3b), and 4-(4-meth­oxy­phen­yl)-2-methyl-1H-imidazole, C11H12N2O, (3c), have been analyzed. It was found that the electron-donating/withdrawing tendency of the substituent groups in the aryl ring influence the acid–base properties of the 2-methyl­imidazole nucleus, changing the strength of the inter­molecular N—H...N inter­actions. This behaviour not only influences the crystal structure but also seems to have an important effect on the anti­fungal activity. Considering the substituent groups, that is, H in (3a), Cl in (3b) and OMe in (3c), the formation of strong N—H...N connections has the probability (3a) > (3b) > (3c), while compound (3c) proves to be more active than (3a) and (3b) at all concentrations against C. neoformans.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618014109/cu3134sup1.cif
Contains datablocks 3a, 3b, 3c, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014109/cu31343asup2.hkl
Contains datablock 3a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014109/cu31343bsup3.hkl
Contains datablock 3b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014109/cu31343csup4.hkl
Contains datablock 3c

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618014109/cu3134sup5.pdf
2D fingerprint plots for (3a)-(3c)

CCDC references: 1817751; 1817749; 1817748

Computing details top

For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007). Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) for (3a); SHELXL2018/3 (Sheldrick, 2015) for (3b), (3c). For all structures, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2015).

2-Methyl-4-phenyl-1H-imidazole (3a) top
Crystal data top
C10H10N2Dx = 1.182 Mg m3
Mr = 158.20Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 2749 reflections
a = 29.196 (4) Åθ = 3.7–23.4°
c = 5.4212 (10) ŵ = 0.07 mm1
V = 4002.0 (15) Å3T = 298 K
Z = 18Parallelepiped, colorless
F(000) = 15120.22 × 0.12 × 0.09 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1684 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1204 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.080
ω scansθmax = 25.7°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 3535
Tmin = 0.472, Tmax = 1.000k = 3535
26163 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0813P)2 + 4.7247P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1684 reflectionsΔρmax = 0.19 e Å3
111 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL-2016/6 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.0037 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37637 (8)0.52807 (8)0.2334 (4)0.0611 (6)
H10.3428510.5063920.2287550.073*
C20.41220 (9)0.52466 (9)0.3885 (5)0.0574 (7)
C30.39702 (9)0.48283 (9)0.5727 (4)0.0575 (7)
C40.43513 (12)0.48439 (12)0.7313 (5)0.0791 (9)
H40.4699970.5115510.7159870.095*
C50.42230 (14)0.44658 (14)0.9105 (6)0.0885 (10)
H50.4484880.4482901.0141610.106*
C60.37103 (13)0.40632 (12)0.9372 (5)0.0765 (8)
H60.3623010.3811061.0603360.092*
C70.33288 (11)0.40354 (11)0.7814 (5)0.0722 (8)
H70.2981980.3760280.7975800.087*
C80.34546 (10)0.44133 (10)0.5999 (5)0.0655 (7)
H80.3191430.4389250.4949900.079*
C90.45979 (11)0.56739 (11)0.3292 (6)0.0737 (8)
H90.4916840.5757920.4042890.088*
N100.45442 (9)0.59640 (9)0.1440 (5)0.0783 (8)
C110.40323 (11)0.57134 (10)0.0910 (5)0.0682 (8)
C120.37762 (15)0.58749 (14)0.0996 (6)0.0941 (10)
H12A0.3899550.5846860.2599610.141*
H12B0.3863830.6234220.0709740.141*
H12C0.3399570.5648200.0912090.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0510 (11)0.0565 (12)0.0709 (13)0.0232 (10)0.0003 (9)0.0030 (10)
C20.0476 (13)0.0526 (14)0.0672 (15)0.0216 (11)0.0030 (11)0.0045 (11)
C30.0535 (14)0.0554 (14)0.0642 (15)0.0276 (11)0.0038 (11)0.0075 (11)
C40.0623 (17)0.0773 (19)0.085 (2)0.0257 (14)0.0156 (14)0.0012 (15)
C50.089 (2)0.092 (2)0.085 (2)0.0459 (19)0.0218 (17)0.0047 (17)
C60.092 (2)0.0789 (19)0.0671 (17)0.0494 (18)0.0034 (15)0.0054 (14)
C70.0682 (17)0.0661 (16)0.0813 (19)0.0328 (14)0.0111 (14)0.0094 (14)
C80.0531 (14)0.0641 (16)0.0771 (17)0.0276 (12)0.0010 (12)0.0051 (13)
C90.0555 (16)0.0634 (16)0.088 (2)0.0192 (13)0.0063 (13)0.0008 (14)
N100.0671 (15)0.0582 (14)0.0940 (18)0.0196 (11)0.0074 (12)0.0077 (12)
C110.0723 (18)0.0572 (15)0.0709 (17)0.0292 (14)0.0063 (13)0.0052 (12)
C120.108 (3)0.091 (2)0.087 (2)0.053 (2)0.0015 (18)0.0208 (17)
Geometric parameters (Å, º) top
N1—C111.348 (3)C6—H60.9300
N1—C21.384 (3)C7—C81.384 (4)
N1—H10.8600C7—H70.9300
C2—C91.363 (4)C8—H80.9300
C2—C31.464 (3)C9—N101.372 (4)
C3—C41.389 (4)C9—H90.9300
C3—C81.390 (3)N10—C111.326 (4)
C4—C51.375 (4)C11—C121.484 (4)
C4—H40.9300C12—H12A0.9600
C5—C61.372 (4)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C6—C71.368 (4)
C11—N1—C2108.0 (2)C6—C7—H7119.7
C11—N1—H1126.0C8—C7—H7119.7
C2—N1—H1126.0C7—C8—C3120.7 (3)
C9—C2—N1104.6 (2)C7—C8—H8119.7
C9—C2—C3132.0 (2)C3—C8—H8119.7
N1—C2—C3123.4 (2)C2—C9—N10111.0 (2)
C4—C3—C8117.6 (2)C2—C9—H9124.5
C4—C3—C2119.4 (2)N10—C9—H9124.5
C8—C3—C2122.9 (2)C11—N10—C9105.2 (2)
C5—C4—C3121.3 (3)N10—C11—N1111.1 (2)
C5—C4—H4119.4N10—C11—C12125.7 (3)
C3—C4—H4119.4N1—C11—C12123.2 (3)
C6—C5—C4120.3 (3)C11—C12—H12A109.5
C6—C5—H5119.8C11—C12—H12B109.5
C4—C5—H5119.8H12A—C12—H12B109.5
C7—C6—C5119.5 (3)C11—C12—H12C109.5
C7—C6—H6120.2H12A—C12—H12C109.5
C5—C6—H6120.2H12B—C12—H12C109.5
C6—C7—C8120.5 (3)
C11—N1—C2—C90.2 (3)C6—C7—C8—C30.1 (4)
C11—N1—C2—C3179.0 (2)C4—C3—C8—C70.9 (4)
C9—C2—C3—C42.5 (4)C2—C3—C8—C7178.2 (2)
N1—C2—C3—C4175.9 (2)N1—C2—C9—N100.3 (3)
C9—C2—C3—C8178.4 (3)C3—C2—C9—N10179.0 (3)
N1—C2—C3—C83.2 (4)C2—C9—N10—C110.3 (3)
C8—C3—C4—C50.6 (4)C9—N10—C11—N10.1 (3)
C2—C3—C4—C5178.5 (3)C9—N10—C11—C12179.8 (3)
C3—C4—C5—C60.3 (5)C2—N1—C11—N100.1 (3)
C4—C5—C6—C71.1 (5)C2—N1—C11—C12179.6 (3)
C5—C6—C7—C80.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N10i0.862.042.877 (3)163
Symmetry code: (i) y1/3, x+y+1/3, z+1/3.
4-(4-Chlorophenyl)-2-methyl-1H-imidazole hemihydrate (3b) top
Crystal data top
C10H9ClN2·0.5H2OF(000) = 840
Mr = 403.30Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4027 (15) ÅCell parameters from 680 reflections
b = 18.093 (2) Åθ = 3.7–20.5°
c = 11.1496 (16) ŵ = 0.33 mm1
β = 101.573 (14)°T = 298 K
V = 2055.9 (5) Å3Parallelepiped, colorless
Z = 40.24 × 0.15 × 0.12 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4351 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2801 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.081
ω scansθmax = 26.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1313
Tmin = 0.815, Tmax = 1.000k = 2222
49415 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.080P)2 + 0.5486P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.047
4351 reflectionsΔρmax = 0.29 e Å3
241 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.0074 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46093 (11)0.56263 (5)0.12617 (9)0.1082 (4)
H10.498 (3)0.232 (3)0.818 (4)0.162*
C4A40.5247 (3)0.49453 (14)0.2303 (2)0.0637 (4)
H20.380 (3)0.2351 (18)0.852 (3)0.095*
C4A30.6419 (3)0.46119 (14)0.2234 (2)0.0637 (4)
H4A30.6865940.4746680.1623450.076*
C4A20.6929 (2)0.40728 (14)0.3082 (2)0.0551 (6)
H4A20.7724310.3850540.3038450.066*
C4A10.6271 (2)0.38585 (12)0.3997 (2)0.0480 (5)
C4A0.6814 (2)0.32980 (13)0.4909 (2)0.0509 (6)
N3A0.7904 (2)0.28834 (12)0.48222 (18)0.0603 (5)
C2A0.8126 (3)0.24518 (15)0.5798 (2)0.0643 (7)
N1A0.7237 (2)0.25668 (12)0.6499 (2)0.0659 (6)
H1A0.7200730.2342810.7171710.079*
C5A0.6398 (3)0.31058 (15)0.5949 (2)0.0626 (7)
H5A0.5685170.3301410.6228960.075*
C2A10.9228 (4)0.1912 (2)0.6116 (3)0.1055 (13)
H2A10.9773800.2047630.6884180.158*
H2A20.9738810.1915360.5488440.158*
H2A30.8878340.1425590.6179840.158*
C4A60.5086 (2)0.42070 (14)0.4028 (2)0.0621 (7)
H4A60.4624660.4072350.4626990.075*
C4A50.4576 (3)0.47468 (14)0.3193 (2)0.0637 (4)
H4A50.3784150.4973990.3234100.076*
Cl20.11724 (10)0.61973 (5)0.11934 (11)0.1117 (4)
C4B40.0263 (3)0.55076 (16)0.2065 (3)0.0722 (8)
C4B30.0220 (3)0.48107 (17)0.1592 (3)0.0725 (8)
H4B30.0650260.4710640.0793680.087*
C4B20.0465 (3)0.42563 (15)0.2304 (2)0.0631 (7)
H4B20.0505830.3787110.1972750.076*
C4B10.1095 (2)0.43915 (14)0.3512 (2)0.0546 (6)
C4B0.1779 (2)0.38037 (13)0.4293 (2)0.0531 (6)
N3B0.1972 (2)0.31050 (11)0.38539 (18)0.0576 (5)
C2B0.2614 (2)0.27267 (14)0.4811 (2)0.0598 (6)
N1B0.2831 (2)0.31480 (13)0.58251 (19)0.0632 (6)
H1B0.3230200.3011620.6542460.076*
C5B0.2309 (2)0.38277 (15)0.5517 (2)0.0625 (7)
H5B0.2312060.4229680.6037400.075*
C2B10.3059 (4)0.19475 (17)0.4799 (3)0.0908 (10)
H2B10.3946300.1935240.4677280.136*
H2B20.2501110.1685400.4146780.136*
H2B30.3017030.1717940.5566890.136*
C4B60.1051 (3)0.51097 (16)0.3957 (3)0.0705 (7)
H4B60.1480300.5217670.4752300.085*
C4B50.0379 (3)0.56640 (16)0.3237 (3)0.0782 (8)
H4B50.0361470.6140520.3546130.094*
O10.41918 (19)0.24866 (12)0.79476 (17)0.0701 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1396 (9)0.0864 (6)0.1001 (7)0.0404 (5)0.0273 (6)0.0367 (5)
C4A40.0684 (9)0.0600 (9)0.0624 (10)0.0025 (7)0.0128 (7)0.0040 (7)
C4A30.0684 (9)0.0600 (9)0.0624 (10)0.0025 (7)0.0128 (7)0.0040 (7)
C4A20.0537 (13)0.0612 (14)0.0513 (14)0.0006 (11)0.0127 (11)0.0026 (11)
C4A10.0503 (12)0.0508 (12)0.0423 (12)0.0046 (10)0.0076 (9)0.0037 (10)
C4A0.0528 (13)0.0544 (13)0.0462 (13)0.0069 (10)0.0115 (10)0.0013 (10)
N3A0.0675 (13)0.0664 (13)0.0479 (12)0.0093 (10)0.0135 (10)0.0060 (10)
C2A0.0790 (18)0.0649 (16)0.0490 (15)0.0059 (13)0.0130 (13)0.0040 (12)
N1A0.0828 (15)0.0680 (13)0.0469 (12)0.0045 (11)0.0128 (11)0.0106 (10)
C5A0.0648 (16)0.0733 (16)0.0528 (15)0.0005 (13)0.0197 (12)0.0063 (13)
C2A10.133 (3)0.107 (3)0.078 (2)0.054 (2)0.024 (2)0.0294 (19)
C4A60.0605 (15)0.0699 (16)0.0589 (15)0.0024 (12)0.0190 (12)0.0023 (13)
C4A50.0684 (9)0.0600 (9)0.0624 (10)0.0025 (7)0.0128 (7)0.0040 (7)
Cl20.1057 (7)0.0917 (7)0.1373 (9)0.0210 (5)0.0233 (6)0.0435 (6)
C4B40.0623 (16)0.0667 (17)0.090 (2)0.0011 (13)0.0203 (15)0.0152 (16)
C4B30.0760 (18)0.0781 (19)0.0618 (17)0.0032 (15)0.0095 (13)0.0093 (14)
C4B20.0711 (16)0.0629 (15)0.0540 (15)0.0004 (12)0.0096 (13)0.0001 (12)
C4B10.0471 (12)0.0637 (15)0.0538 (14)0.0020 (10)0.0117 (10)0.0046 (11)
C4B0.0478 (12)0.0641 (15)0.0486 (14)0.0031 (10)0.0125 (10)0.0101 (11)
N3B0.0596 (12)0.0611 (12)0.0498 (12)0.0023 (9)0.0057 (9)0.0073 (9)
C2B0.0553 (14)0.0665 (15)0.0549 (15)0.0049 (12)0.0044 (11)0.0023 (13)
N1B0.0560 (12)0.0871 (16)0.0447 (12)0.0032 (11)0.0062 (9)0.0017 (11)
C5B0.0560 (14)0.0786 (18)0.0520 (15)0.0043 (12)0.0090 (11)0.0133 (13)
C2B10.103 (2)0.0710 (19)0.088 (2)0.0036 (17)0.0063 (19)0.0024 (16)
C4B60.0657 (16)0.0734 (18)0.0718 (18)0.0022 (14)0.0126 (13)0.0180 (14)
C4B50.0710 (18)0.0608 (16)0.105 (2)0.0004 (14)0.0230 (17)0.0051 (16)
O10.0699 (12)0.0889 (14)0.0525 (11)0.0067 (10)0.0145 (9)0.0132 (9)
Geometric parameters (Å, º) top
Cl1—C4A41.731 (3)C4B4—C4B31.371 (4)
C4A4—C4A51.371 (4)C4B4—C4B51.372 (4)
C4A4—C4A31.377 (4)C4B3—C4B21.385 (4)
C4A3—C4A21.387 (3)C4B3—H4B30.9300
C4A3—H4A30.9300C4B2—C4B11.396 (4)
C4A2—C4A11.393 (3)C4B2—H4B20.9300
C4A2—H4A20.9300C4B1—C4B61.395 (4)
C4A1—C4A61.391 (3)C4B1—C4B1.466 (3)
C4A1—C4A1.467 (3)C4B—C5B1.366 (3)
C4A—C5A1.362 (3)C4B—N3B1.385 (3)
C4A—N3A1.378 (3)N3B—C2B1.329 (3)
N3A—C2A1.321 (3)C2B—N1B1.345 (3)
C2A—N1A1.342 (3)C2B—C2B11.485 (4)
C2A—C2A11.493 (4)N1B—C5B1.360 (3)
N1A—C5A1.369 (3)N1B—H1B0.8600
N1A—H1A0.8600C5B—H5B0.9300
C5A—H5A0.9300C2B1—H2B10.9600
C2A1—H2A10.9600C2B1—H2B20.9600
C2A1—H2A20.9600C2B1—H2B30.9600
C2A1—H2A30.9600C4B6—C4B51.383 (4)
C4A6—C4A51.379 (4)C4B6—H4B60.9300
C4A6—H4A60.9300C4B5—H4B50.9300
C4A5—H4A50.9300O1—H10.86 (3)
Cl2—C4B41.740 (3)O1—H20.86 (2)
C4A5—C4A4—C4A3120.8 (2)C4B3—C4B4—Cl2120.0 (3)
C4A5—C4A4—Cl1119.3 (2)C4B5—C4B4—Cl2119.4 (2)
C4A3—C4A4—Cl1119.9 (2)C4B4—C4B3—C4B2119.9 (3)
C4A4—C4A3—C4A2119.4 (2)C4B4—C4B3—H4B3120.1
C4A4—C4A3—H4A3120.3C4B2—C4B3—H4B3120.1
C4A2—C4A3—H4A3120.3C4B3—C4B2—C4B1120.9 (3)
C4A3—C4A2—C4A1121.2 (2)C4B3—C4B2—H4B2119.5
C4A3—C4A2—H4A2119.4C4B1—C4B2—H4B2119.5
C4A1—C4A2—H4A2119.4C4B6—C4B1—C4B2117.7 (2)
C4A6—C4A1—C4A2117.4 (2)C4B6—C4B1—C4B120.7 (2)
C4A6—C4A1—C4A121.1 (2)C4B2—C4B1—C4B121.6 (2)
C4A2—C4A1—C4A121.5 (2)C5B—C4B—N3B108.9 (2)
C5A—C4A—N3A109.1 (2)C5B—C4B—C4B1128.4 (2)
C5A—C4A—C4A1128.5 (2)N3B—C4B—C4B1122.6 (2)
N3A—C4A—C4A1122.4 (2)C2B—N3B—C4B105.7 (2)
C2A—N3A—C4A105.9 (2)N3B—C2B—N1B110.8 (2)
N3A—C2A—N1A111.2 (2)N3B—C2B—C2B1126.1 (3)
N3A—C2A—C2A1125.6 (3)N1B—C2B—C2B1123.0 (2)
N1A—C2A—C2A1123.3 (3)C2B—N1B—C5B108.0 (2)
C2A—N1A—C5A107.5 (2)C2B—N1B—H1B126.0
C2A—N1A—H1A126.2C5B—N1B—H1B126.0
C5A—N1A—H1A126.2N1B—C5B—C4B106.5 (2)
C4A—C5A—N1A106.3 (2)N1B—C5B—H5B126.7
C4A—C5A—H5A126.9C4B—C5B—H5B126.7
N1A—C5A—H5A126.9C2B—C2B1—H2B1109.5
C2A—C2A1—H2A1109.5C2B—C2B1—H2B2109.5
C2A—C2A1—H2A2109.5H2B1—C2B1—H2B2109.5
H2A1—C2A1—H2A2109.5C2B—C2B1—H2B3109.5
C2A—C2A1—H2A3109.5H2B1—C2B1—H2B3109.5
H2A1—C2A1—H2A3109.5H2B2—C2B1—H2B3109.5
H2A2—C2A1—H2A3109.5C4B5—C4B6—C4B1121.2 (3)
C4A5—C4A6—C4A1121.8 (2)C4B5—C4B6—H4B6119.4
C4A5—C4A6—H4A6119.1C4B1—C4B6—H4B6119.4
C4A1—C4A6—H4A6119.1C4B4—C4B5—C4B6119.7 (3)
C4A4—C4A5—C4A6119.4 (3)C4B4—C4B5—H4B5120.1
C4A4—C4A5—H4A5120.3C4B6—C4B5—H4B5120.1
C4A6—C4A5—H4A5120.3H1—O1—H2104 (4)
C4B3—C4B4—C4B5120.6 (3)
C4A5—C4A4—C4A3—C4A20.5 (4)C4B5—C4B4—C4B3—C4B20.6 (4)
Cl1—C4A4—C4A3—C4A2179.3 (2)Cl2—C4B4—C4B3—C4B2177.6 (2)
C4A4—C4A3—C4A2—C4A10.5 (4)C4B4—C4B3—C4B2—C4B11.3 (4)
C4A3—C4A2—C4A1—C4A60.1 (4)C4B3—C4B2—C4B1—C4B62.4 (4)
C4A3—C4A2—C4A1—C4A179.0 (2)C4B3—C4B2—C4B1—C4B177.5 (2)
C4A6—C4A1—C4A—C5A9.1 (4)C4B6—C4B1—C4B—C5B7.8 (4)
C4A2—C4A1—C4A—C5A169.7 (2)C4B2—C4B1—C4B—C5B172.0 (3)
C4A6—C4A1—C4A—N3A172.4 (2)C4B6—C4B1—C4B—N3B172.7 (2)
C4A2—C4A1—C4A—N3A8.8 (3)C4B2—C4B1—C4B—N3B7.4 (4)
C5A—C4A—N3A—C2A0.0 (3)C5B—C4B—N3B—C2B0.3 (3)
C4A1—C4A—N3A—C2A178.8 (2)C4B1—C4B—N3B—C2B179.9 (2)
C4A—N3A—C2A—N1A0.2 (3)C4B—N3B—C2B—N1B0.2 (3)
C4A—N3A—C2A—C2A1178.7 (3)C4B—N3B—C2B—C2B1179.3 (3)
N3A—C2A—N1A—C5A0.3 (3)N3B—C2B—N1B—C5B0.0 (3)
C2A1—C2A—N1A—C5A178.6 (3)C2B1—C2B—N1B—C5B179.6 (3)
N3A—C4A—C5A—N1A0.2 (3)C2B—N1B—C5B—C4B0.2 (3)
C4A1—C4A—C5A—N1A178.9 (2)N3B—C4B—C5B—N1B0.3 (3)
C2A—N1A—C5A—C4A0.3 (3)C4B1—C4B—C5B—N1B179.9 (2)
C4A2—C4A1—C4A6—C4A50.3 (4)C4B2—C4B1—C4B6—C4B51.6 (4)
C4A—C4A1—C4A6—C4A5178.5 (2)C4B—C4B1—C4B6—C4B5178.3 (2)
C4A3—C4A4—C4A5—C4A60.1 (4)C4B3—C4B4—C4B5—C4B61.4 (5)
Cl1—C4A4—C4A5—C4A6179.7 (2)Cl2—C4B4—C4B5—C4B6176.8 (2)
C4A1—C4A6—C4A5—C4A40.3 (4)C4B1—C4B6—C4B5—C4B40.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3Bi0.86 (4)2.20 (4)3.059 (3)178 (5)
N1A—H1A···N3Bi0.862.102.956 (3)173
O1—H2···N3Aii0.86 (3)1.92 (3)2.781 (3)176 (3)
N1B—H1B···O10.861.932.774 (3)166
C4A6—H4A6···Cg10.932.833.591 (2)140
C4B4—Cl2···Cg2iii1.74 (1)3.67 (1)5.375 (3)166 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
4-(4-Methoxyphenyl)-2-methyl-1H-imidazole (3c) top
Crystal data top
C11H12N2ODx = 1.090 Mg m3
Mr = 188.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P22121Cell parameters from 4715 reflections
a = 7.1530 (11) Åθ = 4.0–23.2°
b = 7.4824 (14) ŵ = 0.07 mm1
c = 21.437 (3) ÅT = 298 K
V = 1147.3 (3) Å3Parallelepiped, colorless
Z = 40.21 × 0.16 × 0.09 mm
F(000) = 400
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3018 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2034 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.071
ω scansθmax = 29.6°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.689, Tmax = 1.000k = 109
24966 measured reflectionsl = 2928
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.073P)2 + 0.3901P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.181(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.36 e Å3
3018 reflectionsΔρmin = 0.18 e Å3
129 parametersAbsolute structure: Refined as a perfect inversion twin.
0 restraintsAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4393 (4)0.2161 (4)0.15762 (12)0.0661 (8)
C20.3383 (5)0.2219 (5)0.21190 (15)0.0488 (8)
C30.1714 (6)0.1278 (5)0.21088 (17)0.0553 (9)
H30.1343950.0688230.1747390.066*
C40.0603 (5)0.1214 (5)0.26327 (17)0.0541 (9)
H40.0504080.0562940.2621730.065*
C50.1101 (4)0.2104 (5)0.31794 (15)0.0463 (7)
C60.0124 (4)0.2072 (5)0.37331 (16)0.0465 (8)
N70.0535 (4)0.2383 (4)0.43336 (13)0.0514 (7)
C80.0942 (5)0.2307 (5)0.47001 (17)0.0542 (8)
N90.2487 (4)0.1972 (5)0.43776 (15)0.0606 (9)
H10.3596470.1871920.4527710.073*
C100.1991 (5)0.1815 (6)0.37582 (19)0.0612 (10)
H100.2784330.1578720.3424540.073*
C110.0918 (6)0.2552 (6)0.53962 (19)0.0717 (12)
H11A0.0211550.1603540.5584510.108*
H11B0.2175390.2529060.5552450.108*
H11C0.0351210.3679020.5496080.108*
C120.2786 (5)0.3030 (5)0.31825 (17)0.0509 (8)
H120.3164680.3614370.3544020.061*
C130.3911 (5)0.3100 (5)0.26578 (16)0.0528 (8)
H130.5024420.3741200.2667600.063*
C140.6131 (6)0.3076 (7)0.1564 (2)0.0769 (13)
H14A0.6945180.2583030.1875670.115*
H14B0.5928980.4321460.1648450.115*
H14C0.6692930.2943230.1160190.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (16)0.0798 (19)0.0569 (14)0.0089 (16)0.0056 (13)0.0037 (13)
C20.0468 (17)0.052 (2)0.0481 (16)0.0024 (16)0.0016 (14)0.0032 (15)
C30.058 (2)0.056 (2)0.0519 (19)0.0063 (18)0.0094 (17)0.0041 (17)
C40.0450 (18)0.058 (2)0.059 (2)0.0100 (16)0.0112 (16)0.0017 (17)
C50.0395 (15)0.0476 (17)0.0519 (16)0.0003 (17)0.0084 (14)0.0051 (15)
C60.0376 (16)0.0493 (19)0.0526 (17)0.0012 (15)0.0038 (14)0.0049 (17)
N70.0399 (13)0.062 (2)0.0526 (15)0.0042 (13)0.0013 (12)0.0012 (13)
C80.0448 (17)0.055 (2)0.0623 (19)0.0001 (17)0.0045 (16)0.0053 (16)
N90.0380 (14)0.074 (2)0.069 (2)0.0021 (16)0.0067 (14)0.0079 (18)
C100.0400 (18)0.082 (3)0.062 (2)0.0032 (19)0.0088 (17)0.011 (2)
C110.065 (2)0.083 (3)0.067 (2)0.011 (2)0.016 (2)0.007 (2)
C120.0444 (18)0.056 (2)0.0525 (17)0.0060 (17)0.0068 (15)0.0003 (17)
C130.0438 (16)0.058 (2)0.0566 (18)0.0071 (18)0.0040 (16)0.0000 (16)
C140.064 (3)0.092 (3)0.074 (2)0.009 (3)0.017 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C21.370 (4)C8—C111.503 (5)
O1—C141.419 (5)N9—C101.379 (5)
C2—C131.382 (5)N9—H10.8600
C2—C31.386 (5)C10—H100.9300
C3—C41.376 (5)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.394 (5)C11—H11C0.9600
C4—H40.9300C12—C131.384 (5)
C5—C121.390 (5)C12—H120.9300
C5—C61.475 (5)C13—H130.9300
C6—C101.351 (5)C14—H14A0.9600
C6—N71.390 (4)C14—H14B0.9600
N7—C81.318 (4)C14—H14C0.9600
C8—N91.327 (5)
C2—O1—C14117.5 (3)C10—N9—H1126.2
O1—C2—C13125.5 (3)C6—C10—N9106.3 (3)
O1—C2—C3115.1 (3)C6—C10—H10126.9
C13—C2—C3119.4 (3)N9—C10—H10126.9
C4—C3—C2120.1 (3)C8—C11—H11A109.5
C4—C3—H3119.9C8—C11—H11B109.5
C2—C3—H3119.9H11A—C11—H11B109.5
C3—C4—C5121.4 (3)C8—C11—H11C109.5
C3—C4—H4119.3H11A—C11—H11C109.5
C5—C4—H4119.3H11B—C11—H11C109.5
C12—C5—C4117.6 (3)C13—C12—C5121.3 (3)
C12—C5—C6121.3 (3)C13—C12—H12119.4
C4—C5—C6121.1 (3)C5—C12—H12119.4
C10—C6—N7108.8 (3)C2—C13—C12120.1 (3)
C10—C6—C5128.4 (3)C2—C13—H13119.9
N7—C6—C5122.7 (3)C12—C13—H13119.9
C8—N7—C6105.9 (3)O1—C14—H14A109.5
N7—C8—N9111.4 (3)O1—C14—H14B109.5
N7—C8—C11125.3 (4)H14A—C14—H14B109.5
N9—C8—C11123.3 (4)O1—C14—H14C109.5
C8—N9—C10107.7 (3)H14A—C14—H14C109.5
C8—N9—H1126.2H14B—C14—H14C109.5
C14—O1—C2—C130.2 (6)C6—N7—C8—N90.1 (4)
C14—O1—C2—C3178.9 (4)C6—N7—C8—C11179.6 (4)
O1—C2—C3—C4178.7 (3)N7—C8—N9—C100.1 (5)
C13—C2—C3—C40.5 (6)C11—C8—N9—C10179.6 (4)
C2—C3—C4—C51.0 (6)N7—C6—C10—N90.1 (5)
C3—C4—C5—C121.4 (5)C5—C6—C10—N9177.8 (3)
C3—C4—C5—C6178.2 (3)C8—N9—C10—C60.2 (5)
C12—C5—C6—C10154.7 (4)C4—C5—C12—C131.4 (5)
C4—C5—C6—C1024.9 (6)C6—C5—C12—C13178.2 (3)
C12—C5—C6—N722.9 (5)O1—C2—C13—C12178.6 (3)
C4—C5—C6—N7157.5 (4)C3—C2—C13—C120.4 (6)
C10—C6—N7—C80.1 (5)C5—C12—C13—C20.9 (6)
C5—C6—N7—C8178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.962.723.553 (5)146
C11—H11A···Cg1ii0.962.883.605 (5)133
C4—H4···Cg2iii0.932.903.706 (4)146
C14—H14B···Cg2iv0.962.913.679 (5)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
CE-B3LYP interaction energies (kJ mol-1) for (3a) top
N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density calculated using B3LYP/6-31G(d,p) model energies.
NSymopREeleEpolEdisErepEtot
2x, y, z5.42-2.6-1.9-30.812.9-23.1
1-x, -y, -z6.09-3.9-0.7-13.74.2-13.9
1x-y+2/3, x+1/3, -z+1/36.71-57.8-16.0-20.363.6-51.4
1y+2/3, -x+y+1/3, -z+1/36.71-57.8-16.0-20.363.6-51.4
1-y+2/3, x-y+1/3, z+1/37.79-3.5-0.5-12.57.5-10.2
1-x+y+1/3, -x+2/3, z+2/37.79-3.5-0.5-12.57.5-10.2
Scale factors used to determine Etot: Eele = 1.057; Epol = 0.740; Edis = 0.871; Erep = 0.618
CE-B3LYP interaction energies (kJ mol-1) for (3b) top
N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density calculated using B3LYP/6-31G(d,p) model energies. Molecule B (reference).
NSymopREeleEpolEdisErepEtot
1Molecule A, C4B4—Cl2···Cg28.75-0.9-0.7-8.84.2-6.6
2x+1/2, -y+1/2, z+1/29.65-3.4-0.7-6.82.4-8.5
1-x, -y, -z5.03-14.3-2.2-28.916.4-31.8
1Water, O1—H1···N3B6.56-14.3-2.2-28.916.4-31.8
1Molecule A4.82-13.8-2.4-30.618.6-31.6
1Molecule A, N1A—H1A···N3B7.83-47.0-12.7-17.847.6-45.2
1Molecule A, C4A6—H4A6···Cg15.561.3-2.4-28.818.6-14.0
2-x+1/2, y+1/2, -z+1/29.90-4.4-0.5-5.65.7-6.5
Scale factors used to determine Etot: Eele = 1.057; Epol = 0.740; Edis = 0.871; Erep = 0.618
CE-B3LYP interaction energies (kJ mol-1) for (3c) top
N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density calculated using B3LYP/6-31G(d,p) model energies.
NSymopREeleEpolEdisErepEtot
1x, -y, -z8.300.7-2.1-23.711.0-14.7
2-x, -y+1/2, z+1/210.89-3.4-0.9-8.25.9-7.7
2x, y, z7.15-9.4-1.4-12.75.5-18.7
2-x, y+1/2, -z+1/27.17-8.8-1.8-25.716.3-22.9
Scale factors used to determine Etot: Eele = 1.057; Epol = 0.740; Edis = 0.871; Erep = 0.618
Antifungal activity of 4-aryl-2-methyl-1H-imidazoles (3a)–(3c)a top
EntryFungi25012562.531.215.67.83.9IC50
(3a)Ca38.2±1.023. 6±1.313.7±0.78.0±1.59.6±0.03.7±0.53.1±0.1>250
(3a)Cn54.9±1.240.7±1.033.3±0.331.9±0.619.8±0.515±0.57.8±1.2250
(3b)Ca38.9±0.316.3±0.07±0.83.2±0.34.5±0.64.6±0.93±0.5>250
(3b)Cn10061.8±0.647.2±1.427.7±0.327.2±0.026.3±0.712.6±0.5125
(3c)Ca10061.2±0.252.2±0.451.2±0.850.3±0.250.1±0.014.9±0.07.8
(3c)Cn10010093.1±2.792.4±0.693.9±0.591.6±0.354.2±0.83.9
AmpBbCa1001001001001001001001.5
AmpBbCn1001001001001001001001.0
ClotrcCa1001001001001001001000.75
ClotrcCn1001001001001001001001.0
Notes: (a) Percentages of inhibition of the 1H-imidazoles (3a)–(3c) and against C. albicans ATCC 10231 (Ca) and C. neoformans ATCC 32264 (Cn). Dilutions are at the range 250–3.9 µg ml-1. IC50 value represents the concentration of each compound that inhibits 50% of fungal growth. (b) AmpB = Amphotericin B. (c) Clotr = Clotrimazole.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds