Download citation
Download citation
link to html
An efficent access to a series of N-(pyrrol-2-yl)amines, namely (E)-1-tert-butyl-5-[(4-chloro­benzyl­idene)amino]-1H-pyrrole-3-carbo­nitrile, C16H16ClN3, (7a), (E)-1-tert-butyl-5-[(2,4-di­chloro­benzyl­idene)amino]-1H-pyrrole-3-carbo­nitrile, C16H15Cl2N3, (7b), (E)-1-tert-butyl-5-[(pyridin-4-yl­methyl­ene)amino]-1H-pyrrole-3-carbo­nitrile, C15H16N4, (7c), 1-tert-butyl-5-[(4-chloro­benz­yl)amino]-1H-pyrrole-3-carbo­nitrile, C16H18ClN3, (8a), and 1-tert-butyl-5-[(2,4-di­chloro­benz­yl)amino]-1H-pyrrole-3-carbo­nitrile, C16H17Cl2N3, (8b), by a two-step synthesis sequence (solvent-free condensation and reduction) starting from 5-amino-1-tert-butyl-1H-pyrrole-3-carbo­nitrile is described. The syntheses proceed via isolated N-(pyrrol-2-yl)imines, which are also key synthetic inter­mediates of other valuable compounds. The crystal structures of the reduced compounds showed a reduction in the symmetry compared with the corresponding precursors, viz. Pbcm to P\overline{1} from compound (7a) to (8a) and P21/c to P\overline{1} from compound (7b) to (8b), probably due to a severe change in the mol­ecular conformations, resulting in the loss of planarity observed in the nonreduced compounds. In all of the crystals, the supra­molecular assembly is controlled mainly by strong (N,C)—H...N hydrogen bonds. However, in the case of (7a)–(7c), C—H...Cl inter­actions are strong enough to help in the three-dimensional architecture, as observed in Hirshfeld surface maps.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017260/cu3120sup1.cif
Contains datablocks 7a, 7b, 7c, 8a, 8b, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017260/cu31207asup2.hkl
Contains datablock 7a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017260/cu31207bsup3.hkl
Contains datablock 7b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017260/cu31207csup4.hkl
Contains datablock 7c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017260/cu31208asup5.hkl
Contains datablock 8a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017260/cu31208bsup6.hkl
Contains datablock 8b

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617017260/cu3120sup7.pdf
Additional information, NMR spectra and fingerprint plots

CCDC references: 1588691; 1588690; 1588689; 1588688; 1588687

Computing details top

For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-1-tert-butyl-5-[(4-chlorobenzylidene)amino]-1H-pyrrole-3-carbonitrile (7a) top
Crystal data top
C16H16ClN3Dx = 1.271 Mg m3
Mr = 285.77Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 8043 reflections
a = 8.8317 (14) Åθ = 4.0–28.0°
b = 24.261 (3) ŵ = 0.25 mm1
c = 6.9706 (14) ÅT = 298 K
V = 1493.6 (4) Å3Parallelepiped, yellow
Z = 40.19 × 0.14 × 0.11 mm
F(000) = 600
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1658 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1417 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.060
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.828, Tmax = 1.000k = 3030
29057 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.5084P]
where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.16 e Å3
15 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.86106 (9)0.04937 (3)0.7500000.0877 (4)
C5240.8268 (3)0.11940 (10)0.7500000.0526 (6)
C5250.9478 (3)0.15465 (10)0.7500000.0564 (6)
H5251.0463600.1411820.7500000.068*
C5260.9201 (3)0.21091 (10)0.7500000.0565 (7)
H5261.0013530.2352800.7500000.068*
C5210.7739 (3)0.23155 (9)0.7500000.0417 (5)
C5220.6541 (3)0.19449 (10)0.7500000.0507 (6)
H5220.5551390.2076160.7500000.061*
C5230.6800 (3)0.13859 (10)0.7500000.0585 (7)
H5230.5992570.1139880.7500000.070*
C520.7474 (3)0.29093 (9)0.7500000.0472 (6)
H520.8305090.3144790.7500000.057*
N510.6172 (2)0.31146 (8)0.7500000.0479 (5)
C50.5981 (3)0.36838 (9)0.7500000.0455 (5)
N10.4523 (2)0.39007 (7)0.7500000.0472 (5)
C110.3066 (3)0.35837 (9)0.7500000.0534 (6)
C120.1732 (3)0.39860 (12)0.7500000.0702 (9)
H12B0.172 (3)0.4216 (12)0.624 (4)0.105*
H12A0.083 (4)0.3774 (17)0.7500000.105*
C130.3003 (2)0.32337 (7)0.5675 (3)0.0663 (6)
H13A0.3099360.3468190.4572700.100*
H13B0.2053390.3041800.5621170.100*
H13C0.3817130.2971500.5687330.100*
C20.4636 (3)0.44565 (9)0.7500000.0536 (6)
H20.3827380.4702180.7500000.064*
C30.6145 (3)0.45988 (10)0.7500000.0519 (6)
C40.6996 (3)0.41106 (10)0.7500000.0522 (6)
H40.8046060.4082270.7500000.063*
C310.6689 (3)0.51488 (11)0.7500000.0616 (7)
N320.7127 (4)0.55906 (10)0.7500000.0859 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0744 (5)0.0333 (4)0.1552 (9)0.0047 (3)0.0000.000
C5240.0525 (12)0.0331 (11)0.0721 (15)0.0018 (9)0.0000.000
C5250.0426 (12)0.0408 (12)0.0856 (17)0.0061 (9)0.0000.000
C5260.0409 (12)0.0392 (12)0.0893 (19)0.0015 (10)0.0000.000
C5210.0446 (12)0.0345 (11)0.0462 (11)0.0005 (9)0.0000.000
C5220.0388 (11)0.0413 (13)0.0720 (16)0.0023 (9)0.0000.000
C5230.0472 (12)0.0409 (13)0.0873 (18)0.0058 (10)0.0000.000
C520.0447 (12)0.0359 (11)0.0610 (14)0.0004 (9)0.0000.000
N510.0469 (11)0.0319 (9)0.0649 (12)0.0035 (8)0.0000.000
C50.0448 (12)0.0327 (11)0.0590 (13)0.0017 (9)0.0000.000
N10.0419 (10)0.0272 (9)0.0726 (13)0.0002 (7)0.0000.000
C110.0412 (12)0.0316 (11)0.0874 (18)0.0019 (9)0.0000.000
C120.0434 (13)0.0432 (14)0.124 (3)0.0012 (11)0.0000.000
C130.0548 (10)0.0458 (10)0.0983 (16)0.0041 (7)0.0129 (10)0.0109 (10)
C20.0512 (13)0.0289 (11)0.0808 (17)0.0007 (9)0.0000.000
C30.0524 (13)0.0332 (11)0.0701 (15)0.0052 (10)0.0000.000
C40.0438 (12)0.0404 (12)0.0723 (16)0.0028 (9)0.0000.000
C310.0607 (15)0.0399 (14)0.0842 (19)0.0078 (11)0.0000.000
N320.0908 (19)0.0425 (13)0.124 (2)0.0189 (13)0.0000.000
Geometric parameters (Å, º) top
Cl4—C5241.726 (2)N1—C21.352 (3)
C524—C5251.368 (4)N1—C111.499 (3)
C524—C5231.378 (4)C11—C121.530 (4)
C525—C5261.387 (3)C11—C131.530 (2)
C525—H5250.9300C11—C13i1.530 (2)
C526—C5211.384 (3)C12—H12B1.04 (3)
C526—H5260.9300C12—H12A0.95 (4)
C521—C5221.389 (3)C13—H13A0.9600
C521—C521.459 (3)C13—H13B0.9600
C522—C5231.375 (3)C13—H13C0.9600
C522—H5220.9300C2—C31.377 (4)
C523—H5230.9300C2—H20.9300
C52—N511.254 (3)C3—C41.403 (3)
C52—H520.9300C3—C311.418 (3)
N51—C51.391 (3)C4—H40.9300
C5—C41.369 (3)C31—N321.140 (3)
C5—N11.391 (3)
C525—C524—C523121.6 (2)C5—N1—C11126.92 (18)
C525—C524—Cl4118.60 (19)N1—C11—C12109.50 (19)
C523—C524—Cl4119.84 (19)N1—C11—C13108.40 (13)
C524—C525—C526118.5 (2)C12—C11—C13109.04 (13)
C524—C525—H525120.7N1—C11—C13i108.40 (13)
C526—C525—H525120.7C12—C11—C13i109.04 (13)
C521—C526—C525121.4 (2)C13—C11—C13i112.4 (2)
C521—C526—H526119.3C11—C12—H12B110.5 (15)
C525—C526—H526119.3C11—C12—H12A107 (2)
C526—C521—C522118.4 (2)H12B—C12—H12A106.6 (18)
C526—C521—C52120.4 (2)C11—C13—H13A109.5
C522—C521—C52121.1 (2)C11—C13—H13B109.5
C523—C522—C521120.8 (2)H13A—C13—H13B109.5
C523—C522—H522119.6C11—C13—H13C109.5
C521—C522—H522119.6H13A—C13—H13C109.5
C522—C523—C524119.3 (2)H13B—C13—H13C109.5
C522—C523—H523120.3N1—C2—C3108.7 (2)
C524—C523—H523120.3N1—C2—H2125.6
N51—C52—C521122.7 (2)C3—C2—H2125.6
N51—C52—H52118.7C2—C3—C4107.9 (2)
C521—C52—H52118.7C2—C3—C31124.3 (2)
C52—N51—C5120.4 (2)C4—C3—C31127.8 (2)
C4—C5—N51132.2 (2)C5—C4—C3106.7 (2)
C4—C5—N1108.65 (19)C5—C4—H4126.6
N51—C5—N1119.17 (19)C3—C4—H4126.6
C2—N1—C5108.00 (18)N32—C31—C3179.9 (3)
C2—N1—C11125.08 (19)
C523—C524—C525—C5260.0C4—C5—N1—C11180.0
Cl4—C524—C525—C526180.0N51—C5—N1—C110.0
C524—C525—C526—C5210.0C2—N1—C11—C120.0
C525—C526—C521—C5220.0C5—N1—C11—C12180.0
C525—C526—C521—C52180.0C2—N1—C11—C13118.85 (13)
C526—C521—C522—C5230.0C5—N1—C11—C1361.15 (13)
C52—C521—C522—C523180.0C2—N1—C11—C13i118.85 (13)
C521—C522—C523—C5240.0C5—N1—C11—C13i61.15 (13)
C525—C524—C523—C5220.0C5—N1—C2—C30.0
Cl4—C524—C523—C522180.0C11—N1—C2—C3180.0
C526—C521—C52—N51180.0N1—C2—C3—C40.0
C522—C521—C52—N510.0N1—C2—C3—C31180.0
C521—C52—N51—C5180.0N51—C5—C4—C3180.0
C52—N51—C5—C40.0N1—C5—C4—C30.0
C52—N51—C5—N1180.0C2—C3—C4—C50.0
C4—C5—N1—C20.0C31—C3—C4—C5180.0
N51—C5—N1—C2180.0
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···N510.962.463.088 (3)123
C13—H13A···N32ii0.962.713.612 (3)157
C2—H2···Cl4iii0.932.893.815 (3)178
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z.
(E)-1-tert-Butyl-5-[(2,4-dichlorobenzylidene)amino]-1H-pyrrole-3-carbonitrile (7b) top
Crystal data top
C16H15Cl2N3F(000) = 664
Mr = 320.21Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.5428 (7) ÅCell parameters from 4572 reflections
b = 7.9586 (11) Åθ = 4.2–27.4°
c = 30.415 (5) ŵ = 0.41 mm1
β = 92.987 (13)°T = 298 K
V = 1581.6 (4) Å3Parallelepiped, yellow
Z = 40.29 × 0.15 × 0.11 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3206 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2577 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.063
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 88
Tmin = 0.425, Tmax = 1.000k = 99
16620 measured reflectionsl = 3736
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.5679P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3206 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.012 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.03393 (12)0.27165 (12)0.50311 (3)0.1005 (3)
C5240.2456 (4)0.2442 (4)0.47138 (9)0.0666 (7)
C5250.3505 (4)0.3820 (4)0.45781 (9)0.0727 (7)
H5250.3095720.4897560.4652470.087*
C5260.5187 (4)0.3577 (3)0.43283 (9)0.0665 (7)
H5260.5908370.4509330.4236620.080*
C5210.5831 (3)0.1988 (3)0.42101 (7)0.0510 (5)
C5220.4701 (3)0.0640 (3)0.43527 (7)0.0553 (5)
C5230.3015 (3)0.0851 (4)0.46058 (8)0.0654 (7)
H5230.2282850.0072130.4699520.079*
Cl20.53068 (11)0.13911 (9)0.42043 (3)0.0821 (3)
C520.7592 (3)0.1784 (3)0.39353 (7)0.0523 (5)
H520.8057000.0710260.3873080.063*
N510.8487 (3)0.3046 (2)0.37821 (6)0.0523 (5)
C51.0160 (3)0.2813 (3)0.35257 (7)0.0467 (5)
N11.0828 (2)0.4132 (2)0.32711 (6)0.0477 (4)
C21.2493 (3)0.3597 (3)0.30603 (7)0.0513 (5)
H21.3224690.4230550.2865390.062*
C31.2912 (3)0.1975 (3)0.31820 (7)0.0498 (5)
C41.1429 (3)0.1476 (3)0.34734 (7)0.0509 (5)
H41.1330510.0428660.3606060.061*
C311.4582 (3)0.0989 (3)0.30407 (8)0.0578 (6)
N321.5904 (3)0.0178 (3)0.29370 (8)0.0779 (7)
C110.9860 (3)0.5830 (3)0.32291 (8)0.0561 (6)
C121.0988 (5)0.6875 (3)0.28982 (11)0.0811 (8)
H12A1.0873220.6341410.2614860.122*
H12B1.2405660.6963180.2993720.122*
H12C1.0395240.7977140.2877680.122*
C130.7630 (4)0.5615 (4)0.30588 (10)0.0774 (8)
H13A0.7040930.6698640.2995400.116*
H13B0.6871460.5064330.3278910.116*
H13C0.7581620.4948400.2795480.116*
C141.0010 (5)0.6677 (3)0.36761 (10)0.0770 (8)
H14A1.1423400.6846050.3765790.115*
H14B0.9377330.5978600.3887560.115*
H14C0.9323500.7742870.3658030.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0738 (5)0.1201 (7)0.1128 (7)0.0060 (4)0.0553 (5)0.0066 (5)
C5240.0513 (13)0.0881 (18)0.0623 (14)0.0009 (12)0.0213 (11)0.0019 (13)
C5250.0668 (15)0.0722 (17)0.0819 (18)0.0025 (13)0.0299 (13)0.0070 (14)
C5260.0613 (14)0.0606 (15)0.0802 (17)0.0061 (11)0.0281 (12)0.0025 (12)
C5210.0451 (11)0.0582 (13)0.0507 (11)0.0051 (9)0.0117 (9)0.0024 (10)
C5220.0524 (11)0.0607 (13)0.0536 (12)0.0034 (10)0.0118 (9)0.0085 (10)
C5230.0534 (13)0.0768 (17)0.0677 (15)0.0085 (12)0.0187 (11)0.0151 (13)
Cl20.0864 (5)0.0578 (4)0.1053 (6)0.0051 (3)0.0349 (4)0.0081 (3)
C520.0496 (11)0.0518 (12)0.0569 (12)0.0021 (9)0.0157 (9)0.0002 (10)
N510.0471 (9)0.0541 (10)0.0571 (10)0.0024 (8)0.0179 (8)0.0007 (8)
C50.0422 (10)0.0493 (11)0.0496 (11)0.0045 (8)0.0111 (8)0.0002 (9)
N10.0445 (9)0.0458 (9)0.0538 (10)0.0027 (7)0.0137 (7)0.0011 (8)
C20.0450 (11)0.0567 (13)0.0539 (12)0.0049 (9)0.0167 (9)0.0001 (10)
C30.0440 (10)0.0549 (12)0.0513 (11)0.0004 (9)0.0117 (9)0.0059 (9)
C40.0517 (11)0.0479 (11)0.0543 (12)0.0020 (9)0.0134 (9)0.0005 (9)
C310.0546 (12)0.0633 (14)0.0567 (13)0.0033 (11)0.0142 (10)0.0041 (11)
N320.0713 (13)0.0855 (16)0.0790 (14)0.0203 (12)0.0255 (11)0.0075 (12)
C110.0529 (12)0.0465 (11)0.0703 (14)0.0005 (9)0.0178 (10)0.0039 (10)
C120.0856 (19)0.0593 (15)0.102 (2)0.0056 (13)0.0365 (16)0.0230 (15)
C130.0582 (14)0.0753 (17)0.099 (2)0.0083 (13)0.0018 (13)0.0176 (15)
C140.0852 (18)0.0540 (14)0.094 (2)0.0080 (13)0.0267 (15)0.0155 (13)
Geometric parameters (Å, º) top
Cl4—C5241.743 (2)C2—C31.367 (3)
C524—C5231.363 (4)C2—H20.9300
C524—C5251.369 (4)C3—C41.405 (3)
C525—C5261.383 (3)C3—C311.429 (3)
C525—H5250.9300C4—H40.9300
C526—C5211.386 (3)C31—N321.137 (3)
C526—H5260.9300C11—C141.516 (4)
C521—C5221.386 (3)C11—C121.525 (3)
C521—C521.467 (3)C11—C131.532 (3)
C522—C5231.388 (3)C12—H12A0.9600
C522—Cl21.730 (3)C12—H12B0.9600
C523—H5230.9300C12—H12C0.9600
C52—N511.263 (3)C13—H13A0.9600
C52—H520.9300C13—H13B0.9600
N51—C51.389 (3)C13—H13C0.9600
C5—C41.364 (3)C14—H14A0.9600
C5—N11.389 (3)C14—H14B0.9600
N1—C21.361 (3)C14—H14C0.9600
N1—C111.495 (3)
C523—C524—C525121.8 (2)C2—C3—C4107.56 (19)
C523—C524—Cl4118.7 (2)C2—C3—C31125.7 (2)
C525—C524—Cl4119.5 (2)C4—C3—C31126.8 (2)
C524—C525—C526118.7 (2)C5—C4—C3107.35 (19)
C524—C525—H525120.7C5—C4—H4126.3
C526—C525—H525120.7C3—C4—H4126.3
C525—C526—C521122.1 (2)N32—C31—C3178.3 (3)
C525—C526—H526118.9N1—C11—C14108.5 (2)
C521—C526—H526118.9N1—C11—C12109.38 (18)
C526—C521—C522116.8 (2)C14—C11—C12109.8 (2)
C526—C521—C52120.5 (2)N1—C11—C13108.65 (19)
C522—C521—C52122.7 (2)C14—C11—C13111.6 (2)
C521—C522—C523122.2 (2)C12—C11—C13108.8 (2)
C521—C522—Cl2120.57 (17)C11—C12—H12A109.5
C523—C522—Cl2117.24 (19)C11—C12—H12B109.5
C524—C523—C522118.5 (2)H12A—C12—H12B109.5
C524—C523—H523120.7C11—C12—H12C109.5
C522—C523—H523120.7H12A—C12—H12C109.5
N51—C52—C521121.0 (2)H12B—C12—H12C109.5
N51—C52—H52119.5C11—C13—H13A109.5
C521—C52—H52119.5C11—C13—H13B109.5
C52—N51—C5119.67 (19)H13A—C13—H13B109.5
C4—C5—N51132.22 (19)C11—C13—H13C109.5
C4—C5—N1108.26 (17)H13A—C13—H13C109.5
N51—C5—N1119.50 (18)H13B—C13—H13C109.5
C2—N1—C5108.00 (17)C11—C14—H14A109.5
C2—N1—C11126.06 (17)C11—C14—H14B109.5
C5—N1—C11125.93 (16)H14A—C14—H14B109.5
N1—C2—C3108.82 (18)C11—C14—H14C109.5
N1—C2—H2125.6H14A—C14—H14C109.5
C3—C2—H2125.6H14B—C14—H14C109.5
C523—C524—C525—C5260.6 (4)C4—C5—N1—C20.6 (2)
Cl4—C524—C525—C526179.7 (2)N51—C5—N1—C2178.83 (18)
C524—C525—C526—C5210.3 (4)C4—C5—N1—C11179.39 (19)
C525—C526—C521—C5220.3 (4)N51—C5—N1—C112.3 (3)
C525—C526—C521—C52178.5 (2)C5—N1—C2—C31.0 (2)
C526—C521—C522—C5230.7 (3)C11—N1—C2—C3179.8 (2)
C52—C521—C522—C523178.8 (2)N1—C2—C3—C41.1 (2)
C526—C521—C522—Cl2177.28 (19)N1—C2—C3—C31178.1 (2)
C52—C521—C522—Cl20.9 (3)N51—C5—C4—C3177.9 (2)
C525—C524—C523—C5220.3 (4)N1—C5—C4—C30.1 (2)
Cl4—C524—C523—C522179.93 (18)C2—C3—C4—C50.7 (2)
C521—C522—C523—C5240.4 (4)C31—C3—C4—C5178.4 (2)
Cl2—C522—C523—C524177.6 (2)C2—N1—C11—C14117.9 (2)
C526—C521—C52—N513.8 (3)C5—N1—C11—C1463.5 (3)
C522—C521—C52—N51174.3 (2)C2—N1—C11—C121.9 (3)
C521—C52—N51—C5179.55 (19)C5—N1—C11—C12176.8 (2)
C52—N51—C5—C417.9 (4)C2—N1—C11—C13120.5 (2)
C52—N51—C5—N1164.3 (2)C5—N1—C11—C1358.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···N510.962.423.034 (3)121
C14—H14B···N510.962.423.079 (3)125
C52—H52···Cl20.932.693.069 (2)105
C523—H523···Cl4i0.932.863.788 (3)174
C2—H2···N32ii0.932.643.495 (3)152
Symmetry codes: (i) x, y, z+1; (ii) x+3, y+1/2, z+1/2.
(E)-1-tert-Butyl-5-[(pyridin-4-ylmethylene)amino]-1H-pyrrole-3-carbonitrile (7c) top
Crystal data top
C15H16N4Z = 2
Mr = 252.32F(000) = 268
Triclinic, P1Dx = 1.217 Mg m3
a = 8.1494 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0629 (10) ÅCell parameters from 6196 reflections
c = 9.4859 (9) Åθ = 3.5–26.3°
α = 92.465 (8)°µ = 0.08 mm1
β = 97.113 (8)°T = 298 K
γ = 97.136 (9)°Parallelepiped, yellow
V = 688.61 (12) Å30.31 × 0.28 × 0.19 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2807 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2419 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.045
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 910
Tmin = 0.831, Tmax = 1.000k = 1111
14493 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2783P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2807 reflectionsΔρmax = 0.23 e Å3
176 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.049 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61053 (16)0.72071 (15)0.16935 (14)0.0405 (4)
C50.7818 (2)0.75187 (19)0.20946 (17)0.0415 (4)
N510.84879 (17)0.72275 (16)0.34611 (15)0.0441 (4)
C520.9862 (2)0.7983 (2)0.39940 (18)0.0441 (4)
H521.0397420.8672360.3448200.053*
C5211.0622 (2)0.77937 (19)0.54474 (17)0.0407 (4)
C5221.0027 (2)0.6685 (2)0.6283 (2)0.0539 (5)
H5220.9129910.5978610.5920670.065*
C5231.0780 (3)0.6642 (3)0.7656 (2)0.0638 (6)
H5231.0370870.5886440.8201130.077*
N5241.2068 (2)0.7622 (2)0.82561 (17)0.0614 (5)
C5251.2629 (2)0.8670 (2)0.7440 (2)0.0543 (5)
H5251.3524260.9363780.7832350.065*
C5261.1973 (2)0.8801 (2)0.60481 (19)0.0471 (4)
H5261.2428430.9552350.5520540.057*
C40.8526 (2)0.8119 (2)0.09749 (18)0.0477 (4)
H40.9655930.8413790.0947460.057*
C30.7221 (2)0.8203 (2)0.01232 (17)0.0448 (4)
C20.5754 (2)0.76432 (19)0.03553 (17)0.0430 (4)
H20.4695880.7575940.0157340.052*
C310.7340 (2)0.8783 (2)0.14841 (19)0.0518 (5)
N320.7428 (3)0.9256 (2)0.25738 (19)0.0730 (6)
C110.4845 (2)0.6527 (2)0.25875 (18)0.0449 (4)
C140.4869 (3)0.7555 (2)0.3906 (2)0.0573 (5)
H14A0.4039920.7145750.4467230.086*
H14B0.4632500.8519040.3621930.086*
H14C0.5949830.7649490.4459490.086*
C120.3125 (3)0.6369 (3)0.1725 (2)0.0740 (7)
H12A0.2306200.5954920.2294430.111*
H12B0.3104010.5720990.0893510.111*
H12C0.2877610.7330020.1443130.111*
C130.5274 (3)0.4994 (2)0.2981 (2)0.0575 (5)
H13A0.4422340.4512030.3481880.086*
H13B0.6327070.5101290.3578580.086*
H13C0.5341140.4402570.2131040.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0352 (7)0.0496 (8)0.0336 (7)0.0013 (6)0.0019 (5)0.0073 (6)
C50.0366 (9)0.0482 (9)0.0371 (8)0.0007 (7)0.0020 (6)0.0057 (7)
N510.0369 (8)0.0544 (8)0.0383 (7)0.0034 (6)0.0039 (6)0.0062 (6)
C520.0381 (9)0.0531 (10)0.0392 (9)0.0023 (7)0.0004 (7)0.0062 (7)
C5210.0319 (8)0.0492 (9)0.0401 (9)0.0069 (7)0.0012 (7)0.0028 (7)
C5220.0419 (10)0.0627 (11)0.0511 (10)0.0054 (8)0.0078 (8)0.0119 (9)
C5230.0575 (12)0.0761 (14)0.0518 (11)0.0049 (10)0.0086 (9)0.0212 (10)
N5240.0572 (10)0.0738 (11)0.0473 (9)0.0049 (8)0.0137 (7)0.0078 (8)
C5250.0475 (11)0.0562 (11)0.0525 (11)0.0008 (8)0.0121 (8)0.0027 (8)
C5260.0417 (9)0.0491 (9)0.0474 (10)0.0016 (7)0.0022 (7)0.0025 (7)
C40.0363 (9)0.0618 (11)0.0426 (9)0.0010 (7)0.0017 (7)0.0080 (8)
C30.0438 (9)0.0538 (10)0.0346 (8)0.0004 (7)0.0015 (7)0.0058 (7)
C20.0400 (9)0.0513 (9)0.0344 (8)0.0002 (7)0.0039 (7)0.0058 (7)
C310.0475 (10)0.0624 (11)0.0434 (10)0.0022 (8)0.0044 (8)0.0117 (8)
N320.0728 (13)0.0933 (14)0.0525 (10)0.0008 (10)0.0091 (9)0.0281 (10)
C110.0377 (9)0.0543 (10)0.0404 (9)0.0037 (7)0.0028 (7)0.0109 (7)
C140.0607 (12)0.0613 (12)0.0537 (11)0.0094 (9)0.0182 (9)0.0100 (9)
C120.0398 (11)0.1106 (19)0.0653 (13)0.0148 (11)0.0024 (9)0.0319 (13)
C130.0664 (13)0.0492 (10)0.0535 (11)0.0056 (9)0.0057 (9)0.0083 (8)
Geometric parameters (Å, º) top
N1—C21.353 (2)C4—C31.405 (2)
N1—C51.391 (2)C4—H40.9300
N1—C111.502 (2)C3—C21.377 (2)
C5—C41.371 (2)C3—C311.424 (2)
C5—N511.392 (2)C2—H20.9300
N51—C521.272 (2)C31—N321.143 (2)
C52—C5211.466 (2)C11—C121.520 (3)
C52—H520.9300C11—C141.524 (3)
C521—C5221.385 (3)C11—C131.525 (3)
C521—C5261.385 (2)C14—H14A0.9600
C522—C5231.373 (3)C14—H14B0.9600
C522—H5220.9300C14—H14C0.9600
C523—N5241.338 (3)C12—H12A0.9600
C523—H5230.9300C12—H12B0.9600
N524—C5251.324 (3)C12—H12C0.9600
C525—C5261.378 (3)C13—H13A0.9600
C525—H5250.9300C13—H13B0.9600
C526—H5260.9300C13—H13C0.9600
C2—N1—C5108.18 (14)C2—C3—C31124.78 (16)
C2—N1—C11125.40 (14)C4—C3—C31127.59 (17)
C5—N1—C11126.41 (13)N1—C2—C3108.83 (15)
C4—C5—N1108.36 (14)N1—C2—H2125.6
C4—C5—N51132.38 (15)C3—C2—H2125.6
N1—C5—N51119.25 (14)N32—C31—C3179.5 (2)
C52—N51—C5117.94 (15)N1—C11—C12108.79 (14)
N51—C52—C521121.62 (16)N1—C11—C14108.93 (14)
N51—C52—H52119.2C12—C11—C14109.19 (18)
C521—C52—H52119.2N1—C11—C13108.73 (15)
C522—C521—C526117.55 (16)C12—C11—C13109.60 (17)
C522—C521—C52123.47 (16)C14—C11—C13111.55 (15)
C526—C521—C52118.93 (16)C11—C14—H14A109.5
C523—C522—C521119.04 (18)C11—C14—H14B109.5
C523—C522—H522120.5H14A—C14—H14B109.5
C521—C522—H522120.5C11—C14—H14C109.5
N524—C523—C522124.00 (19)H14A—C14—H14C109.5
N524—C523—H523118.0H14B—C14—H14C109.5
C522—C523—H523118.0C11—C12—H12A109.5
C525—N524—C523116.20 (16)C11—C12—H12B109.5
N524—C525—C526124.30 (17)H12A—C12—H12B109.5
N524—C525—H525117.8C11—C12—H12C109.5
C526—C525—H525117.8H12A—C12—H12C109.5
C525—C526—C521118.88 (17)H12B—C12—H12C109.5
C525—C526—H526120.6C11—C13—H13A109.5
C521—C526—H526120.6C11—C13—H13B109.5
C5—C4—C3106.99 (15)H13A—C13—H13B109.5
C5—C4—H4126.5C11—C13—H13C109.5
C3—C4—H4126.5H13A—C13—H13C109.5
C2—C3—C4107.62 (15)H13B—C13—H13C109.5
C2—N1—C5—C41.5 (2)C52—C521—C526—C525176.50 (16)
C11—N1—C5—C4179.40 (16)N1—C5—C4—C31.1 (2)
C2—N1—C5—N51177.32 (15)N51—C5—C4—C3177.47 (18)
C11—N1—C5—N511.8 (3)C5—C4—C3—C20.3 (2)
C4—C5—N51—C5224.2 (3)C5—C4—C3—C31178.36 (18)
N1—C5—N51—C52154.26 (17)C5—N1—C2—C31.3 (2)
C5—N51—C52—C521177.45 (15)C11—N1—C2—C3179.61 (15)
N51—C52—C521—C5227.6 (3)C4—C3—C2—N10.6 (2)
N51—C52—C521—C526170.00 (17)C31—C3—C2—N1179.32 (17)
C526—C521—C522—C5230.6 (3)C2—N1—C11—C121.7 (3)
C52—C521—C522—C523177.03 (19)C5—N1—C11—C12179.35 (19)
C521—C522—C523—N5240.4 (4)C2—N1—C11—C14117.26 (18)
C522—C523—N524—C5250.8 (4)C5—N1—C11—C1461.7 (2)
C523—N524—C525—C5260.1 (3)C2—N1—C11—C13120.98 (18)
N524—C525—C526—C5210.9 (3)C5—N1—C11—C1360.0 (2)
C522—C521—C526—C5251.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···N510.962.443.079 (3)123
C13—H13B···N510.962.463.078 (2)122
C2—H2···N524i0.932.473.390 (2)172
C52—H52···N32ii0.932.653.551 (3)163
C525—H525···Cg1iii0.932.933.486 (2)120
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+2, z; (iii) x+2, y+2, z+1.
1-tert-Butyl-5-[(4-chlorobenzyl)amino]-1H-pyrrole-3-carbonitrile (8a) top
Crystal data top
C16H18ClN3F(000) = 608
Mr = 287.78Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2422 (10) ÅCell parameters from 8656 reflections
b = 9.2361 (10) Åθ = 4.1–27.1°
c = 20.623 (2) ŵ = 0.24 mm1
β = 98.521 (11)°T = 298 K
V = 1552.6 (3) Å3Parallelepiped, yellow
Z = 40.30 × 0.17 × 0.13 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
4416 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2938 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.053
ω scansθmax = 30.6°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.663, Tmax = 1.000k = 1312
36135 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.6772P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4416 reflectionsΔρmax = 0.43 e Å3
188 parametersΔρmin = 0.36 e Å3
15 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.012 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl41.15686 (10)0.31760 (11)0.50375 (5)0.1107 (4)
H510.640 (5)0.064 (4)0.644 (2)0.133*
C5240.9855 (3)0.2574 (3)0.53619 (13)0.0684 (5)
C5250.9558 (3)0.3102 (3)0.59510 (14)0.0720 (5)
H5251.0264270.3773680.6179610.086*
C5260.8191 (3)0.2623 (3)0.62024 (13)0.0674 (6)
H5260.7982780.2977280.6604050.081*
C5210.7129 (2)0.1630 (2)0.58688 (10)0.0497 (5)
C520.5601 (3)0.1174 (2)0.61352 (12)0.0565 (5)
H52A0.4645000.1525220.5846750.068*
H52B0.5598620.1610500.6562910.068*
N510.5496 (2)0.03900 (19)0.61932 (9)0.0518 (4)
C50.4117 (2)0.0863 (2)0.64573 (9)0.0448 (4)
N10.3873 (2)0.23093 (17)0.66020 (8)0.0459 (4)
C110.4908 (3)0.3581 (2)0.64722 (10)0.0501 (5)
C120.4250 (3)0.4941 (3)0.67646 (15)0.0735 (7)
H12A0.4948310.5747540.6705760.110*
H12B0.4227880.4794700.7224030.110*
H12C0.3158980.5136300.6547600.110*
C140.4828 (3)0.3756 (3)0.57346 (13)0.0715 (7)
H14A0.5184520.2876620.5551340.107*
H14B0.5528760.4538410.5645410.107*
H14C0.3719540.3962750.5541690.107*
C130.6682 (3)0.3361 (3)0.67952 (15)0.0705 (7)
H13A0.7239100.2747960.6523540.106*
H13B0.6695560.2916310.7216600.106*
H13C0.7226790.4281750.6848320.106*
C20.2414 (3)0.2406 (2)0.68459 (10)0.0519 (5)
H20.1962520.3249370.6988690.062*
C30.1740 (2)0.1057 (2)0.68435 (10)0.0498 (5)
C40.2815 (2)0.0071 (2)0.65935 (10)0.0492 (5)
H40.2661130.0920360.6534390.059*
C310.0258 (3)0.0692 (3)0.70868 (11)0.0560 (5)
N320.0910 (3)0.0381 (3)0.72869 (12)0.0760 (6)
C5220.7481 (3)0.1102 (3)0.52805 (11)0.0632 (6)
H5220.6789760.0417700.5053130.076*
C5230.8841 (3)0.1573 (3)0.50226 (13)0.0675 (5)
H5230.9065260.1213500.4623990.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0763 (5)0.1201 (7)0.1472 (8)0.0265 (5)0.0541 (5)0.0121 (6)
C5240.0576 (9)0.0735 (11)0.0769 (10)0.0129 (8)0.0194 (8)0.0049 (8)
C5250.0607 (10)0.0748 (12)0.0825 (11)0.0164 (9)0.0171 (9)0.0029 (9)
C5260.0637 (14)0.0653 (14)0.0759 (15)0.0128 (11)0.0198 (12)0.0128 (12)
C5210.0470 (10)0.0447 (10)0.0586 (11)0.0027 (8)0.0115 (8)0.0073 (8)
C520.0544 (12)0.0453 (11)0.0736 (14)0.0025 (9)0.0216 (10)0.0039 (10)
N510.0477 (9)0.0437 (9)0.0683 (11)0.0049 (7)0.0223 (8)0.0017 (8)
C50.0437 (9)0.0447 (10)0.0481 (9)0.0047 (8)0.0131 (8)0.0030 (8)
N10.0450 (8)0.0436 (8)0.0523 (9)0.0037 (7)0.0174 (7)0.0022 (7)
C110.0497 (11)0.0419 (10)0.0616 (11)0.0002 (8)0.0175 (9)0.0012 (8)
C120.0739 (16)0.0449 (12)0.108 (2)0.0025 (11)0.0345 (14)0.0033 (12)
C140.0778 (17)0.0702 (16)0.0704 (15)0.0061 (13)0.0240 (13)0.0134 (12)
C130.0583 (13)0.0546 (13)0.0962 (18)0.0027 (11)0.0032 (12)0.0106 (13)
C20.0483 (11)0.0538 (11)0.0571 (11)0.0081 (9)0.0195 (9)0.0039 (9)
C30.0430 (10)0.0560 (11)0.0525 (10)0.0034 (8)0.0138 (8)0.0054 (9)
C40.0468 (10)0.0466 (10)0.0561 (11)0.0002 (8)0.0137 (8)0.0031 (8)
C310.0468 (11)0.0601 (13)0.0636 (12)0.0040 (9)0.0164 (9)0.0062 (10)
N320.0559 (11)0.0793 (15)0.0994 (16)0.0018 (10)0.0327 (11)0.0079 (12)
C5220.0577 (13)0.0749 (15)0.0575 (12)0.0174 (11)0.0098 (10)0.0035 (11)
C5230.0596 (10)0.0761 (12)0.0699 (11)0.0108 (9)0.0193 (8)0.0036 (8)
Geometric parameters (Å, º) top
Cl4—C5241.741 (2)C11—C131.528 (3)
C524—C5251.365 (4)C12—H12A0.9600
C524—C5231.368 (4)C12—H12B0.9600
C525—C5261.380 (3)C12—H12C0.9600
C525—H5250.9300C14—H14A0.9600
C526—C5211.380 (3)C14—H14B0.9600
C526—H5260.9300C14—H14C0.9600
C521—C5221.377 (3)C13—H13A0.9600
C521—C521.507 (3)C13—H13B0.9600
C52—N511.453 (3)C13—H13C0.9600
C52—H52A0.9700C2—C31.364 (3)
C52—H52B0.9700C2—H20.9300
N51—C51.401 (2)C3—C41.420 (3)
N51—H510.87 (4)C3—C311.427 (3)
C5—C41.361 (3)C4—H40.9300
C5—N11.390 (2)C31—N321.139 (3)
N1—C21.373 (2)C522—C5231.381 (3)
N1—C111.499 (3)C522—H5220.9300
C11—C141.521 (3)C523—H5230.9300
C11—C121.528 (3)
C525—C524—C523121.3 (2)C11—C12—H12B109.5
C525—C524—Cl4119.4 (2)H12A—C12—H12B109.5
C523—C524—Cl4119.2 (2)C11—C12—H12C109.5
C524—C525—C526119.0 (2)H12A—C12—H12C109.5
C524—C525—H525120.5H12B—C12—H12C109.5
C526—C525—H525120.5C11—C14—H14A109.5
C521—C526—C525121.2 (2)C11—C14—H14B109.5
C521—C526—H526119.4H14A—C14—H14B109.5
C525—C526—H526119.4C11—C14—H14C109.5
C522—C521—C526118.3 (2)H14A—C14—H14C109.5
C522—C521—C52121.3 (2)H14B—C14—H14C109.5
C526—C521—C52120.4 (2)C11—C13—H13A109.5
N51—C52—C521111.75 (17)C11—C13—H13B109.5
N51—C52—H52A109.3H13A—C13—H13B109.5
C521—C52—H52A109.3C11—C13—H13C109.5
N51—C52—H52B109.3H13A—C13—H13C109.5
C521—C52—H52B109.3H13B—C13—H13C109.5
H52A—C52—H52B107.9C3—C2—N1108.54 (18)
C5—N51—C52113.79 (17)C3—C2—H2125.7
C5—N51—H51111 (3)N1—C2—H2125.7
C52—N51—H51105 (3)C2—C3—C4108.11 (18)
C4—C5—N1109.20 (17)C2—C3—C31125.7 (2)
C4—C5—N51128.49 (19)C4—C3—C31126.1 (2)
N1—C5—N51122.28 (17)C5—C4—C3106.49 (19)
C2—N1—C5107.64 (16)C5—C4—H4126.8
C2—N1—C11124.53 (17)C3—C4—H4126.8
C5—N1—C11127.65 (16)N32—C31—C3178.8 (3)
N1—C11—C14108.68 (18)C521—C522—C523121.1 (2)
N1—C11—C12109.21 (17)C521—C522—H522119.4
C14—C11—C12110.0 (2)C523—C522—H522119.4
N1—C11—C13110.57 (17)C524—C523—C522119.0 (2)
C14—C11—C13110.3 (2)C524—C523—H523120.5
C12—C11—C13108.1 (2)C522—C523—H523120.5
C11—C12—H12A109.5
C523—C524—C525—C5260.8 (5)C5—N1—C11—C12175.4 (2)
Cl4—C524—C525—C526179.7 (2)C2—N1—C11—C13128.8 (2)
C524—C525—C526—C5210.1 (4)C5—N1—C11—C1356.6 (3)
C525—C526—C521—C5221.1 (4)C5—N1—C2—C31.1 (2)
C525—C526—C521—C52177.0 (2)C11—N1—C2—C3174.42 (18)
C522—C521—C52—N5155.6 (3)N1—C2—C3—C40.4 (2)
C526—C521—C52—N51126.3 (2)N1—C2—C3—C31177.03 (19)
C521—C52—N51—C5178.24 (18)N1—C5—C4—C31.1 (2)
C52—N51—C5—C47.8 (3)N51—C5—C4—C3179.1 (2)
C52—N51—C5—N1174.49 (19)C2—C3—C4—C50.4 (2)
C4—C5—N1—C21.4 (2)C31—C3—C4—C5176.2 (2)
N51—C5—N1—C2179.51 (18)C526—C521—C522—C5231.2 (4)
C4—C5—N1—C11173.94 (18)C52—C521—C522—C523176.9 (2)
N51—C5—N1—C114.2 (3)C525—C524—C523—C5220.7 (4)
C2—N1—C11—C14110.0 (2)Cl4—C524—C523—C522179.8 (2)
C5—N1—C11—C1464.6 (3)C521—C522—C523—C5240.3 (4)
C2—N1—C11—C1210.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N510.962.643.109 (3)110
C14—H14A···N510.962.643.272 (3)123
N51—H51···N32i0.87 (4)2.62 (4)3.447 (3)159 (3)
C2—H2···N32ii0.932.693.598 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+3/2.
1-tert-Butyl-5-[(2,4-dichlorobenzyl)amino]-1H-pyrrole-3-carbonitrile (8b) top
Crystal data top
C16H17Cl2N3Z = 2
Mr = 322.22F(000) = 336
Triclinic, P1Dx = 1.319 Mg m3
a = 8.9700 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3244 (12) ÅCell parameters from 3822 reflections
c = 10.4645 (14) Åθ = 4.1–26.4°
α = 105.057 (12)°µ = 0.40 mm1
β = 103.589 (12)°T = 298 K
γ = 95.078 (11)°Parallelepiped, yellow
V = 811.05 (19) Å30.25 × 0.11 × 0.10 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3302 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2520 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.038
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.786, Tmax = 1.000k = 1110
10849 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4113P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl40.69422 (8)0.49248 (9)0.18116 (8)0.0732 (3)
H10.113 (4)0.109 (4)0.291 (4)0.088*
C5240.5471 (3)0.4365 (3)0.2490 (2)0.0456 (5)
C5230.4050 (3)0.4818 (2)0.2140 (2)0.0469 (5)
H5230.3872570.5425120.1559040.056*
C5220.2892 (3)0.4344 (3)0.2681 (2)0.0472 (5)
Cl20.10932 (8)0.48852 (9)0.22039 (9)0.0783 (3)
C5210.3137 (3)0.3468 (3)0.3583 (2)0.0463 (5)
C5260.4590 (3)0.3047 (3)0.3891 (2)0.0508 (6)
H5260.4781010.2446380.4477410.061*
C5250.5766 (3)0.3487 (3)0.3359 (2)0.0500 (6)
H5250.6734690.3194800.3585520.060*
C520.1907 (3)0.3006 (3)0.4227 (2)0.0561 (6)
H52A0.2390530.2695010.5020650.067*
H52B0.1406670.3861690.4538550.067*
N510.0744 (2)0.1780 (2)0.32601 (19)0.0463 (5)
C50.0481 (2)0.1339 (2)0.3766 (2)0.0401 (5)
N10.17814 (19)0.0318 (2)0.29286 (17)0.0390 (4)
C20.2757 (2)0.0127 (3)0.3715 (2)0.0418 (5)
H20.3705140.0513190.3410520.050*
C30.2108 (2)0.1035 (3)0.5026 (2)0.0425 (5)
C40.0658 (2)0.1806 (3)0.5062 (2)0.0435 (5)
H40.0037220.2496020.5820860.052*
C310.2807 (3)0.1135 (3)0.6128 (2)0.0492 (6)
N320.3377 (3)0.1186 (3)0.7001 (2)0.0722 (7)
C110.2132 (3)0.0412 (3)0.1416 (2)0.0460 (5)
C120.3764 (3)0.1323 (3)0.0908 (3)0.0606 (7)
H12A0.4014790.1761720.0069290.091*
H12B0.4498570.0674490.1127270.091*
H12C0.3806650.2106040.1345530.091*
C130.2088 (3)0.0820 (4)0.0700 (3)0.0690 (8)
H13A0.2339370.0368280.0275210.103*
H13B0.1066700.1404160.1012460.103*
H13C0.2830640.1460620.0913430.103*
C140.0968 (3)0.1470 (3)0.1142 (3)0.0679 (8)
H14A0.1214860.1976490.0176870.102*
H14B0.1016790.2198140.1638760.102*
H14C0.0060080.0901290.1439560.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0587 (4)0.0854 (5)0.0907 (6)0.0034 (3)0.0395 (4)0.0366 (4)
C5240.0406 (12)0.0457 (13)0.0485 (13)0.0019 (9)0.0163 (10)0.0093 (10)
C5230.0495 (13)0.0408 (12)0.0503 (13)0.0045 (10)0.0135 (10)0.0139 (10)
C5220.0372 (11)0.0434 (12)0.0525 (13)0.0051 (9)0.0103 (10)0.0016 (10)
Cl20.0462 (4)0.0761 (5)0.1094 (6)0.0206 (3)0.0172 (4)0.0210 (4)
C5210.0419 (12)0.0474 (13)0.0407 (12)0.0072 (10)0.0125 (9)0.0011 (10)
C5260.0469 (13)0.0535 (14)0.0499 (14)0.0034 (10)0.0083 (10)0.0193 (11)
C5250.0365 (11)0.0527 (14)0.0584 (15)0.0028 (10)0.0092 (10)0.0166 (12)
C520.0467 (13)0.0644 (16)0.0460 (13)0.0132 (11)0.0168 (11)0.0004 (12)
N510.0378 (10)0.0546 (12)0.0401 (10)0.0059 (8)0.0148 (8)0.0033 (9)
C50.0335 (10)0.0472 (12)0.0384 (11)0.0016 (9)0.0100 (8)0.0119 (9)
N10.0330 (9)0.0475 (10)0.0355 (9)0.0020 (7)0.0100 (7)0.0109 (8)
C20.0324 (10)0.0516 (13)0.0451 (12)0.0035 (9)0.0127 (9)0.0190 (10)
C30.0375 (11)0.0555 (13)0.0411 (12)0.0088 (9)0.0149 (9)0.0207 (10)
C40.0374 (11)0.0549 (13)0.0353 (11)0.0016 (9)0.0099 (9)0.0101 (10)
C310.0390 (12)0.0649 (15)0.0453 (13)0.0037 (10)0.0133 (10)0.0183 (11)
N320.0591 (14)0.1044 (19)0.0547 (13)0.0047 (13)0.0272 (11)0.0209 (13)
C110.0404 (11)0.0579 (14)0.0336 (11)0.0007 (10)0.0079 (9)0.0072 (10)
C120.0469 (14)0.0711 (17)0.0483 (14)0.0064 (12)0.0031 (11)0.0049 (13)
C130.0688 (17)0.090 (2)0.0438 (14)0.0053 (15)0.0045 (12)0.0284 (14)
C140.0534 (15)0.0785 (19)0.0581 (16)0.0107 (13)0.0166 (12)0.0055 (14)
Geometric parameters (Å, º) top
Cl4—C5241.740 (2)N1—C111.496 (3)
C524—C5251.371 (3)C2—C31.368 (3)
C524—C5231.376 (3)C2—H20.9300
C523—C5221.386 (3)C3—C41.417 (3)
C523—H5230.9300C3—C311.424 (3)
C522—C5211.393 (3)C4—H40.9300
C522—Cl21.733 (2)C31—N321.140 (3)
C521—C5261.384 (3)C11—C141.523 (4)
C521—C521.508 (3)C11—C121.526 (3)
C526—C5251.382 (3)C11—C131.527 (4)
C526—H5260.9300C12—H12A0.9600
C525—H5250.9300C12—H12B0.9600
C52—N511.453 (3)C12—H12C0.9600
C52—H52A0.9700C13—H13A0.9600
C52—H52B0.9700C13—H13B0.9600
N51—C51.401 (3)C13—H13C0.9600
N51—H10.80 (3)C14—H14A0.9600
C5—C41.363 (3)C14—H14B0.9600
C5—N11.388 (3)C14—H14C0.9600
N1—C21.364 (3)
C525—C524—C523122.0 (2)N1—C2—H2125.7
C525—C524—Cl4118.90 (18)C3—C2—H2125.7
C523—C524—Cl4119.08 (18)C2—C3—C4107.84 (19)
C524—C523—C522118.0 (2)C2—C3—C31124.3 (2)
C524—C523—H523121.0C4—C3—C31127.9 (2)
C522—C523—H523121.0C5—C4—C3106.64 (19)
C523—C522—C521122.2 (2)C5—C4—H4126.7
C523—C522—Cl2117.64 (19)C3—C4—H4126.7
C521—C522—Cl2120.13 (18)N32—C31—C3178.7 (3)
C526—C521—C522117.0 (2)N1—C11—C14108.99 (18)
C526—C521—C52120.4 (2)N1—C11—C12108.95 (18)
C522—C521—C52122.6 (2)C14—C11—C12108.9 (2)
C525—C526—C521122.3 (2)N1—C11—C13108.52 (19)
C525—C526—H526118.9C14—C11—C13112.8 (2)
C521—C526—H526118.9C12—C11—C13108.6 (2)
C524—C525—C526118.5 (2)C11—C12—H12A109.5
C524—C525—H525120.8C11—C12—H12B109.5
C526—C525—H525120.8H12A—C12—H12B109.5
N51—C52—C521111.43 (18)C11—C12—H12C109.5
N51—C52—H52A109.3H12A—C12—H12C109.5
C521—C52—H52A109.3H12B—C12—H12C109.5
N51—C52—H52B109.3C11—C13—H13A109.5
C521—C52—H52B109.3C11—C13—H13B109.5
H52A—C52—H52B108.0H13A—C13—H13B109.5
C5—N51—C52114.63 (18)C11—C13—H13C109.5
C5—N51—H1114 (2)H13A—C13—H13C109.5
C52—N51—H1112 (3)H13B—C13—H13C109.5
C4—C5—N1108.88 (18)C11—C14—H14A109.5
C4—C5—N51129.11 (19)C11—C14—H14B109.5
N1—C5—N51121.99 (18)H14A—C14—H14B109.5
C2—N1—C5108.01 (17)C11—C14—H14C109.5
C2—N1—C11124.53 (17)H14A—C14—H14C109.5
C5—N1—C11127.40 (17)H14B—C14—H14C109.5
N1—C2—C3108.60 (18)
C525—C524—C523—C5220.9 (3)C4—C5—N1—C21.2 (2)
Cl4—C524—C523—C522179.27 (17)N51—C5—N1—C2179.8 (2)
C524—C523—C522—C5211.8 (3)C4—C5—N1—C11176.0 (2)
C524—C523—C522—Cl2178.56 (17)N51—C5—N1—C112.6 (3)
C523—C522—C521—C5261.9 (3)C5—N1—C2—C31.3 (2)
Cl2—C522—C521—C526178.43 (17)C11—N1—C2—C3176.03 (19)
C523—C522—C521—C52177.1 (2)N1—C2—C3—C40.9 (3)
Cl2—C522—C521—C522.5 (3)N1—C2—C3—C31179.7 (2)
C522—C521—C526—C5251.2 (3)N1—C5—C4—C30.6 (3)
C52—C521—C526—C525177.9 (2)N51—C5—C4—C3179.1 (2)
C523—C524—C525—C5260.2 (4)C2—C3—C4—C50.2 (3)
Cl4—C524—C525—C526179.94 (18)C31—C3—C4—C5179.5 (2)
C521—C526—C525—C5240.4 (4)C2—N1—C11—C14116.1 (2)
C526—C521—C52—N51103.9 (3)C5—N1—C11—C1467.1 (3)
C522—C521—C52—N5177.2 (3)C2—N1—C11—C122.6 (3)
C521—C52—N51—C5177.0 (2)C5—N1—C11—C12174.1 (2)
C52—N51—C5—C46.5 (4)C2—N1—C11—C13120.7 (2)
C52—N51—C5—N1171.9 (2)C5—N1—C11—C1356.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···N510.962.443.096 (3)125
C14—H14C···N510.962.643.247 (3)122
C2—H2···N32i0.932.543.411 (3)155
C525—H525···Cg1ii0.932.813.630 (3)148
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z.
Optimization of the reaction conditions for the preparation of N-pyrrolyliminea top
EntrySolventT (K)TimeYield (%)b
1EtOH353c3 h70
2d3735 min46
3d37310 min73
4d37315 min64
5d37320 min56
6e37310 min49
7fEtOH37310 min38
Notes: (a) reaction conditions: (2a) (0.50 mmol) and (6) (0.50 mmol); (b) isolated yield; (c) conventional heating; (d) run in 10 ml sealed tubes at a power of 300 W in the absence of solvent; (e) conventional heating with a sand bath without solvent (fusion procedure); (f) run in 10 ml sealed tubes at a power of 300 W in anhydrous ethanol (2.0 ml).
Percentage (%) contribution of the different intermolecular interactions to the Hirshfeld surfaces. top
Contact(7a)(7b)(7c)(8a)(8b)
H···Cl/Cl···H14.123.4-15.121.5
H···N/N···H13.613.524.015.315.1
H···H43.132.245.342.234.0
C···H/H···C16.816.526.324.521.2
C···C6.45.71.81.03.2
Others6.08.72.61.95.0
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds