Download citation
Download citation
link to html
Pincer complexes can act as catalysts in organic transformations and have potential applications in materials, medicine and biology. They exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ metal–carbon bond. Nickel derivatives of these ligands have shown high catalytic activities in cross-coupling reactions and other industrially relevant transformations. This work reports the crystal structures of two polymorphs of the title NiII POCOP pincer complex, [Ni(C29H41N2O8P2)Cl] or [NiCl{C6H2-4-[OCOC6H4-3,5-(NO2)2]-2,6-(OPtBu2)2}]. Both pincer structures exhibit the NiII atom in a distorted square-planar coordination geometry with the POCOP pincer ligand coordinated in a typical tridentate manner via the two P atoms and one arene C atom via a C—Ni σ bond, giving rise to two five-membered chelate rings. The coordination sphere of the NiII centre is completed by a chloride ligand. The asymmetric units of both poly­morphs consist of one mol­ecule of the pincer complex. In the first polymorph, the arene rings are nearly coplanar, with a dihedral angle between the mean planes of 27.9 (1)°, while in the second polymorph, this angle is 82.64 (1)°, which shows that the arene rings are almost perpendicular to one another. The supra­molecular structure is directed by the presence of weak C—H...O=X (X = C or N) inter­actions, forming two- and three-dimensional chain arrangements.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616005143/cu3094sup1.cif
Contains datablocks Ia, Ib, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616005143/cu3094Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616005143/cu3094Ibsup3.hkl
Contains datablock Ib

CCDC references: 1470704; 1470703

Introduction top

\ The capacity of pincer complexes as catalysts in organic transformations such as the Suzuki–Miyaura couplings and their potential application in materials, medicine and biology has been well studied (Morales-Morales, 2008; Serrano-Becerra & Morales-Morales, 2009; van Koten et al., 2013). Pincer complexes exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ M—C bond (Morales-Morales, 2008; Selander & Szabo, 2011). In recent years, nickel derivatives of these ligands have become of wide inter­est due to their high catalytic activities in cross-coupling reactions and other potentially industrial relevant transformations, which were once exclusive to palladium or other group 10 transition metal complexes (Han, 2013).

Thus, nickel pincer complexes including PCP, POCOP and POCN pincer ligands, among others, have been synthesized (Salah & Zargarian, 2011). As expected, the phosphinite POCOP pincer complexes produced showed good thermal stability and presented several advantages in comparison with other pincer complexes, mainly their facile synthesis and the ease of tuning of both their sterics and electronics, turning them into valuable species for potential applications in different areas of chemistry.

Previously, Morales-Morales and co-workers reported the facile and high-yield synthesis of the title compound, [2,6-bis­(di-tert-butyl­phosphinoyl)-4-(3,5-di­nitro­benzoyl­oxy)phenyl-\ κ3P,C1,P']chloridonickel(II), represented as [NiCl{C6H2-4-[OCOC6H4-3,5-(NO2)2]-2,6-(OPtBu2)2}] (I), and the crystal structures of some analogous NiII pincer derivatives, i.e. [NiCl{C6H2-4-(OCOC6H5)-2,6-(OPtBu2)2}] and [NiCl{C6H2-4-(OCOC6H4-4-OCH3)-2,6-(OPtBu2)2}] (García-Eleno, et al. 2015). We report here the crystal structures of two polymorphs ofn the pincer nickel(II) complex (I).

Experimental top

Synthesis and crystallization top

The synthesis of the title compound was performed as reported previously (García-Eleno, et al. 2015). A Schlenk flask with a rubber septum was charged with one equivalent of the tBuPOCOtBuP ligand dissolved in dry toluene (20 ml) and one equivalent of NiCl2·6H2O. The resulting reaction mixture was refluxed for 12 h. After this time, the resulting mixture was allowed to cool to room temperature and was then filtered and the solvent evaporated under vacuum. The solid residue was passed through a short column of silica gel and eluted with CH2Cl2. Further elimination of the solvent under vacuum provides the title pincer complex as microcrystalline green powder. The compound was obtained in 73% yield (m.p. 532 K). Elemental analyses (experimental/calculated): C 49.64/49.71, H 5.89/5.96, N 3.99/3.94%. 1H NMR (CDCl3, 298 K, 300.52 MHz): δ 1.44 (m, 36H), 6.34 (s, 2H), 9.22 (m, 1H), 9.24 (d, 1H). 13C{1H} NMR (CDCl3, 298 K, 75.57 MHz): δ 27.78, 39.33, 98.79, 123.39, 130.37, 134.07, 149.51, 151.09, 161.03, 169.89. 31P{1H} NMR (CDCl3, 298 K, 121.65 Hz): δ 189.91. EM (FAB+; m/z): 700 [M]+ (100%), 665 [M - Cl]+ (50%). IR (KBr; nmax/cm-1): 1752, 1546, 1263.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in idealized positions and refined in riding mode, such that Uiso(H) = 1.2Ueq(parent atom). C—H distances of 0.93 and 0.96 Å were used for methine and methyl H atoms, respectively. In polymorph (Ia), the methyl groups (C15, C16 and C17) are disordered over two sites with an occupancy ratio of 0.50 (3):0.50 (3).

Results and discussion top

The crystal structure of polymorphs (Ia) and (Ib) of the title complex are shown in Fig. 1, and the principal bond lengths and angles are summarized in Tables 2 and 3. The asymmetric units of the polymorphs are formed by one molecule of the pincer complex having the NiII ion tetra­coorinated in a distorted square-planar geometry; this distortion is demonstrated by the values of the angles around the NiII atom being different from 90° in both complexes (see Tables 2 and 3). Polymorph (Ia) crystallizes in an orthorhombic (Pbca) space group, while polymorph (Ib) crystallizes in a monoclinic (Cc) space group.

The coordination around the NiII atom in both polymorphs consists of one chloride ligand and one phosphinite POCOP ligand, namely 2,6-bis­(di-tert-butyl­phosphinoyl)-4-(3,5-di­nitro­benzyl­oxy)phenyl, coordinated in a tridentate manner through one C and two P atoms, forming two five-membered rings (i.e. Ni—P—O—C—C), with C—Ni—P bite angles of 82.03 (11) and 81.92 (11)° for (Ia), and 82.49 (16) and 81.65 (16)° for (Ib). The values of the bond lengths and angles around the NiII atom are similar to those observed in other NiII POCOP pincer complexes reported previously (García-Eleno et al. 2015; Salah et al. 2015).

The conformational differences between the two polymorphs are reflected in the dihedral angles formed by the six-membered arene rings. Thus, in polymorph (Ia), the rings are nearly coplanar, with the angle between the mean planes being 27.9 (1)°, while in polymorph (Ib), the corresponding dihedral angle is 82.64 (1)°, which shows that the rings are almost perpendicular. For comparison purposes, in pincer complex [NiCl{C6H2-4-(OCOC6H5)-2,6-(OPtBu2)2}], the arene rings are perpendicular, with a dihedral angle of 89.9 (5)°.

An examination of the molecular packing in both polymorphs reveals the molecules to be connected mainly by two types of C—H···O inter­actions, where the O atoms of the carbonyl (OC) and nitro (NO2) groups act as acceptors of hydrogen bonds (Tables 4 and 5). Although the inter­actions are weak (Desiraju, 2005), they are responsible for the supra­molecular arrangement.

In polymorph (Ia), C6—H6···O6i and C11—H11···O4ii hydrogen bonds give rise to 11-membered macrocycles (Fig. 2 and Table 4), which extend parallel to the [100] direction, forming a linear arrangement. Furthermore, these linear chains are connected by C24—H24C···O8iii inter­actions, generating a layer arrangement parallel to the ab plane (Fig. 3 and Table 4). The crystal network is completed by the presence of a C13—H13···O5iv inter­action that extends the arrangement along the [010] direction (Table 4).

In polymorph (Ib), a similar 11-membered macrocycle to that in (Ia) is observed, although in this case the ring is twisted (Fig. 4). The ring is formed by C6—H6···O8vi and C11—H11···O4v inter­actions having torsion angles for C6—H6—O8—N2 and C11—H11—O4—C7 of -86.63 (1) and -136.94 (1)°, respectively. In contrast, these angles in polymorph (Ia) have values of 109.55 (1) and -118.48 (1)°, respectively. The 11-membered rings extend parallel to the [001] direction. In the same direction, an eight-membered ring is formed by C15—H15A···O7vii and C17—H17A···O8vii hydrogen bonds (Fig. 4 and Table 5); this arrangement is completed by the presence of C23—H23C···O6vi and one lp–π (lp = lone pair) inter­actions (Fig. 5). The lp–π inter­action is formed by the nitro O6 atom with the centroid (Cg) of the C1–C6 arene ring of the pincer ligand, with an O..Cg distance of 3.420 (6) Å [symmetry code: (v) x, -y+1, z+1/2]. The O···C distances are between 3.446 (6) and 3.901 (6) Å, and are larger than the sum of van der Waals radii of O and C (3.22 Å; Bondi, 1964) indicative of a weak lp–π inter­action (Mooibroek et al. 2008).

Although the complexes have aromatic rings, aromatic inter­actions, such as ππ and C—H···π inter­actions, are not determinant as a consequence of the presence of bulky and electron-withdrawing groups. The supra­molecular arrangement is formed by the weak C—H···OX (X = C, N) inter­actions.

Structure description top

\ The capacity of pincer complexes as catalysts in organic transformations such as the Suzuki–Miyaura couplings and their potential application in materials, medicine and biology has been well studied (Morales-Morales, 2008; Serrano-Becerra & Morales-Morales, 2009; van Koten et al., 2013). Pincer complexes exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ M—C bond (Morales-Morales, 2008; Selander & Szabo, 2011). In recent years, nickel derivatives of these ligands have become of wide inter­est due to their high catalytic activities in cross-coupling reactions and other potentially industrial relevant transformations, which were once exclusive to palladium or other group 10 transition metal complexes (Han, 2013).

Thus, nickel pincer complexes including PCP, POCOP and POCN pincer ligands, among others, have been synthesized (Salah & Zargarian, 2011). As expected, the phosphinite POCOP pincer complexes produced showed good thermal stability and presented several advantages in comparison with other pincer complexes, mainly their facile synthesis and the ease of tuning of both their sterics and electronics, turning them into valuable species for potential applications in different areas of chemistry.

Previously, Morales-Morales and co-workers reported the facile and high-yield synthesis of the title compound, [2,6-bis­(di-tert-butyl­phosphinoyl)-4-(3,5-di­nitro­benzoyl­oxy)phenyl-\ κ3P,C1,P']chloridonickel(II), represented as [NiCl{C6H2-4-[OCOC6H4-3,5-(NO2)2]-2,6-(OPtBu2)2}] (I), and the crystal structures of some analogous NiII pincer derivatives, i.e. [NiCl{C6H2-4-(OCOC6H5)-2,6-(OPtBu2)2}] and [NiCl{C6H2-4-(OCOC6H4-4-OCH3)-2,6-(OPtBu2)2}] (García-Eleno, et al. 2015). We report here the crystal structures of two polymorphs ofn the pincer nickel(II) complex (I).

The crystal structure of polymorphs (Ia) and (Ib) of the title complex are shown in Fig. 1, and the principal bond lengths and angles are summarized in Tables 2 and 3. The asymmetric units of the polymorphs are formed by one molecule of the pincer complex having the NiII ion tetra­coorinated in a distorted square-planar geometry; this distortion is demonstrated by the values of the angles around the NiII atom being different from 90° in both complexes (see Tables 2 and 3). Polymorph (Ia) crystallizes in an orthorhombic (Pbca) space group, while polymorph (Ib) crystallizes in a monoclinic (Cc) space group.

The coordination around the NiII atom in both polymorphs consists of one chloride ligand and one phosphinite POCOP ligand, namely 2,6-bis­(di-tert-butyl­phosphinoyl)-4-(3,5-di­nitro­benzyl­oxy)phenyl, coordinated in a tridentate manner through one C and two P atoms, forming two five-membered rings (i.e. Ni—P—O—C—C), with C—Ni—P bite angles of 82.03 (11) and 81.92 (11)° for (Ia), and 82.49 (16) and 81.65 (16)° for (Ib). The values of the bond lengths and angles around the NiII atom are similar to those observed in other NiII POCOP pincer complexes reported previously (García-Eleno et al. 2015; Salah et al. 2015).

The conformational differences between the two polymorphs are reflected in the dihedral angles formed by the six-membered arene rings. Thus, in polymorph (Ia), the rings are nearly coplanar, with the angle between the mean planes being 27.9 (1)°, while in polymorph (Ib), the corresponding dihedral angle is 82.64 (1)°, which shows that the rings are almost perpendicular. For comparison purposes, in pincer complex [NiCl{C6H2-4-(OCOC6H5)-2,6-(OPtBu2)2}], the arene rings are perpendicular, with a dihedral angle of 89.9 (5)°.

An examination of the molecular packing in both polymorphs reveals the molecules to be connected mainly by two types of C—H···O inter­actions, where the O atoms of the carbonyl (OC) and nitro (NO2) groups act as acceptors of hydrogen bonds (Tables 4 and 5). Although the inter­actions are weak (Desiraju, 2005), they are responsible for the supra­molecular arrangement.

In polymorph (Ia), C6—H6···O6i and C11—H11···O4ii hydrogen bonds give rise to 11-membered macrocycles (Fig. 2 and Table 4), which extend parallel to the [100] direction, forming a linear arrangement. Furthermore, these linear chains are connected by C24—H24C···O8iii inter­actions, generating a layer arrangement parallel to the ab plane (Fig. 3 and Table 4). The crystal network is completed by the presence of a C13—H13···O5iv inter­action that extends the arrangement along the [010] direction (Table 4).

In polymorph (Ib), a similar 11-membered macrocycle to that in (Ia) is observed, although in this case the ring is twisted (Fig. 4). The ring is formed by C6—H6···O8vi and C11—H11···O4v inter­actions having torsion angles for C6—H6—O8—N2 and C11—H11—O4—C7 of -86.63 (1) and -136.94 (1)°, respectively. In contrast, these angles in polymorph (Ia) have values of 109.55 (1) and -118.48 (1)°, respectively. The 11-membered rings extend parallel to the [001] direction. In the same direction, an eight-membered ring is formed by C15—H15A···O7vii and C17—H17A···O8vii hydrogen bonds (Fig. 4 and Table 5); this arrangement is completed by the presence of C23—H23C···O6vi and one lp–π (lp = lone pair) inter­actions (Fig. 5). The lp–π inter­action is formed by the nitro O6 atom with the centroid (Cg) of the C1–C6 arene ring of the pincer ligand, with an O..Cg distance of 3.420 (6) Å [symmetry code: (v) x, -y+1, z+1/2]. The O···C distances are between 3.446 (6) and 3.901 (6) Å, and are larger than the sum of van der Waals radii of O and C (3.22 Å; Bondi, 1964) indicative of a weak lp–π inter­action (Mooibroek et al. 2008).

Although the complexes have aromatic rings, aromatic inter­actions, such as ππ and C—H···π inter­actions, are not determinant as a consequence of the presence of bulky and electron-withdrawing groups. The supra­molecular arrangement is formed by the weak C—H···OX (X = C, N) inter­actions.

Synthesis and crystallization top

The synthesis of the title compound was performed as reported previously (García-Eleno, et al. 2015). A Schlenk flask with a rubber septum was charged with one equivalent of the tBuPOCOtBuP ligand dissolved in dry toluene (20 ml) and one equivalent of NiCl2·6H2O. The resulting reaction mixture was refluxed for 12 h. After this time, the resulting mixture was allowed to cool to room temperature and was then filtered and the solvent evaporated under vacuum. The solid residue was passed through a short column of silica gel and eluted with CH2Cl2. Further elimination of the solvent under vacuum provides the title pincer complex as microcrystalline green powder. The compound was obtained in 73% yield (m.p. 532 K). Elemental analyses (experimental/calculated): C 49.64/49.71, H 5.89/5.96, N 3.99/3.94%. 1H NMR (CDCl3, 298 K, 300.52 MHz): δ 1.44 (m, 36H), 6.34 (s, 2H), 9.22 (m, 1H), 9.24 (d, 1H). 13C{1H} NMR (CDCl3, 298 K, 75.57 MHz): δ 27.78, 39.33, 98.79, 123.39, 130.37, 134.07, 149.51, 151.09, 161.03, 169.89. 31P{1H} NMR (CDCl3, 298 K, 121.65 Hz): δ 189.91. EM (FAB+; m/z): 700 [M]+ (100%), 665 [M - Cl]+ (50%). IR (KBr; nmax/cm-1): 1752, 1546, 1263.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in idealized positions and refined in riding mode, such that Uiso(H) = 1.2Ueq(parent atom). C—H distances of 0.93 and 0.96 Å were used for methine and methyl H atoms, respectively. In polymorph (Ia), the methyl groups (C15, C16 and C17) are disordered over two sites with an occupancy ratio of 0.50 (3):0.50 (3).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (a) polymorph (Ia) and (b) polymorph (Ib), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level in both cases.
[Figure 2] Fig. 2. C—H···O hydrogen bonds (dashed lines) observed in polymorph (Ia), producing an infinite arrangement along the [100] axis.
[Figure 3] Fig. 3. The arrangement of molecules in polymorph (Ia) connected by C—H···O interactions (dashed lines) parallel to the bc plane.
[Figure 4] Fig. 4. Representation of the C—H···O hydrogen bonds (dashed lines) observed in polymorph (Ib), producing an infinite arrangement along the [001] axis.
[Figure 5] Fig. 5. Representation of the C23—H23C···O6 and lp–π interactions in polymorph (Ib).
(Ia) [2,6-Bis(di-tert-butylphosphinoyl)-4-(3,5-dinitrobenzoyloxy)phenyl-κ3P,C1,P']chloridonickel(II) top
Crystal data top
[Ni(C29H41N2O8P2)Cl]Dx = 1.393 Mg m3
Mr = 701.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9798 reflections
a = 11.7012 (7) Åθ = 2.2–23.8°
b = 16.2076 (10) ŵ = 0.80 mm1
c = 35.285 (2) ÅT = 298 K
V = 6691.8 (7) Å3Prism, yellow
Z = 80.42 × 0.14 × 0.04 mm
F(000) = 2944
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4488 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1Rint = 0.118
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1414
Tmin = 0.615, Tmax = 0.745k = 1919
70240 measured reflectionsl = 4242
6137 independent reflections
Refinement top
Refinement on F296 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.036P)2 + 6.834P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6137 reflectionsΔρmax = 0.43 e Å3
425 parametersΔρmin = 0.25 e Å3
Crystal data top
[Ni(C29H41N2O8P2)Cl]V = 6691.8 (7) Å3
Mr = 701.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.7012 (7) ŵ = 0.80 mm1
b = 16.2076 (10) ÅT = 298 K
c = 35.285 (2) Å0.42 × 0.14 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6137 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
4488 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.745Rint = 0.118
70240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05796 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
6137 reflectionsΔρmin = 0.25 e Å3
425 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.01873 (4)0.19434 (3)0.66190 (2)0.03413 (14)
Cl10.01130 (11)0.26726 (8)0.71337 (3)0.0757 (4)
P10.10883 (9)0.09795 (7)0.67181 (3)0.0402 (3)
P20.15571 (8)0.26938 (6)0.63806 (3)0.0308 (2)
O10.0991 (2)0.03546 (17)0.63486 (7)0.0534 (8)
O20.1867 (2)0.22687 (15)0.59677 (7)0.0407 (7)
O30.1366 (2)0.01363 (14)0.52428 (7)0.0430 (7)
O40.0176 (3)0.12256 (19)0.52699 (10)0.0752 (11)
O50.1557 (4)0.3847 (2)0.47691 (12)0.0925 (13)
O60.2796 (3)0.3810 (2)0.43146 (13)0.0995 (14)
O70.5485 (3)0.1536 (3)0.43505 (14)0.1194 (17)
O80.4965 (3)0.0382 (2)0.45801 (14)0.1071 (15)
N10.2267 (4)0.3504 (2)0.45749 (13)0.0655 (12)
N20.4802 (4)0.1100 (3)0.45087 (11)0.0674 (11)
C10.0142 (3)0.0599 (2)0.60955 (10)0.0380 (9)
C20.0437 (3)0.1328 (2)0.61769 (10)0.0314 (8)
C30.1263 (3)0.1544 (2)0.59077 (10)0.0330 (8)
C40.1537 (3)0.1063 (2)0.55983 (10)0.0376 (9)
H40.21090.12190.54300.045*
C50.0933 (3)0.0345 (2)0.55482 (10)0.0343 (9)
C60.0062 (3)0.0099 (2)0.57877 (10)0.0419 (10)
H60.03610.03770.57430.050*
C70.1035 (4)0.0907 (3)0.51671 (11)0.0463 (10)
C80.1911 (3)0.1345 (2)0.49328 (10)0.0388 (9)
C90.1702 (4)0.2170 (2)0.48520 (11)0.0440 (10)
H90.10220.24160.49280.053*
C100.2508 (4)0.2623 (2)0.46583 (11)0.0457 (10)
C110.3521 (4)0.2289 (3)0.45452 (11)0.0496 (11)
H110.40640.26030.44170.060*
C120.3713 (4)0.1465 (2)0.46284 (11)0.0452 (10)
C130.2934 (3)0.0993 (2)0.48199 (11)0.0431 (10)
H130.30900.04420.48730.052*
C140.2607 (3)0.1313 (3)0.66807 (11)0.0591 (11)
C150.305 (2)0.1663 (13)0.7056 (4)0.061 (4)0.49 (3)
H15A0.25230.20670.71500.073*0.49 (3)
H15B0.37830.19170.70160.073*0.49 (3)
H15C0.31270.12250.72370.073*0.49 (3)
C160.3445 (17)0.0665 (12)0.6527 (7)0.100 (5)0.49 (3)
H16A0.31600.04490.62920.121*0.49 (3)
H16B0.35210.02250.67070.121*0.49 (3)
H16C0.41770.09170.64850.121*0.49 (3)
C170.2548 (16)0.2033 (12)0.6391 (5)0.074 (4)0.49 (3)
H17A0.22710.18290.61530.089*0.49 (3)
H17B0.32970.22630.63570.089*0.49 (3)
H17C0.20400.24510.64840.089*0.49 (3)
C15A0.294 (2)0.1907 (11)0.6997 (4)0.061 (3)0.51 (3)
H15D0.28750.16310.72370.073*0.51 (3)
H15E0.24330.23740.69930.073*0.51 (3)
H15F0.37090.20890.69600.073*0.51 (3)
C16A0.3380 (16)0.0547 (8)0.6690 (7)0.084 (4)0.51 (3)
H16D0.31640.01780.64890.101*0.51 (3)
H16E0.32970.02720.69290.101*0.51 (3)
H16F0.41610.07120.66560.101*0.51 (3)
C17A0.2697 (18)0.1738 (15)0.6296 (4)0.088 (4)0.51 (3)
H17D0.24870.13570.61000.106*0.51 (3)
H17E0.34690.19200.62570.106*0.51 (3)
H17F0.21930.22050.62900.106*0.51 (3)
C180.0791 (4)0.0241 (3)0.71069 (12)0.0551 (12)
C190.0495 (5)0.0073 (3)0.70861 (17)0.0903 (18)
H19A0.09050.05790.71240.108*
H19B0.06810.01490.68420.108*
H19C0.07040.03160.72790.108*
C200.1039 (5)0.0630 (3)0.74929 (13)0.0813 (16)
H20A0.18500.06830.75260.098*
H20B0.06910.11660.75050.098*
H20C0.07320.02860.76900.098*
C210.0074 (4)0.3663 (3)0.60859 (17)0.0831 (17)
H21A0.03490.41900.60020.100*
H21B0.05450.34670.62900.100*
H21C0.01030.32770.58790.100*
C220.1157 (3)0.3748 (2)0.62233 (12)0.0437 (10)
C230.1188 (5)0.4358 (3)0.65525 (15)0.0813 (17)
H23A0.19670.44570.66250.098*
H23B0.07760.41330.67640.098*
H23C0.08410.48680.64760.098*
C240.1891 (5)0.4071 (3)0.59021 (15)0.0797 (16)
H24A0.18890.36800.56970.096*
H24B0.26600.41490.59910.096*
H24C0.15900.45880.58150.096*
C250.1418 (6)0.0588 (3)0.70707 (17)0.108 (2)
H25A0.11530.09580.72640.129*
H25B0.12680.08220.68260.129*
H25C0.22250.05010.71000.129*
C260.2971 (3)0.2628 (2)0.66108 (12)0.0444 (10)
C270.3923 (3)0.3044 (3)0.63900 (13)0.0614 (12)
H27A0.38150.36310.63950.074*
H27B0.39110.28550.61320.074*
H27C0.46460.29090.65030.074*
C280.2909 (4)0.2966 (3)0.70150 (12)0.0762 (15)
H28A0.36160.28560.71430.091*
H28B0.22940.27030.71480.091*
H28C0.27790.35500.70070.091*
C290.3234 (4)0.1695 (3)0.66280 (16)0.0775 (16)
H29A0.32580.14750.63760.093*
H29B0.26470.14200.67700.093*
H29C0.39590.16110.67490.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0350 (3)0.0382 (3)0.0292 (2)0.0048 (2)0.0066 (2)0.0084 (2)
Cl10.0852 (9)0.0859 (9)0.0559 (7)0.0311 (7)0.0324 (6)0.0395 (7)
P10.0382 (6)0.0493 (6)0.0330 (5)0.0095 (5)0.0104 (4)0.0103 (5)
P20.0344 (5)0.0279 (5)0.0300 (5)0.0005 (4)0.0027 (4)0.0031 (4)
O10.0542 (18)0.0638 (19)0.0422 (16)0.0267 (15)0.0213 (14)0.0244 (14)
O20.0516 (16)0.0341 (14)0.0365 (15)0.0142 (12)0.0174 (12)0.0086 (12)
O30.0604 (18)0.0295 (14)0.0390 (15)0.0061 (13)0.0182 (13)0.0107 (12)
O40.070 (2)0.059 (2)0.097 (3)0.0251 (18)0.037 (2)0.0392 (19)
O50.140 (4)0.044 (2)0.094 (3)0.018 (2)0.010 (3)0.008 (2)
O60.082 (3)0.078 (3)0.138 (4)0.028 (2)0.019 (2)0.069 (3)
O70.084 (3)0.118 (3)0.156 (4)0.000 (3)0.062 (3)0.054 (3)
O80.098 (3)0.059 (2)0.164 (4)0.004 (2)0.063 (3)0.006 (3)
N10.076 (3)0.044 (3)0.077 (3)0.014 (2)0.030 (2)0.021 (2)
N20.067 (3)0.071 (3)0.064 (3)0.009 (2)0.021 (2)0.002 (2)
C10.038 (2)0.042 (2)0.035 (2)0.0063 (18)0.0116 (17)0.0072 (17)
C20.031 (2)0.034 (2)0.0290 (19)0.0013 (16)0.0038 (15)0.0071 (16)
C30.039 (2)0.0275 (19)0.032 (2)0.0014 (17)0.0033 (16)0.0045 (16)
C40.043 (2)0.036 (2)0.034 (2)0.0029 (18)0.0121 (17)0.0014 (17)
C50.044 (2)0.031 (2)0.0271 (19)0.0013 (17)0.0057 (17)0.0084 (16)
C60.045 (2)0.043 (2)0.038 (2)0.0115 (19)0.0073 (18)0.0134 (18)
C70.055 (3)0.043 (2)0.041 (2)0.003 (2)0.007 (2)0.008 (2)
C80.056 (3)0.031 (2)0.029 (2)0.0016 (19)0.0024 (18)0.0070 (17)
C90.059 (3)0.034 (2)0.039 (2)0.0002 (19)0.0001 (19)0.0074 (18)
C100.064 (3)0.030 (2)0.043 (2)0.009 (2)0.012 (2)0.0099 (19)
C110.061 (3)0.046 (3)0.041 (2)0.019 (2)0.005 (2)0.010 (2)
C120.055 (3)0.044 (3)0.037 (2)0.008 (2)0.0081 (19)0.0019 (19)
C130.060 (3)0.032 (2)0.037 (2)0.000 (2)0.0054 (19)0.0031 (18)
C140.035 (2)0.090 (3)0.052 (2)0.006 (2)0.0055 (19)0.010 (2)
C150.052 (7)0.072 (8)0.058 (5)0.006 (8)0.016 (5)0.003 (5)
C160.054 (7)0.151 (8)0.096 (10)0.033 (6)0.004 (8)0.037 (8)
C170.045 (7)0.134 (8)0.044 (6)0.010 (7)0.016 (6)0.011 (6)
C15A0.059 (7)0.064 (7)0.059 (6)0.008 (7)0.015 (5)0.003 (5)
C16A0.042 (6)0.114 (6)0.096 (10)0.020 (5)0.004 (7)0.034 (6)
C17A0.061 (7)0.152 (10)0.052 (5)0.003 (8)0.026 (6)0.002 (6)
C180.065 (3)0.050 (3)0.050 (3)0.008 (2)0.010 (2)0.000 (2)
C190.084 (4)0.085 (4)0.102 (5)0.031 (3)0.011 (3)0.027 (3)
C200.109 (4)0.094 (4)0.041 (3)0.017 (3)0.007 (3)0.006 (3)
C210.066 (3)0.060 (3)0.123 (5)0.008 (3)0.030 (3)0.023 (3)
C220.046 (2)0.031 (2)0.055 (3)0.0061 (18)0.004 (2)0.0025 (19)
C230.102 (4)0.040 (3)0.102 (4)0.014 (3)0.005 (3)0.019 (3)
C240.091 (4)0.060 (3)0.088 (4)0.009 (3)0.016 (3)0.037 (3)
C250.163 (6)0.073 (4)0.087 (4)0.046 (4)0.006 (4)0.018 (3)
C260.038 (2)0.044 (2)0.052 (3)0.0007 (18)0.0064 (19)0.005 (2)
C270.040 (2)0.070 (3)0.074 (3)0.005 (2)0.005 (2)0.001 (3)
C280.063 (3)0.116 (4)0.049 (3)0.016 (3)0.019 (2)0.003 (3)
C290.063 (3)0.059 (3)0.110 (4)0.009 (2)0.024 (3)0.029 (3)
Geometric parameters (Å, º) top
Ni1—C21.875 (3)C16—H16C0.9600
Ni1—P22.1808 (10)C17—H17A0.9600
Ni1—P12.1888 (11)C17—H17B0.9600
Ni1—Cl12.1953 (11)C17—H17C0.9600
P1—O11.655 (3)C15A—H15D0.9600
P1—C181.854 (4)C15A—H15E0.9600
P1—C141.862 (4)C15A—H15F0.9600
P2—O21.652 (2)C16A—H16D0.9600
P2—C261.846 (4)C16A—H16E0.9600
P2—C221.856 (4)C16A—H16F0.9600
O1—C11.393 (4)C17A—H17D0.9600
O2—C31.387 (4)C17A—H17E0.9600
O3—C71.334 (4)C17A—H17F0.9600
O3—C51.424 (4)C18—C201.529 (6)
O4—C71.187 (5)C18—C191.531 (7)
O5—N11.212 (5)C18—C251.535 (6)
O6—N11.214 (5)C19—H19A0.9600
O7—N21.203 (5)C19—H19B0.9600
O8—N21.206 (5)C19—H19C0.9600
N1—C101.485 (5)C20—H20A0.9600
N2—C121.468 (5)C20—H20B0.9600
C1—C61.376 (5)C20—H20C0.9600
C1—C21.391 (5)C21—C221.526 (6)
C2—C31.399 (5)C21—H21A0.9600
C3—C41.380 (5)C21—H21B0.9600
C4—C51.372 (5)C21—H21C0.9600
C4—H40.9300C22—C241.516 (6)
C5—C61.383 (5)C22—C231.526 (6)
C6—H60.9300C23—H23A0.9600
C7—C81.496 (5)C23—H23B0.9600
C8—C131.385 (5)C23—H23C0.9600
C8—C91.389 (5)C24—H24A0.9600
C9—C101.376 (5)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
C10—C111.363 (6)C25—H25A0.9600
C11—C121.386 (5)C25—H25B0.9600
C11—H110.9300C25—H25C0.9600
C12—C131.369 (5)C26—C271.518 (6)
C13—H130.9300C26—C281.529 (6)
C14—C15A1.523 (7)C26—C291.544 (6)
C14—C17A1.524 (7)C27—H27A0.9600
C14—C151.531 (7)C27—H27B0.9600
C14—C161.536 (7)C27—H27C0.9600
C14—C16A1.537 (7)C28—H28A0.9600
C14—C171.552 (7)C28—H28B0.9600
C15—H15A0.9600C28—H28C0.9600
C15—H15B0.9600C29—H29A0.9600
C15—H15C0.9600C29—H29B0.9600
C16—H16A0.9600C29—H29C0.9600
C16—H16B0.9600
C2—Ni1—P282.03 (11)C14—C17—H17C109.5
C2—Ni1—P181.92 (11)H17A—C17—H17C109.5
P2—Ni1—P1163.92 (4)H17B—C17—H17C109.5
C2—Ni1—Cl1179.51 (12)C14—C15A—H15D109.5
P2—Ni1—Cl197.85 (4)C14—C15A—H15E109.5
P1—Ni1—Cl198.21 (4)H15D—C15A—H15E109.5
O1—P1—C18100.08 (18)C14—C15A—H15F109.5
O1—P1—C14100.84 (16)H15D—C15A—H15F109.5
C18—P1—C14114.8 (2)H15E—C15A—H15F109.5
O1—P1—Ni1105.30 (10)C14—C16A—H16D109.5
C18—P1—Ni1116.83 (15)C14—C16A—H16E109.5
C14—P1—Ni1115.59 (14)H16D—C16A—H16E109.5
O2—P2—C2699.63 (17)C14—C16A—H16F109.5
O2—P2—C22100.11 (16)H16D—C16A—H16F109.5
C26—P2—C22114.26 (18)H16E—C16A—H16F109.5
O2—P2—Ni1105.60 (9)C14—C17A—H17D109.5
C26—P2—Ni1117.17 (13)C14—C17A—H17E109.5
C22—P2—Ni1116.30 (13)H17D—C17A—H17E109.5
C1—O1—P1112.3 (2)C14—C17A—H17F109.5
C3—O2—P2112.1 (2)H17D—C17A—H17F109.5
C7—O3—C5124.2 (3)H17E—C17A—H17F109.5
O5—N1—O6126.1 (4)C20—C18—C19107.6 (4)
O5—N1—C10117.4 (4)C20—C18—C25110.2 (4)
O6—N1—C10116.5 (5)C19—C18—C25108.1 (5)
O7—N2—O8124.0 (5)C20—C18—P1111.0 (3)
O7—N2—C12118.3 (4)C19—C18—P1105.3 (3)
O8—N2—C12117.7 (4)C25—C18—P1114.4 (4)
C6—C1—C2125.3 (3)C18—C19—H19A109.5
C6—C1—O1117.5 (3)C18—C19—H19B109.5
C2—C1—O1117.2 (3)H19A—C19—H19B109.5
C1—C2—C3114.2 (3)C18—C19—H19C109.5
C1—C2—Ni1123.2 (3)H19A—C19—H19C109.5
C3—C2—Ni1122.6 (3)H19B—C19—H19C109.5
C4—C3—O2118.7 (3)C18—C20—H20A109.5
C4—C3—C2123.7 (3)C18—C20—H20B109.5
O2—C3—C2117.5 (3)H20A—C20—H20B109.5
C5—C4—C3117.5 (3)C18—C20—H20C109.5
C5—C4—H4121.2H20A—C20—H20C109.5
C3—C4—H4121.2H20B—C20—H20C109.5
C4—C5—C6123.0 (3)C22—C21—H21A109.5
C4—C5—O3112.3 (3)C22—C21—H21B109.5
C6—C5—O3124.5 (3)H21A—C21—H21B109.5
C1—C6—C5116.1 (3)C22—C21—H21C109.5
C1—C6—H6121.9H21A—C21—H21C109.5
C5—C6—H6121.9H21B—C21—H21C109.5
O4—C7—O3126.3 (4)C24—C22—C21109.2 (4)
O4—C7—C8122.8 (4)C24—C22—C23109.4 (4)
O3—C7—C8110.9 (3)C21—C22—C23108.8 (4)
C13—C8—C9119.4 (4)C24—C22—P2113.5 (3)
C13—C8—C7123.7 (3)C21—C22—P2104.5 (3)
C9—C8—C7116.8 (4)C23—C22—P2111.3 (3)
C10—C9—C8119.6 (4)C22—C23—H23A109.5
C10—C9—H9120.2C22—C23—H23B109.5
C8—C9—H9120.2H23A—C23—H23B109.5
C11—C10—C9122.0 (4)C22—C23—H23C109.5
C11—C10—N1119.3 (4)H23A—C23—H23C109.5
C9—C10—N1118.7 (4)H23B—C23—H23C109.5
C10—C11—C12117.4 (4)C22—C24—H24A109.5
C10—C11—H11121.3C22—C24—H24B109.5
C12—C11—H11121.3H24A—C24—H24B109.5
C13—C12—C11122.4 (4)C22—C24—H24C109.5
C13—C12—N2119.7 (4)H24A—C24—H24C109.5
C11—C12—N2117.9 (4)H24B—C24—H24C109.5
C12—C13—C8119.1 (4)C18—C25—H25A109.5
C12—C13—H13120.5C18—C25—H25B109.5
C8—C13—H13120.5H25A—C25—H25B109.5
C15A—C14—C17A110.5 (6)C18—C25—H25C109.5
C15—C14—C16110.0 (6)H25A—C25—H25C109.5
C15A—C14—C16A110.3 (6)H25B—C25—H25C109.5
C17A—C14—C16A110.0 (5)C27—C26—C28110.8 (4)
C15—C14—C17107.8 (6)C27—C26—C29108.0 (4)
C16—C14—C17108.0 (6)C28—C26—C29108.9 (4)
C15A—C14—P1111.9 (10)C27—C26—P2114.0 (3)
C17A—C14—P1105.1 (8)C28—C26—P2110.3 (3)
C15—C14—P1111.7 (10)C29—C26—P2104.6 (3)
C16—C14—P1115.8 (10)C26—C27—H27A109.5
C16A—C14—P1109.0 (8)C26—C27—H27B109.5
C17—C14—P1102.9 (7)H27A—C27—H27B109.5
C14—C15—H15A109.5C26—C27—H27C109.5
C14—C15—H15B109.5H27A—C27—H27C109.5
H15A—C15—H15B109.5H27B—C27—H27C109.5
C14—C15—H15C109.5C26—C28—H28A109.5
H15A—C15—H15C109.5C26—C28—H28B109.5
H15B—C15—H15C109.5H28A—C28—H28B109.5
C14—C16—H16A109.5C26—C28—H28C109.5
C14—C16—H16B109.5H28A—C28—H28C109.5
H16A—C16—H16B109.5H28B—C28—H28C109.5
C14—C16—H16C109.5C26—C29—H29A109.5
H16A—C16—H16C109.5C26—C29—H29B109.5
H16B—C16—H16C109.5H29A—C29—H29B109.5
C14—C17—H17A109.5C26—C29—H29C109.5
C14—C17—H17B109.5H29A—C29—H29C109.5
H17A—C17—H17B109.5H29B—C29—H29C109.5
C18—P1—O1—C1120.2 (3)O7—N2—C12—C111.3 (6)
C14—P1—O1—C1121.9 (3)O8—N2—C12—C11179.7 (5)
Ni1—P1—O1—C11.4 (3)C11—C12—C13—C80.5 (6)
C26—P2—O2—C3116.8 (3)N2—C12—C13—C8179.7 (4)
C22—P2—O2—C3126.2 (3)C9—C8—C13—C120.5 (6)
Ni1—P2—O2—C35.0 (2)C7—C8—C13—C12175.5 (4)
P1—O1—C1—C6176.4 (3)O1—P1—C14—C15A179.7 (9)
P1—O1—C1—C23.1 (4)C18—P1—C14—C15A73.2 (9)
C6—C1—C2—C31.7 (6)Ni1—P1—C14—C15A67.3 (9)
O1—C1—C2—C3178.9 (3)O1—P1—C14—C17A60.4 (10)
C6—C1—C2—Ni1175.6 (3)C18—P1—C14—C17A166.9 (10)
O1—C1—C2—Ni13.8 (5)Ni1—P1—C14—C17A52.6 (10)
P2—Ni1—C2—C1177.0 (3)O1—P1—C14—C15160.8 (9)
P1—Ni1—C2—C12.2 (3)C18—P1—C14—C1554.3 (10)
P2—Ni1—C2—C30.1 (3)Ni1—P1—C14—C1586.3 (10)
P1—Ni1—C2—C3179.3 (3)O1—P1—C14—C1633.8 (11)
P2—O2—C3—C4171.7 (3)C18—P1—C14—C1672.8 (11)
P2—O2—C3—C25.5 (4)Ni1—P1—C14—C16146.7 (11)
C1—C2—C3—C43.6 (5)O1—P1—C14—C16A57.5 (10)
Ni1—C2—C3—C4173.8 (3)C18—P1—C14—C16A49.0 (10)
C1—C2—C3—O2179.3 (3)Ni1—P1—C14—C16A170.4 (10)
Ni1—C2—C3—O23.3 (5)O1—P1—C14—C1783.8 (10)
O2—C3—C4—C5179.3 (3)C18—P1—C14—C17169.7 (10)
C2—C3—C4—C52.2 (6)Ni1—P1—C14—C1729.1 (10)
C3—C4—C5—C61.2 (6)O1—P1—C18—C20169.8 (3)
C3—C4—C5—O3174.2 (3)C14—P1—C18—C2062.8 (4)
C7—O3—C5—C4170.6 (4)Ni1—P1—C18—C2077.2 (4)
C7—O3—C5—C64.8 (6)O1—P1—C18—C1974.1 (3)
C2—C1—C6—C51.3 (6)C14—P1—C18—C19178.9 (3)
O1—C1—C6—C5178.1 (3)Ni1—P1—C18—C1938.9 (4)
C4—C5—C6—C12.9 (6)O1—P1—C18—C2544.4 (4)
O3—C5—C6—C1172.0 (3)C14—P1—C18—C2562.6 (4)
C5—O3—C7—O420.2 (7)Ni1—P1—C18—C25157.4 (3)
C5—O3—C7—C8159.1 (3)O2—P2—C22—C2438.2 (4)
O4—C7—C8—C13178.0 (4)C26—P2—C22—C2467.3 (4)
O3—C7—C8—C131.3 (5)Ni1—P2—C22—C24151.3 (3)
O4—C7—C8—C92.9 (6)O2—P2—C22—C2180.7 (3)
O3—C7—C8—C9176.4 (3)C26—P2—C22—C21173.9 (3)
C13—C8—C9—C100.6 (6)Ni1—P2—C22—C2132.5 (4)
C7—C8—C9—C10175.9 (4)O2—P2—C22—C23162.0 (3)
C8—C9—C10—C110.8 (6)C26—P2—C22—C2356.6 (4)
C8—C9—C10—N1180.0 (4)Ni1—P2—C22—C2384.8 (3)
O5—N1—C10—C11158.1 (4)O2—P2—C26—C2756.5 (3)
O6—N1—C10—C1122.5 (6)C22—P2—C26—C2749.2 (4)
O5—N1—C10—C921.1 (6)Ni1—P2—C26—C27169.7 (3)
O6—N1—C10—C9158.2 (4)O2—P2—C26—C28178.1 (3)
C9—C10—C11—C120.8 (6)C22—P2—C26—C2876.1 (3)
N1—C10—C11—C12180.0 (4)Ni1—P2—C26—C2864.9 (3)
C10—C11—C12—C130.7 (6)O2—P2—C26—C2961.2 (3)
C10—C11—C12—N2179.9 (4)C22—P2—C26—C29167.0 (3)
O7—N2—C12—C13177.9 (5)Ni1—P2—C26—C2952.0 (3)
O8—N2—C12—C131.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O6i0.932.543.395 (6)154
C11—H11···O4ii0.932.553.158 (6)123
C24—H24C···O8iii0.962.693.535 (5)147
C13—H13···O5iv0.932.643.533 (4)160
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z.
(Ib) [2,6-Bis(di-tert-butylphosphinoyl)-4-(3,5-dinitrobenzoyloxy)phenyl-κ3P,C1,P']chloridonickel(II) top
Crystal data top
[Ni(C29H41N2O8P2)Cl]F(000) = 1472
Mr = 701.74Dx = 1.343 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 10.9248 (9) ÅCell parameters from 6354 reflections
b = 21.5339 (18) Åθ = 2.3–25.0°
c = 15.0710 (12) ŵ = 0.78 mm1
β = 101.851 (1)°T = 298 K
V = 3469.9 (5) Å3Prism, yellow
Z = 40.40 × 0.13 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5343 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1Rint = 0.035
ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: analytical
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.808, Tmax = 0.944k = 2525
14268 measured reflectionsl = 1817
6265 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.47 e Å3
6265 reflectionsΔρmin = 0.18 e Å3
400 parametersAbsolute structure: Flack x determined using 2129 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.054 (9)
Crystal data top
[Ni(C29H41N2O8P2)Cl]V = 3469.9 (5) Å3
Mr = 701.74Z = 4
Monoclinic, CcMo Kα radiation
a = 10.9248 (9) ŵ = 0.78 mm1
b = 21.5339 (18) ÅT = 298 K
c = 15.0710 (12) Å0.40 × 0.13 × 0.10 mm
β = 101.851 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6265 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 2014)
5343 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.944Rint = 0.035
14268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.47 e Å3
S = 0.98Δρmin = 0.18 e Å3
6265 reflectionsAbsolute structure: Flack x determined using 2129 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
400 parametersAbsolute structure parameter: 0.054 (9)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.64515 (5)0.23414 (3)0.42848 (4)0.04456 (18)
Cl10.72001 (17)0.17933 (8)0.32868 (12)0.0765 (5)
P10.76616 (13)0.31504 (6)0.43229 (10)0.0508 (4)
P20.50454 (13)0.16828 (7)0.45232 (10)0.0496 (3)
O10.7249 (4)0.36226 (16)0.5076 (3)0.0590 (10)
O20.4359 (4)0.20096 (18)0.5281 (3)0.0642 (11)
O30.4684 (4)0.37610 (18)0.7264 (2)0.0573 (10)
O40.3108 (4)0.43072 (19)0.6435 (3)0.0651 (11)
O50.1763 (8)0.6129 (3)0.8029 (4)0.159 (4)
O60.2793 (5)0.6382 (2)0.9322 (4)0.0938 (16)
O70.5749 (8)0.3977 (3)1.0476 (3)0.154 (3)
O80.5232 (6)0.4772 (2)1.1127 (3)0.1091 (19)
N10.2558 (6)0.6034 (3)0.8694 (4)0.0753 (16)
N20.5232 (6)0.4476 (3)1.0459 (3)0.0793 (17)
C10.6305 (5)0.3378 (2)0.5458 (3)0.0463 (12)
C20.5823 (5)0.2800 (2)0.5160 (3)0.0433 (12)
C30.4875 (5)0.2582 (2)0.5568 (4)0.0502 (12)
C40.4433 (5)0.2892 (3)0.6239 (4)0.0559 (14)
H40.37970.27290.64960.067*
C50.4975 (5)0.3451 (3)0.6507 (3)0.0501 (13)
C60.5904 (5)0.3712 (2)0.6132 (3)0.0503 (13)
H60.62470.40960.63230.060*
C70.3801 (5)0.4200 (2)0.7143 (3)0.0456 (12)
C80.3813 (5)0.4543 (2)0.8001 (3)0.0435 (12)
C90.3159 (5)0.5094 (2)0.7962 (3)0.0506 (13)
H90.26690.52290.74170.061*
C100.3241 (5)0.5441 (2)0.8736 (3)0.0521 (13)
C110.3912 (5)0.5262 (2)0.9558 (3)0.0505 (13)
H110.39530.55041.00750.061*
C120.4534 (5)0.4697 (3)0.9582 (3)0.0495 (13)
C130.4500 (5)0.4340 (3)0.8823 (3)0.0510 (13)
H130.49350.39670.88610.061*
C140.7327 (7)0.3652 (3)0.3290 (4)0.0655 (16)
C150.7812 (9)0.3356 (4)0.2507 (5)0.102 (3)
H15A0.75970.36150.19790.123*
H15B0.74410.29540.23770.123*
H15C0.87050.33150.26730.123*
C160.7845 (12)0.4306 (4)0.3457 (8)0.147 (4)
H16A0.87260.42860.37080.176*
H16B0.74300.45150.38750.176*
H16C0.77070.45300.28950.176*
C170.5913 (8)0.3678 (5)0.3044 (6)0.114 (3)
H17A0.56570.39310.25140.137*
H17B0.56000.38530.35390.137*
H17C0.55860.32660.29230.137*
C180.9347 (6)0.3045 (3)0.4830 (5)0.0733 (18)
C191.0008 (7)0.3654 (4)0.5153 (7)0.108 (3)
H19A1.08280.35670.55020.130*
H19B0.95330.38750.55210.130*
H19C1.00780.39040.46370.130*
C201.0027 (7)0.2708 (3)0.4181 (6)0.092 (2)
H20A1.00910.29780.36850.111*
H20B0.95680.23420.39510.111*
H20C1.08500.25930.44980.111*
C210.9351 (8)0.2625 (5)0.5641 (6)0.112 (3)
H21A1.01900.25840.59850.135*
H21B0.90360.22230.54340.135*
H21C0.88310.28020.60170.135*
C220.3682 (6)0.1556 (3)0.3573 (4)0.0659 (16)
C230.3278 (8)0.2195 (4)0.3243 (7)0.107 (3)
H23A0.25450.21670.27690.129*
H23B0.39380.23920.30140.129*
H23C0.30930.24360.37360.129*
C240.2616 (7)0.1215 (4)0.3860 (6)0.106 (3)
H24A0.24060.14190.43750.127*
H24B0.28650.07950.40190.127*
H24C0.19010.12130.33680.127*
C250.4079 (7)0.1201 (4)0.2790 (5)0.095 (2)
H25A0.34070.12070.22680.113*
H25B0.42730.07790.29710.113*
H25C0.48030.13950.26440.113*
C260.5649 (6)0.0960 (3)0.5139 (5)0.0713 (17)
C270.4798 (10)0.0686 (4)0.5704 (7)0.118 (3)
H27A0.40090.05840.53210.141*
H27B0.46710.09830.61520.141*
H27C0.51720.03180.60000.141*
C280.5961 (8)0.0469 (3)0.4492 (7)0.099 (2)
H28A0.64110.01350.48340.119*
H28B0.64680.06510.41100.119*
H28C0.52020.03120.41240.119*
C290.6900 (8)0.1154 (4)0.5746 (6)0.116 (3)
H29A0.72960.07970.60640.139*
H29B0.67500.14590.61760.139*
H29C0.74340.13270.53780.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0495 (4)0.0449 (3)0.0432 (3)0.0016 (3)0.0186 (3)0.0056 (3)
Cl10.0873 (12)0.0704 (10)0.0853 (12)0.0042 (8)0.0496 (10)0.0283 (9)
P10.0582 (9)0.0483 (8)0.0521 (8)0.0023 (6)0.0257 (7)0.0051 (7)
P20.0529 (8)0.0481 (8)0.0508 (8)0.0022 (6)0.0176 (6)0.0062 (7)
O10.073 (3)0.050 (2)0.061 (2)0.0109 (18)0.029 (2)0.0148 (19)
O20.072 (3)0.059 (2)0.073 (3)0.014 (2)0.041 (2)0.015 (2)
O30.070 (2)0.070 (2)0.0342 (18)0.023 (2)0.0164 (17)0.0040 (17)
O40.078 (3)0.075 (3)0.041 (2)0.019 (2)0.011 (2)0.005 (2)
O50.224 (8)0.148 (6)0.084 (4)0.130 (6)0.019 (5)0.028 (4)
O60.134 (5)0.061 (3)0.088 (3)0.020 (3)0.026 (3)0.022 (3)
O70.227 (8)0.162 (6)0.055 (3)0.119 (6)0.011 (4)0.005 (4)
O80.183 (6)0.087 (3)0.044 (3)0.021 (4)0.009 (3)0.008 (3)
N10.103 (4)0.070 (4)0.055 (3)0.027 (3)0.020 (3)0.000 (3)
N20.111 (5)0.085 (4)0.038 (3)0.025 (4)0.007 (3)0.003 (3)
C10.051 (3)0.050 (3)0.041 (3)0.004 (2)0.016 (2)0.002 (2)
C20.051 (3)0.043 (3)0.038 (3)0.008 (2)0.013 (2)0.000 (2)
C30.055 (3)0.051 (3)0.047 (3)0.000 (3)0.018 (2)0.001 (3)
C40.063 (4)0.062 (4)0.050 (3)0.004 (3)0.027 (3)0.001 (3)
C50.058 (3)0.063 (3)0.033 (3)0.015 (3)0.016 (2)0.002 (2)
C60.061 (3)0.047 (3)0.042 (3)0.007 (3)0.009 (2)0.007 (2)
C70.051 (3)0.053 (3)0.037 (3)0.003 (2)0.018 (2)0.001 (2)
C80.049 (3)0.049 (3)0.036 (3)0.001 (2)0.018 (2)0.000 (2)
C90.057 (3)0.061 (3)0.036 (3)0.010 (3)0.014 (2)0.004 (3)
C100.066 (3)0.050 (3)0.044 (3)0.006 (3)0.018 (3)0.003 (3)
C110.063 (4)0.051 (3)0.040 (3)0.006 (3)0.017 (3)0.009 (2)
C120.053 (3)0.061 (3)0.035 (3)0.001 (3)0.010 (2)0.001 (2)
C130.061 (3)0.054 (3)0.041 (3)0.007 (3)0.018 (3)0.001 (3)
C140.089 (5)0.058 (4)0.057 (4)0.003 (3)0.030 (3)0.010 (3)
C150.138 (8)0.121 (7)0.062 (5)0.017 (6)0.055 (5)0.012 (5)
C160.248 (13)0.075 (5)0.116 (7)0.038 (7)0.035 (8)0.023 (6)
C170.099 (6)0.149 (8)0.098 (6)0.036 (6)0.029 (5)0.058 (6)
C180.057 (4)0.084 (5)0.082 (5)0.009 (3)0.021 (3)0.012 (4)
C190.070 (5)0.113 (7)0.145 (8)0.025 (5)0.030 (5)0.041 (6)
C200.060 (4)0.090 (5)0.131 (7)0.006 (4)0.031 (4)0.024 (5)
C210.072 (5)0.159 (9)0.099 (6)0.003 (5)0.000 (5)0.023 (6)
C220.056 (4)0.074 (4)0.068 (4)0.005 (3)0.012 (3)0.011 (3)
C230.078 (5)0.107 (6)0.120 (7)0.014 (5)0.019 (5)0.002 (5)
C240.074 (5)0.132 (7)0.112 (7)0.034 (5)0.019 (4)0.022 (6)
C250.080 (5)0.126 (6)0.073 (5)0.008 (5)0.004 (4)0.027 (5)
C260.076 (4)0.065 (4)0.077 (4)0.004 (3)0.025 (4)0.010 (4)
C270.160 (9)0.087 (5)0.131 (7)0.012 (6)0.087 (7)0.035 (6)
C280.107 (6)0.068 (4)0.131 (7)0.027 (4)0.045 (5)0.018 (5)
C290.116 (7)0.115 (7)0.099 (6)0.006 (5)0.023 (5)0.046 (5)
Geometric parameters (Å, º) top
Ni1—C21.886 (5)C15—H15C0.9600
Ni1—P22.1741 (15)C16—H16A0.9600
Ni1—P12.1805 (15)C16—H16B0.9600
Ni1—Cl12.1976 (15)C16—H16C0.9600
P1—O11.654 (4)C17—H17A0.9600
P1—C181.857 (7)C17—H17B0.9600
P1—C141.868 (6)C17—H17C0.9600
P2—O21.647 (4)C18—C211.521 (11)
P2—C221.862 (6)C18—C191.529 (10)
P2—C261.863 (7)C18—C201.527 (9)
O1—C11.385 (6)C19—H19A0.9600
O2—C31.386 (6)C19—H19B0.9600
O3—C71.336 (6)C19—H19C0.9600
O3—C51.413 (6)C20—H20A0.9600
O4—C71.198 (6)C20—H20B0.9600
O5—N11.201 (8)C20—H20C0.9600
O6—N11.193 (7)C21—H21A0.9600
O7—N21.210 (7)C21—H21B0.9600
O8—N21.191 (7)C21—H21C0.9600
N1—C101.473 (7)C22—C231.498 (10)
N2—C121.463 (7)C22—C241.514 (9)
C1—C61.388 (7)C22—C251.542 (9)
C1—C21.390 (7)C23—H23A0.9600
C2—C31.390 (7)C23—H23B0.9600
C3—C41.381 (8)C23—H23C0.9600
C4—C51.366 (8)C24—H24A0.9600
C4—H40.9300C24—H24B0.9600
C5—C61.378 (7)C24—H24C0.9600
C6—H60.9300C25—H25A0.9600
C7—C81.487 (7)C25—H25B0.9600
C8—C131.380 (7)C25—H25C0.9600
C8—C91.379 (7)C26—C271.503 (10)
C9—C101.374 (7)C26—C281.524 (10)
C9—H90.9300C26—C291.538 (10)
C10—C111.360 (7)C27—H27A0.9600
C11—C121.390 (8)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C12—C131.373 (7)C28—H28A0.9600
C13—H130.9300C28—H28B0.9600
C14—C171.513 (10)C28—H28C0.9600
C14—C161.520 (10)C29—H29A0.9600
C14—C151.527 (9)C29—H29B0.9600
C15—H15A0.9600C29—H29C0.9600
C15—H15B0.9600
C2—Ni1—P281.65 (16)C14—C16—H16C109.5
C2—Ni1—P182.49 (16)H16A—C16—H16C109.5
P2—Ni1—P1164.14 (6)H16B—C16—H16C109.5
C2—Ni1—Cl1178.79 (17)C14—C17—H17A109.5
P2—Ni1—Cl197.91 (6)C14—C17—H17B109.5
P1—Ni1—Cl197.95 (6)H17A—C17—H17B109.5
O1—P1—C18100.4 (3)C14—C17—H17C109.5
O1—P1—C14100.5 (2)H17A—C17—H17C109.5
C18—P1—C14114.9 (3)H17B—C17—H17C109.5
O1—P1—Ni1105.08 (14)C21—C18—C19109.4 (7)
C18—P1—Ni1117.2 (2)C21—C18—C20108.1 (7)
C14—P1—Ni1115.2 (2)C19—C18—C20110.6 (6)
O2—P2—C22100.9 (3)C21—C18—P1104.0 (5)
O2—P2—C26100.2 (3)C19—C18—P1112.9 (5)
C22—P2—C26114.0 (3)C20—C18—P1111.5 (5)
O2—P2—Ni1105.88 (15)C18—C19—H19A109.5
C22—P2—Ni1116.7 (2)C18—C19—H19B109.5
C26—P2—Ni1116.0 (2)H19A—C19—H19B109.5
C1—O1—P1112.5 (3)C18—C19—H19C109.5
C3—O2—P2112.5 (3)H19A—C19—H19C109.5
C7—O3—C5120.0 (4)H19B—C19—H19C109.5
O6—N1—O5123.8 (6)C18—C20—H20A109.5
O6—N1—C10119.0 (6)C18—C20—H20B109.5
O5—N1—C10117.2 (6)H20A—C20—H20B109.5
O8—N2—O7122.5 (5)C18—C20—H20C109.5
O8—N2—C12119.8 (6)H20A—C20—H20C109.5
O7—N2—C12117.6 (6)H20B—C20—H20C109.5
O1—C1—C6118.8 (5)C18—C21—H21A109.5
O1—C1—C2118.2 (4)C18—C21—H21B109.5
C6—C1—C2123.0 (5)H21A—C21—H21B109.5
C1—C2—C3115.3 (5)C18—C21—H21C109.5
C1—C2—Ni1121.8 (4)H21A—C21—H21C109.5
C3—C2—Ni1122.9 (4)H21B—C21—H21C109.5
C4—C3—O2118.5 (5)C23—C22—C24110.5 (7)
C4—C3—C2124.4 (5)C23—C22—C25108.2 (7)
O2—C3—C2117.0 (5)C24—C22—C25109.3 (6)
C5—C4—C3116.6 (5)C23—C22—P2104.8 (5)
C5—C4—H4121.7C24—C22—P2113.1 (5)
C3—C4—H4121.7C25—C22—P2110.8 (4)
C4—C5—C6123.3 (5)C22—C23—H23A109.5
C4—C5—O3119.9 (5)C22—C23—H23B109.5
C6—C5—O3116.4 (5)H23A—C23—H23B109.5
C5—C6—C1117.4 (5)C22—C23—H23C109.5
C5—C6—H6121.3H23A—C23—H23C109.5
C1—C6—H6121.3H23B—C23—H23C109.5
O4—C7—O3124.4 (5)C22—C24—H24A109.5
O4—C7—C8124.8 (5)C22—C24—H24B109.5
O3—C7—C8110.9 (4)H24A—C24—H24B109.5
C13—C8—C9119.5 (5)C22—C24—H24C109.5
C13—C8—C7121.9 (5)H24A—C24—H24C109.5
C9—C8—C7118.6 (4)H24B—C24—H24C109.5
C10—C9—C8119.3 (5)C22—C25—H25A109.5
C10—C9—H9120.4C22—C25—H25B109.5
C8—C9—H9120.4H25A—C25—H25B109.5
C11—C10—C9123.3 (5)C22—C25—H25C109.5
C11—C10—N1117.3 (5)H25A—C25—H25C109.5
C9—C10—N1119.4 (5)H25B—C25—H25C109.5
C10—C11—C12116.2 (5)C27—C26—C28109.7 (6)
C10—C11—H11121.9C27—C26—C29110.3 (7)
C12—C11—H11121.9C28—C26—C29106.3 (7)
C13—C12—C11122.6 (5)C27—C26—P2114.4 (5)
C13—C12—N2119.4 (5)C28—C26—P2111.3 (5)
C11—C12—N2118.1 (5)C29—C26—P2104.4 (5)
C12—C13—C8119.2 (5)C26—C27—H27A109.5
C12—C13—H13120.4C26—C27—H27B109.5
C8—C13—H13120.4H27A—C27—H27B109.5
C17—C14—C16109.4 (8)C26—C27—H27C109.5
C17—C14—C15109.0 (7)H27A—C27—H27C109.5
C16—C14—C15109.7 (7)H27B—C27—H27C109.5
C17—C14—P1103.9 (4)C26—C28—H28A109.5
C16—C14—P1113.2 (6)C26—C28—H28B109.5
C15—C14—P1111.3 (5)H28A—C28—H28B109.5
C14—C15—H15A109.5C26—C28—H28C109.5
C14—C15—H15B109.5H28A—C28—H28C109.5
H15A—C15—H15B109.5H28B—C28—H28C109.5
C14—C15—H15C109.5C26—C29—H29A109.5
H15A—C15—H15C109.5C26—C29—H29B109.5
H15B—C15—H15C109.5H29A—C29—H29B109.5
C14—C16—H16A109.5C26—C29—H29C109.5
C14—C16—H16B109.5H29A—C29—H29C109.5
H16A—C16—H16B109.5H29B—C29—H29C109.5
C18—P1—O1—C1121.5 (4)N1—C10—C11—C12179.2 (5)
C14—P1—O1—C1120.5 (4)C10—C11—C12—C131.1 (8)
Ni1—P1—O1—C10.6 (4)C10—C11—C12—N2177.9 (5)
C22—P2—O2—C3124.0 (4)O8—N2—C12—C13177.4 (6)
C26—P2—O2—C3118.9 (4)O7—N2—C12—C130.6 (10)
Ni1—P2—O2—C32.0 (4)O8—N2—C12—C111.6 (9)
P1—O1—C1—C6177.1 (4)O7—N2—C12—C11178.5 (7)
P1—O1—C1—C21.4 (6)C11—C12—C13—C80.7 (8)
O1—C1—C2—C3179.8 (4)N2—C12—C13—C8178.3 (5)
C6—C1—C2—C31.8 (8)C9—C8—C13—C121.0 (8)
O1—C1—C2—Ni11.6 (7)C7—C8—C13—C12176.1 (5)
C6—C1—C2—Ni1176.8 (4)O1—P1—C14—C1771.2 (6)
P2—Ni1—C2—C1179.2 (4)C18—P1—C14—C17178.0 (5)
P1—Ni1—C2—C10.9 (4)Ni1—P1—C14—C1741.1 (6)
P2—Ni1—C2—C30.7 (4)O1—P1—C14—C1647.4 (7)
P1—Ni1—C2—C3179.4 (5)C18—P1—C14—C1659.3 (7)
P2—O2—C3—C4176.6 (4)Ni1—P1—C14—C16159.8 (6)
P2—O2—C3—C22.7 (6)O1—P1—C14—C15171.6 (5)
C1—C2—C3—C41.6 (8)C18—P1—C14—C1564.8 (6)
Ni1—C2—C3—C4177.0 (4)Ni1—P1—C14—C1576.1 (6)
C1—C2—C3—O2179.2 (5)O1—P1—C18—C2173.3 (6)
Ni1—C2—C3—O22.3 (7)C14—P1—C18—C21179.8 (5)
O2—C3—C4—C5179.4 (5)Ni1—P1—C18—C2139.7 (6)
C2—C3—C4—C50.2 (8)O1—P1—C18—C1945.1 (6)
C3—C4—C5—C61.1 (8)C14—P1—C18—C1961.7 (7)
C3—C4—C5—O3172.3 (5)Ni1—P1—C18—C19158.2 (5)
C7—O3—C5—C495.8 (6)O1—P1—C18—C20170.4 (5)
C7—O3—C5—C690.3 (6)C14—P1—C18—C2063.5 (6)
C4—C5—C6—C10.9 (8)Ni1—P1—C18—C2076.6 (5)
O3—C5—C6—C1172.7 (4)O2—P2—C22—C2368.0 (6)
O1—C1—C6—C5179.0 (5)C26—P2—C22—C23174.4 (6)
C2—C1—C6—C50.7 (8)Ni1—P2—C22—C2346.2 (6)
C5—O3—C7—O49.5 (8)O2—P2—C22—C2452.4 (6)
C5—O3—C7—C8169.4 (4)C26—P2—C22—C2454.0 (6)
O4—C7—C8—C13170.1 (6)Ni1—P2—C22—C24166.5 (5)
O3—C7—C8—C1311.0 (7)O2—P2—C22—C25175.5 (5)
O4—C7—C8—C912.8 (8)C26—P2—C22—C2569.1 (6)
O3—C7—C8—C9166.1 (5)Ni1—P2—C22—C2570.3 (5)
C13—C8—C9—C102.3 (8)O2—P2—C26—C2736.5 (7)
C7—C8—C9—C10174.9 (5)C22—P2—C26—C2770.4 (7)
C8—C9—C10—C111.9 (8)Ni1—P2—C26—C27149.9 (6)
C8—C9—C10—N1179.1 (5)O2—P2—C26—C28161.5 (5)
O6—N1—C10—C1113.5 (9)C22—P2—C26—C2854.6 (6)
O5—N1—C10—C11164.4 (7)Ni1—P2—C26—C2885.1 (5)
O6—N1—C10—C9167.5 (6)O2—P2—C26—C2984.2 (6)
O5—N1—C10—C914.6 (10)C22—P2—C26—C29169.0 (5)
C9—C10—C11—C120.2 (8)Ni1—P2—C26—C2929.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.453.264 (6)146
C6—H6···O8ii0.932.673.346 (6)130
C23—H23C···O6ii0.962.743.559 (6)144
C15—H15A···O7iii0.962.823.652 (6)154
C17—H17A···O8iii0.962.733.683 (4)171
C24—H24C···O3iv0.962.643.589 (6)169
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x, y, z1; (iv) x1/2, y+1/2, z1/2.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formula[Ni(C29H41N2O8P2)Cl][Ni(C29H41N2O8P2)Cl]
Mr701.74701.74
Crystal system, space groupOrthorhombic, PbcaMonoclinic, Cc
Temperature (K)298298
a, b, c (Å)11.7012 (7), 16.2076 (10), 35.285 (2)10.9248 (9), 21.5339 (18), 15.0710 (12)
α, β, γ (°)90, 90, 9090, 101.851 (1), 90
V3)6691.8 (7)3469.9 (5)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.800.78
Crystal size (mm)0.42 × 0.14 × 0.040.40 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detectorBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Analytical
(SADABS; Bruker, 2014)
Tmin, Tmax0.615, 0.7450.808, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
70240, 6137, 4488 14268, 6265, 5343
Rint0.1180.035
(sin θ/λ)max1)0.6030.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.116, 1.09 0.042, 0.090, 0.98
No. of reflections61376265
No. of parameters425400
No. of restraints962
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.250.47, 0.18
Absolute structure?Flack x determined using 2129 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter?0.054 (9)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) for (Ia) top
Ni1—C21.875 (3)Ni1—Cl12.1953 (11)
Ni1—P22.1808 (10)P1—O11.655 (3)
Ni1—P12.1888 (11)P2—O21.652 (2)
C2—Ni1—P282.03 (11)C2—Ni1—Cl1179.51 (12)
C2—Ni1—P181.92 (11)P2—Ni1—Cl197.85 (4)
P2—Ni1—P1163.92 (4)P1—Ni1—Cl198.21 (4)
Selected geometric parameters (Å, º) for (Ib) top
Ni1—C21.886 (5)Ni1—Cl12.1976 (15)
Ni1—P22.1741 (15)P1—O11.654 (4)
Ni1—P12.1805 (15)P2—O21.647 (4)
C2—Ni1—P281.65 (16)C2—Ni1—Cl1178.79 (17)
C2—Ni1—P182.49 (16)P2—Ni1—Cl197.91 (6)
P2—Ni1—P1164.14 (6)P1—Ni1—Cl197.95 (6)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O6i0.932.543.395 (6)154
C11—H11···O4ii0.932.553.158 (6)123
C24—H24C···O8iii0.962.693.535 (5)147
C13—H13···O5iv0.932.643.533 (4)160
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.453.264 (6)146
C6—H6···O8ii0.932.673.346 (6)130
C23—H23C···O6ii0.962.743.559 (6)144
C15—H15A···O7iii0.962.823.652 (6)154
C17—H17A···O8iii0.962.733.683 (4)171
C24—H24C···O3iv0.962.643.589 (6)169
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x, y, z1; (iv) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds