Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Zolmitriptan hydrogen oxalate [(S)-dimethyl(2-{5-[(2-oxo-1,3-oxazolidin-4-yl)methyl]-1H-indol-3-yl}ethyl)aza­nium hydrogen oxalate], C16H22N3O2+·C2HO4-, (I), and zolmitriptan camphorsulfonate [(S)-dimethyl(2-{5-[(2-oxo-1,3-ox­az­ol­idin-4-yl)methyl]-1H-indol-3-yl}ethyl)aza­nium (S,R)-{2-hy­droxy-7,7-di­methylbi­cyclo­[2.2.1]heptan-1-yl}methane­sulfon­ate], C16H22N3O2+·C10H15O4S-, (II), are the first reported salt complexes of the anti­migraine drug zolmitriptan. Compound (I) crystallizes in the space group P21 with two mol­ecules of protonated zolmitriptan and two oxalate monoanions in the asymmetric unit, while compound (II) crystallizes in the space group P212121 with one protonated zolmitriptan mol­ecule and one camphorsulfonate anion in the asymmetric unit. The orientations of the ethyl­amine side chain and the oxazol­idinone ring with respect to the indole ring of the zolmitriptan cation are different for (I) and (II). In (I), they are oriented in opposite directions and the mol­ecule adopts a step-like appearance, while in (II) the corresponding side chains are folded in the same direction, giving the mol­ecule a cup-like appearance. The zolmitriptan mol­ecules of (I) form an R22(8) dimer, while in (II) they form a helical chain with a C(11) motif. The oxalate monoanions of (I) inter­act with the zolmitriptan cations and extend the dimer into a three-dimensional hydrogen-bonded network. In (II), the camphorsulfonate anion forms an R22(15) ring motif with the zolmi­triptan cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113024323/cu3036sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024323/cu3036Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024323/cu3036IIsup3.hkl
Contains datablock II

CCDC references: 969472; 969473

Introduction top

Triptans are selective serotonin receptor agonists designed to treat acute migraine. There are currently seven triptans, namely sumatriptan, rizatriptan, zolmitriptan, eletriptan, naratriptan, almotriptan and frovatriptan, available on the market. They differ from each other with respect to their pharmacological profiles: complete pain relief, speed of pain relief, rate of migraine recurrence, relief of associated symptoms and adverse effects (Belvís et al., 2009). Zolmitriptan [(S)-4-({3-[2-(di­methyl­amino)­ethyl]-1H-indol-5-yl}methyl)-1,3-oxazolidin-2-one] is a novel and selective centrally and peripherally acting 5-HT1B/D receptor agonist in development for the acute treatment of migraine (Martin, 1994). We have been studying the series of zolmitriptan (Ravikumar et al., 2007) and its solvates with chloro­form (Sridhar et al., 2007), benzene and phenol (Swamy et al., 2007), and pyridine and propio­phenone (Sridhar et al., 2010). In the present study, we report two salts of zolmitriptan for the first time, namely zolmitriptan oxalate, (I), and zolmitriptan camphorsulfonate, (II).

Experimental top

Synthesis and crystallization top

Crystals of (I) suitable for X-ray diffraction were obtained by disssolving zolmitriptan (SMS Pharma Research Centre, Hyderabad) and oxalic acid [Ratio?] in methanol–water (85:15 v/v, 20 ml) and allowing the solution to evaporate slowly. Crystals of (II) were obtained by slow evaporation of a solution of zolmitriptan and S-camphor sulfonic acid [Ratio?] in methanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. All N-bound H atoms of the zolmitriptan cations in (I) and (II) were located in a difference density map and refined isotropically. The C-bound H atoms of (I) and (II) were located in difference density maps but were positioned geometrically and included as riding atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. For the methyl H atoms, the AFIX 137 command was used (Sheldrick, 2008) [Please do not use software-specific terms - rephrase in more general language]. Compound (I) shows a meaningless Flack parameter (Flack & Bernardinelli, 2000) value of -0.4 (6). This is due to the molecular structure of (I) having light atoms (<Si) with no significant anomalous scattering effects. In this case, the Flack parameter is indeterminate with Mo radiation and hence the absolute structure cannot be determined. However, the absolute configuration of the procured material was known in advance and was confirmed by unambiguous refinement of the absolute structure parameter (Flack & Bernardinelli, 2000) in (II).

Results and discussion top

The asymmetric unit of (I) contains two crystallographically independent protonated zolmitriptan molecules (unprimed and primed atom labels) and two oxalate monoanions (labelled A and B) (Fig. 1), while that of (II) comprises one protonated zolmitriptan molecule and one camphorsulfonate anion (Fig. 2). Protonation occurs at atom N2 of the ethyl­amine side chain of the zolmitriptan for both (I) and (II) and shows quaternary character. The sums of the angles at N2 are 334.3 (2) and 333.6 (2)° for the unprimed and primed cations of (I), and 334.4 (2)° for (II). The corresponding angle for the unprotonated N2 atom of zolmitriptan is 329.8 (2)° (Ravikumar et al., 2007). The bond lengths and angles of the zolmitriptan cations in (I) and (II) are similar. Except for the geometry around atom N2 due to protonation, all other geometries agree well with the values found in the related structures of zolmitriptan base and its solvates. In (II), the two five-membered rings (C18—C22 and C18–C20/C23/C24) of the camphorsulfonate anion adopt an envelope conformation. The dihedral angles of the bridged three-atom (C18/C19/C20) plane of the camphorsulfonate anion of (II) to the four-atom planes (C18/C22/C21/C20 and C18/C24/C23/C20) are 54.4 (3) and 56.1 (3)°, respectively.

The zolmitriptan molecule is composed of three linked groups, viz. a planar indole ring system, an ethyl­amine side chain and an oxazolidinone unit. In (I), both the ethyl­amine side chain and the oxazolidinone unit are oriented in opposite directions with respect to the planar indole ring for the two independent molecules, thereby giving the molecule a step-like appearance. However, in (II), both these side chains are folded in the same direction, giving the molecule a cup-like appearance. The conformation of the oxazolidinone ring of the unprimed cation of (I) is different from the other two cations [the primed cation of (I) and the cation of (II)]. It adopts an envelope conformation in the unprimed cation of (I), while the primed cation of (I) and the cation of (II) adopt twisted conformations. The ethyl­amine side-chain conformation is different for (I) and (II), as can be seen from three torsion angles, viz. C1—C2—C9—C10, C2—C9—C10—N2 and C9—C10—N2—C11. In (I), it adopts an ac (anti­clinal, ±90–150°; Boeyens, 1978), ap (anti­periplanar, ±150–180°), ap conformation for both unprimed and primed cations of (I), respectively. In (II), it is in an ac, ap, sc (synclinal, ±30–90°) conformation.

The orientation of the oxazolidinone ring can be defined by the C4—C5—C13—C14 torsion angle with respect to the planar indole ring. It is in an ac conformation for the unprimed cation of (I), while both the primed cation of (I) and the cation of (II) adopt an sc conformation. The planes of the ethyl­amine group (τ1) and the oxazolidinone ring (τ2) make dihedral angles of 55.86 (10) and 68.25 (9), and 53.16 (9) and 84.86 (9)°, for the unprimed and primed cations of (I), respectvely, and 43.38 (15) and 69.78 (14)° for the cation of (II), with respect to the planar indole ring. Similarly, the dihedral angles between the planes of the ethyl­amine group and the oxazolidinone ring (τ3) are 79.18 (12) and 74.20 (11)°, respectively, for the unprimed and primed cations of (I), and 68.04 (18)° for the cation of (II).

In (I), cation–cation, anion–anion and cation–anion inter­actions stabilize the crystal structure (Table 2), while in (II) there are cation–cation and cation–anion inter­actions (Table 3). Both independent cations of (I) are held together by N—H···O hydrogen bonds involving atoms N3 and O2 of the oxazolidinone ring, forming an R22(8) dimer (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995). Each oxalate anion (A or B) is linked by short hydrogen bonds to its translation-related anion, forming an independent one-dimensional chain running parallel to the [100] direction (Fig. 3). The cationic dimer links the four anionic chains through four N—H···O hydrogen bonds. In these, atoms N1/N2 and N1'/N2' of the two cations are involved in a three-centred hydrogen-bonding pattern (Jeffrey & Saenger, 1991), forming an R12(5) motif. The anionic chains inter­link pairs of cation dimers and extend them into a three-dimensional hydrogen-bonded network.

The cation of (II) is involved in a one-dimensional helical chain of C(11) type along the c, axis involving atom N1 of the indole ring and atom O2 of the oxazolidinone ring (Fig. 4). Each zolmitriptan cation (atoms N2 of the ethyl­amine side chain and N3 of the oxazolidinone ring) in the helical chain is further linked by atoms O4 and O5 of the camphorsulfonate anion, thereby forming an R22(15) ring motif.

We have also reported the structures of zolmitriptan and five of its solvates. Based on these reported data and the present structures of (I) and (II), zolmitriptan can be viewed in three configurations from a molecular perspective, viz. cup, L and step-like shapes. Both the base and (II) have a cup-like appearance, while the solvates of zolmitriptan fall into the L-shaped category. Inter­estingly, (I) is different from these two groups and has a step-like appearance. The five solvate structures have more or less similar conformational features for the ethyl­amine side chain and the oxazolidinone ring. In all these cases, the ethyl­amine side chain has sp (synperiplanar, ±0–30°), ap and ap conformations for the three torsion angles discussed above. Except for the chloro­form solvate, where it is in a twisted conformation, the oxazolidinone ring is planar in all the solvates. Another similarity in the solvate structures is the position of atom N2 of the ethyl­amine side chain with respect to the planar indole ring (τ4): it is intra, being almost coplanar with the indole ring.

The zolmitriptan base has different conformational features compared with the solvate structures. The ethyl­amine side chain is in an ac, sc, ap conformation, the oxazolidinone ring is in a twisted conformation and, finally, atom N2 is not coplanar with the indole ring.

Both (I) and (II) are salts and show significant conformational differences compared with the solvate structures. The conformation of the oxazolidinone ring matches that of the zolmitriptan base [except for the unprimed cation of (I), which is in an envelope conformation]. However, the ethyl­amine side chain has different conformations in (I) and (II), as well as differing from the zolmitriptan base and solvates. An overlay of all currently known zolmitriptan structures (Fig. 5), superimposing the planar indole systems, reveals these conformational and orientational differences.

The conformational flexibility of the zolmitriptan molecule can facilitate different kinds of hydrogen-bonding pattern. The cup-shaped and L-shaped configurations observed in the zolmitriptan base, (II) and the solvate structures exhibit a helical chain in the crystal packing. However, (I), which is in step-like configuration, forms a dimer.

Based on the theoretical 5-HT1B-like receptor model (Moloney et al., 1999), the distance from atom N2 to the centroid of the C3—C8 aromatic ring (d1), the distance from atom N3 to the centroid of the C3—C8 aromatic ring (d2) and the N2···N3 distance (d3) were calculated for both (I) and (II) and the six previously reported structures (Table 4). It is very clear that the values are almost equal for all structures, except the d3 value of (II).

In conclusion, the crystal structures of the oxalate and camphor sulfonate salts of zolmitriptan depict two different configurations of the zolmitriptan molecule, which in turn leads to different hydrogen-bonding inter­actions. In (I), it forms a dimer, while in (II) it leads to a helical chain. From the present study it is clear that the conformational flexibility of the zolmitriptan molecule is highly dependent on the co-formers, such as salts, solvates etc., in the crystal lattice.

Related literature top

For related literature, see: Belvís et al. (2009); Bernstein et al. (1995); Boeyens (1978); Etter (1990); Etter, MacDonald & Bernstein (1990); Flack & Bernardinelli (2000); Jeffrey & Saenger (1991); Martin (1994); Moloney et al. (1999); Ravikumar et al. (2007); Sheldrick (2008); Sridhar et al. (2007, 2010); Swamy et al. (2007).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. A partial packing diagram for (I), showing the three-dimensional hydrogen-bonded networks built by the cation dimers and anionic chains. Dashed lines indicate N—H···O and O—H···O hydrogen bonds. H atoms not involved in these interactions have been omitted for clarity. Only atoms involved in the hydrogen bonding are labelled. [Symmetry codes: (i) -x + 1, y - 1/2, -z; (ii) -x + 3, y + 1/2, -z + 1; (iii) x + 1, y, z; (iv) x - 1, y, z.]
[Figure 4] Fig. 4. A partial packing diagram for (II), showing the helical chain along the c axis formed by the cations. The camphorsulfonate anion forms an R22(15) motif through intermolecular N—H···O hydrogen bonds (dashed lines) with the cation. H atoms not involved in these interactions have been omitted for clarity. Only atoms involved in the hydrogen bonding are labelled. [Symmetry code: (i) -x + 1/2, -y + 1, z - 1/2.]
[Figure 5] Fig. 5. An overlay of zolmitriptan structures known to date, viz. zolmitriptan oxalate [labelled (I)mol1 and (I)mol2], zolmitriptan camphorsulfonate [labelled (II)], zolmitriptan base (labelled 1), zolmitriptan chloroform solvate (labelled 2), zolmitriptan phenol solvate (labelled 3), zolmitriptan benzene solvate (labelled 4), zolmitriptan pyridine solvate (labelled 5) and zolmitriptan propiophenone (labelled 6). The step-like, cup and L-shaped configurations are grouped in red, blue and yellow colours respectively, in the online version of the paper.
(I) Dimethyl(2-{5-[(2-oxo-1,3-oxazolidin-4-yl)methyl]-1H-indol-3-yl}ethyl)azanium hydrogen oxalate top
Crystal data top
C16H22N3O2+·C2HO4F(000) = 800
Mr = 377.39Dx = 1.356 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6021 reflections
a = 5.5944 (4) Åθ = 2.2–27.8°
b = 17.9908 (14) ŵ = 0.10 mm1
c = 18.3844 (15) ÅT = 294 K
β = 92.220 (1)°Block, colourless
V = 1849.0 (2) Å30.19 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.0°, θmin = 1.1°
ω scansh = 77
21294 measured reflectionsk = 2322
8509 independent reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.1495P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8509 reflectionsΔρmax = 0.28 e Å3
523 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), with 4320 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.4 (6)
Crystal data top
C16H22N3O2+·C2HO4V = 1849.0 (2) Å3
Mr = 377.39Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.5944 (4) ŵ = 0.10 mm1
b = 17.9908 (14) ÅT = 294 K
c = 18.3844 (15) Å0.19 × 0.17 × 0.09 mm
β = 92.220 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7991 reflections with I > 2σ(I)
21294 measured reflectionsRint = 0.018
8509 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.20 e Å3
8509 reflectionsAbsolute structure: Flack & Bernardinelli (2000), with 4320 Friedel pairs
523 parametersAbsolute structure parameter: 0.4 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1178 (4)0.48893 (11)1.05952 (10)0.0593 (5)
H10.03580.47591.10070.071*
C20.0572 (3)0.46634 (9)0.99053 (9)0.0481 (4)
C30.2275 (3)0.50016 (8)0.94457 (8)0.0445 (3)
C40.2590 (3)0.50067 (9)0.86961 (8)0.0458 (3)
H40.15330.47480.83860.055*
C50.4465 (3)0.53950 (9)0.84163 (10)0.0514 (4)
C60.6071 (4)0.57867 (10)0.88899 (12)0.0592 (4)
H60.73440.60430.86970.071*
C70.5795 (4)0.57969 (10)0.96265 (12)0.0617 (5)
H70.68630.60540.99340.074*
C80.3879 (3)0.54136 (8)0.99009 (9)0.0511 (4)
C90.1344 (3)0.41138 (10)0.96832 (9)0.0489 (4)
H9A0.21640.42770.92370.059*
H9B0.25090.40791.00590.059*
C100.0204 (2)0.33632 (9)0.95690 (7)0.0406 (3)
H10C0.10250.34160.92150.049*
H10D0.05710.32041.00240.049*
C110.0594 (4)0.21036 (11)0.90778 (12)0.0637 (5)
H11D0.17020.17550.88580.096*
H11E0.02110.18780.94920.096*
H11F0.05600.22450.87300.096*
C120.3674 (4)0.25819 (15)0.98702 (12)0.0735 (6)
H12D0.28420.24131.03060.110*
H12E0.47160.21960.96860.110*
H12F0.46020.30140.99780.110*
C130.4870 (4)0.53911 (10)0.76110 (10)0.0591 (4)
H13C0.36740.50740.73730.071*
H13D0.64240.51730.75320.071*
C140.4768 (3)0.61495 (10)0.72522 (10)0.0539 (4)
H140.59650.64800.74830.065*
C150.5108 (4)0.61121 (12)0.64302 (11)0.0619 (4)
H15C0.66900.62860.63140.074*
H15D0.49120.56060.62550.074*
C160.1742 (3)0.67836 (10)0.66121 (10)0.0543 (4)
N10.3156 (3)0.53324 (9)1.05980 (8)0.0631 (4)
H1A0.396 (5)0.5533 (16)1.1012 (16)0.098 (9)*
N20.1911 (2)0.27725 (8)0.93141 (7)0.0412 (3)
H20.270 (4)0.2943 (12)0.8900 (11)0.054 (5)*
N30.2413 (3)0.64940 (11)0.72528 (10)0.0650 (4)
H30.184 (4)0.6669 (13)0.7630 (13)0.063 (6)*
O10.3299 (3)0.65870 (9)0.61063 (7)0.0663 (4)
O20.0011 (3)0.71656 (9)0.64548 (8)0.0697 (4)
C1'0.0926 (3)0.96641 (9)0.42953 (9)0.0509 (4)
H1'0.00500.98340.39330.061*
C2'0.0631 (3)0.98331 (8)0.50177 (9)0.0433 (3)
C3'0.2477 (3)0.94457 (8)0.53859 (8)0.0403 (3)
C4'0.3066 (3)0.93685 (9)0.61140 (9)0.0442 (3)
H4'0.21770.96140.64780.053*
C5'0.4981 (3)0.89241 (9)0.62887 (9)0.0468 (3)
C6'0.6339 (3)0.85668 (9)0.57247 (10)0.0526 (4)
H6'0.76270.82710.58460.063*
C7'0.5818 (3)0.86421 (8)0.50081 (10)0.0521 (4)
H7'0.67580.84140.46440.062*
C8'0.3855 (3)0.90667 (8)0.48402 (9)0.0453 (3)
C9'0.1207 (3)1.03475 (9)0.53522 (8)0.0442 (3)
H9'A0.24881.04220.50190.053*
H9'B0.18861.01310.57970.053*
C10'0.0051 (2)1.10877 (8)0.55192 (7)0.0361 (3)
H10A0.06521.12910.50710.043*
H10B0.12341.10040.58490.043*
C11'0.0402 (4)1.22955 (10)0.61224 (12)0.0611 (5)
H11A0.08131.21270.64380.092*
H11B0.03311.25580.57180.092*
H11C0.14841.26210.63860.092*
C12'0.3578 (3)1.18876 (13)0.53422 (11)0.0622 (5)
H12A0.28141.21200.49250.093*
H12B0.44691.14630.51900.093*
H12C0.46431.22360.55830.093*
C13'0.5762 (3)0.88265 (11)0.70621 (10)0.0570 (4)
H13A0.67180.92540.71880.068*
H13B0.67860.83920.70780.068*
C14'0.3783 (3)0.87389 (10)0.76343 (9)0.0509 (4)
H14'0.27370.91760.76340.061*
C15'0.4672 (4)0.86095 (12)0.83974 (10)0.0608 (4)
H15A0.47840.90750.86600.073*
H15B0.62310.83730.83760.073*
C16'0.1684 (3)0.77853 (11)0.82199 (9)0.0541 (4)
N1'0.2867 (3)0.92085 (8)0.41821 (8)0.0551 (4)
H1'A0.329 (4)0.9032 (13)0.3783 (13)0.062 (6)*
N2'0.1738 (2)1.16472 (7)0.58515 (6)0.0364 (2)
H2'0.248 (3)1.1444 (11)0.6215 (10)0.045 (5)*
N3'0.2362 (3)0.80660 (9)0.75675 (8)0.0565 (4)
H3'0.166 (4)0.7951 (13)0.7192 (12)0.067 (6)*
O1'0.2902 (3)0.81285 (9)0.87432 (7)0.0646 (3)
O2'0.0229 (3)0.73009 (10)0.83680 (8)0.0747 (4)
C1A0.4576 (2)0.59818 (9)1.25933 (7)0.0385 (3)
C2A0.7041 (2)0.58769 (10)1.22487 (8)0.0440 (3)
O1A0.28356 (17)0.57559 (8)1.21965 (6)0.0526 (3)
O2A0.45024 (18)0.62586 (9)1.31947 (6)0.0578 (3)
O3A0.7178 (2)0.57763 (13)1.16093 (7)0.0897 (6)
O4A0.88152 (17)0.59359 (9)1.27115 (6)0.0563 (3)
H4A1.038 (5)0.5849 (17)1.2478 (13)0.090 (8)*
C1B0.4432 (2)0.83410 (8)0.22797 (7)0.0340 (3)
C2B0.6904 (2)0.84566 (8)0.26195 (7)0.0351 (3)
O1B0.43716 (18)0.80688 (8)0.16686 (6)0.0528 (3)
O2B0.26933 (16)0.85491 (7)0.26806 (5)0.0420 (2)
O3B0.70775 (19)0.86045 (11)0.32431 (6)0.0711 (4)
O4B0.86758 (17)0.83753 (8)0.21520 (6)0.0523 (3)
H4B1.006 (5)0.8480 (16)0.2332 (14)0.088 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0779 (12)0.0584 (10)0.0410 (8)0.0229 (9)0.0056 (8)0.0096 (7)
C20.0515 (9)0.0496 (8)0.0425 (8)0.0152 (7)0.0062 (6)0.0092 (7)
C30.0482 (8)0.0386 (7)0.0456 (8)0.0102 (6)0.0113 (6)0.0086 (6)
C40.0526 (8)0.0398 (7)0.0442 (8)0.0023 (6)0.0091 (6)0.0076 (6)
C50.0603 (10)0.0365 (7)0.0570 (9)0.0038 (7)0.0035 (7)0.0017 (7)
C60.0566 (10)0.0426 (8)0.0774 (12)0.0028 (7)0.0108 (9)0.0002 (8)
C70.0654 (11)0.0381 (8)0.0788 (13)0.0007 (8)0.0307 (9)0.0097 (8)
C80.0622 (10)0.0385 (7)0.0507 (9)0.0137 (7)0.0216 (7)0.0127 (7)
C90.0419 (8)0.0576 (9)0.0474 (8)0.0098 (7)0.0027 (6)0.0023 (7)
C100.0322 (6)0.0545 (8)0.0348 (6)0.0022 (6)0.0023 (5)0.0009 (6)
C110.0611 (11)0.0496 (9)0.0797 (13)0.0006 (8)0.0075 (9)0.0015 (9)
C120.0524 (10)0.1088 (18)0.0598 (11)0.0208 (11)0.0098 (9)0.0269 (11)
C130.0717 (11)0.0461 (9)0.0600 (10)0.0019 (8)0.0090 (9)0.0043 (8)
C140.0552 (9)0.0493 (9)0.0573 (9)0.0104 (7)0.0039 (7)0.0040 (7)
C150.0588 (10)0.0672 (11)0.0609 (10)0.0106 (9)0.0158 (8)0.0019 (9)
C160.0566 (10)0.0541 (10)0.0524 (10)0.0170 (8)0.0044 (8)0.0005 (7)
N10.0864 (12)0.0525 (8)0.0483 (8)0.0152 (8)0.0252 (8)0.0186 (7)
N20.0338 (6)0.0530 (7)0.0366 (6)0.0027 (5)0.0020 (5)0.0093 (5)
N30.0725 (11)0.0741 (11)0.0491 (8)0.0114 (9)0.0126 (8)0.0057 (8)
O10.0738 (9)0.0771 (9)0.0487 (7)0.0054 (7)0.0121 (6)0.0021 (6)
O20.0637 (8)0.0787 (10)0.0665 (8)0.0003 (7)0.0003 (7)0.0083 (7)
C1'0.0608 (10)0.0476 (8)0.0440 (8)0.0071 (7)0.0019 (7)0.0049 (7)
C2'0.0441 (8)0.0416 (7)0.0439 (7)0.0080 (6)0.0029 (6)0.0060 (6)
C3'0.0419 (7)0.0353 (6)0.0430 (7)0.0066 (6)0.0087 (6)0.0061 (5)
C4'0.0435 (8)0.0446 (7)0.0438 (8)0.0021 (6)0.0096 (6)0.0080 (6)
C5'0.0471 (8)0.0430 (8)0.0497 (8)0.0038 (6)0.0069 (7)0.0002 (6)
C6'0.0509 (9)0.0377 (7)0.0681 (10)0.0040 (7)0.0128 (7)0.0002 (7)
C7'0.0599 (9)0.0358 (7)0.0587 (9)0.0012 (7)0.0218 (8)0.0086 (6)
C8'0.0549 (9)0.0335 (7)0.0463 (8)0.0070 (6)0.0134 (6)0.0073 (6)
C9'0.0351 (7)0.0505 (8)0.0469 (8)0.0042 (6)0.0002 (6)0.0063 (6)
C10'0.0287 (6)0.0433 (7)0.0360 (6)0.0008 (5)0.0028 (5)0.0017 (5)
C11'0.0622 (11)0.0440 (8)0.0762 (12)0.0041 (8)0.0068 (9)0.0148 (8)
C12'0.0487 (9)0.0807 (13)0.0573 (10)0.0216 (9)0.0040 (8)0.0153 (9)
C13'0.0494 (9)0.0628 (10)0.0585 (10)0.0020 (8)0.0000 (8)0.0010 (8)
C14'0.0559 (9)0.0478 (8)0.0491 (8)0.0110 (7)0.0014 (7)0.0016 (6)
C15'0.0694 (11)0.0630 (11)0.0505 (9)0.0022 (9)0.0062 (8)0.0083 (8)
C16'0.0583 (10)0.0598 (10)0.0443 (8)0.0095 (8)0.0025 (7)0.0036 (7)
N1'0.0731 (10)0.0497 (8)0.0412 (7)0.0035 (7)0.0125 (7)0.0120 (6)
N2'0.0322 (5)0.0435 (6)0.0331 (6)0.0018 (5)0.0043 (4)0.0031 (5)
N3'0.0599 (9)0.0673 (9)0.0426 (7)0.0057 (7)0.0072 (6)0.0052 (7)
O1'0.0785 (9)0.0740 (8)0.0413 (6)0.0018 (7)0.0019 (6)0.0012 (6)
O2'0.0812 (10)0.0840 (10)0.0587 (8)0.0152 (8)0.0011 (7)0.0149 (7)
C1A0.0221 (5)0.0597 (9)0.0336 (6)0.0005 (6)0.0020 (5)0.0018 (6)
C2A0.0247 (6)0.0710 (10)0.0366 (7)0.0057 (6)0.0030 (5)0.0137 (7)
O1A0.0241 (4)0.0922 (9)0.0415 (5)0.0058 (5)0.0006 (4)0.0169 (6)
O2A0.0297 (5)0.1041 (10)0.0398 (5)0.0024 (6)0.0028 (4)0.0228 (6)
O3A0.0358 (6)0.1872 (19)0.0465 (7)0.0086 (9)0.0059 (5)0.0424 (9)
O4A0.0222 (4)0.1086 (10)0.0381 (5)0.0010 (5)0.0007 (4)0.0136 (6)
C1B0.0229 (5)0.0468 (7)0.0326 (6)0.0013 (5)0.0024 (4)0.0017 (5)
C2B0.0243 (5)0.0483 (7)0.0328 (6)0.0022 (5)0.0030 (4)0.0032 (5)
O1B0.0290 (5)0.0900 (9)0.0396 (5)0.0014 (5)0.0026 (4)0.0202 (6)
O2B0.0221 (4)0.0665 (7)0.0372 (5)0.0008 (4)0.0012 (3)0.0067 (5)
O3B0.0334 (5)0.1420 (14)0.0381 (6)0.0091 (7)0.0042 (4)0.0287 (7)
O4B0.0210 (4)0.1008 (9)0.0351 (5)0.0017 (5)0.0016 (4)0.0116 (5)
Geometric parameters (Å, º) top
C1—C21.362 (2)C3'—C8'1.416 (2)
C1—N11.364 (3)C4'—C5'1.384 (2)
C1—H10.9300C4'—H4'0.9300
C2—C31.433 (3)C5'—C6'1.416 (2)
C2—C91.503 (2)C5'—C13'1.514 (2)
C3—C41.396 (2)C6'—C7'1.367 (3)
C3—C81.413 (2)C6'—H6'0.9300
C4—C51.376 (3)C7'—C8'1.383 (3)
C4—H40.9300C7'—H7'0.9300
C5—C61.415 (3)C8'—N1'1.373 (2)
C5—C131.506 (2)C9'—C10'1.517 (2)
C6—C71.369 (3)C9'—H9'A0.9700
C6—H60.9300C9'—H9'B0.9700
C7—C81.386 (3)C10'—N2'1.4941 (17)
C7—H70.9300C10'—H10A0.9700
C8—N11.366 (3)C10'—H10B0.9700
C9—C101.512 (2)C11'—N2'1.482 (2)
C9—H9A0.9700C11'—H11A0.9600
C9—H9B0.9700C11'—H11B0.9600
C10—N21.492 (2)C11'—H11C0.9600
C10—H10C0.9700C12'—N2'1.483 (2)
C10—H10D0.9700C12'—H12A0.9600
C11—N21.485 (2)C12'—H12B0.9600
C11—H11D0.9600C12'—H12C0.9600
C11—H11E0.9600C13'—C14'1.505 (3)
C11—H11F0.9600C13'—H13A0.9700
C12—N21.488 (2)C13'—H13B0.9700
C12—H12D0.9600C14'—N3'1.456 (2)
C12—H12E0.9600C14'—C15'1.524 (2)
C12—H12F0.9600C14'—H14'0.9800
C13—C141.515 (3)C15'—O1'1.444 (3)
C13—H13C0.9700C15'—H15A0.9700
C13—H13D0.9700C15'—H15B0.9700
C14—N31.456 (3)C16'—O2'1.216 (2)
C14—C151.532 (3)C16'—N3'1.343 (2)
C14—H140.9800C16'—O1'1.350 (2)
C15—O11.436 (3)N1'—H1'A0.83 (2)
C15—H15C0.9700N2'—H2'0.86 (2)
C15—H15D0.9700N3'—H3'0.83 (2)
C16—O21.213 (2)C1A—O2A1.2147 (17)
C16—N31.329 (3)C1A—O1A1.2612 (17)
C16—O11.346 (2)C1A—C2A1.5514 (17)
N1—H1A0.94 (3)C2A—O3A1.1946 (19)
N2—H20.92 (2)C2A—O4A1.2864 (17)
N3—H30.84 (2)O4A—H4A1.00 (3)
C1'—C2'1.366 (2)C1B—O1B1.2273 (17)
C1'—N1'1.370 (3)C1B—O2B1.2548 (16)
C1'—H1'0.9300C1B—C2B1.5531 (16)
C2'—C3'1.437 (2)C2B—O3B1.1846 (17)
C2'—C9'1.498 (2)C2B—O4B1.2949 (16)
C3'—C4'1.398 (2)O4B—H4B0.87 (3)
C2—C1—N1110.53 (18)C4'—C3'—C2'134.41 (14)
C2—C1—H1124.7C8'—C3'—C2'106.33 (14)
N1—C1—H1124.7C5'—C4'—C3'119.52 (14)
C1—C2—C3105.96 (16)C5'—C4'—H4'120.2
C1—C2—C9126.76 (18)C3'—C4'—H4'120.2
C3—C2—C9127.04 (14)C4'—C5'—C6'119.37 (16)
C4—C3—C8118.67 (16)C4'—C5'—C13'122.60 (15)
C4—C3—C2134.17 (14)C6'—C5'—C13'117.98 (16)
C8—C3—C2107.15 (14)C7'—C6'—C5'122.18 (16)
C5—C4—C3119.95 (14)C7'—C6'—H6'118.9
C5—C4—H4120.0C5'—C6'—H6'118.9
C3—C4—H4120.0C6'—C7'—C8'118.08 (14)
C4—C5—C6119.86 (17)C6'—C7'—H7'121.0
C4—C5—C13120.72 (16)C8'—C7'—H7'121.0
C6—C5—C13119.39 (17)N1'—C8'—C7'130.51 (15)
C7—C6—C5121.46 (19)N1'—C8'—C3'107.95 (15)
C7—C6—H6119.3C7'—C8'—C3'121.54 (16)
C5—C6—H6119.3C2'—C9'—C10'109.52 (11)
C6—C7—C8118.17 (16)C2'—C9'—H9'A109.8
C6—C7—H7120.9C10'—C9'—H9'A109.8
C8—C7—H7120.9C2'—C9'—H9'B109.8
N1—C8—C7130.97 (16)C10'—C9'—H9'B109.8
N1—C8—C3107.18 (17)H9'A—C9'—H9'B108.2
C7—C8—C3121.84 (16)N2'—C10'—C9'113.99 (11)
C2—C9—C10108.97 (12)N2'—C10'—H10A108.8
C2—C9—H9A109.9C9'—C10'—H10A108.8
C10—C9—H9A109.9N2'—C10'—H10B108.8
C2—C9—H9B109.9C9'—C10'—H10B108.8
C10—C9—H9B109.9H10A—C10'—H10B107.6
H9A—C9—H9B108.3N2'—C11'—H11A109.5
N2—C10—C9114.30 (12)N2'—C11'—H11B109.5
N2—C10—H10C108.7H11A—C11'—H11B109.5
C9—C10—H10C108.7N2'—C11'—H11C109.5
N2—C10—H10D108.7H11A—C11'—H11C109.5
C9—C10—H10D108.7H11B—C11'—H11C109.5
H10C—C10—H10D107.6N2'—C12'—H12A109.5
N2—C11—H11D109.5N2'—C12'—H12B109.5
N2—C11—H11E109.5H12A—C12'—H12B109.5
H11D—C11—H11E109.5N2'—C12'—H12C109.5
N2—C11—H11F109.5H12A—C12'—H12C109.5
H11D—C11—H11F109.5H12B—C12'—H12C109.5
H11E—C11—H11F109.5C14'—C13'—C5'115.94 (15)
N2—C12—H12D109.5C14'—C13'—H13A108.3
N2—C12—H12E109.5C5'—C13'—H13A108.3
H12D—C12—H12E109.5C14'—C13'—H13B108.3
N2—C12—H12F109.5C5'—C13'—H13B108.3
H12D—C12—H12F109.5H13A—C13'—H13B107.4
H12E—C12—H12F109.5N3'—C14'—C13'114.66 (15)
C5—C13—C14114.77 (15)N3'—C14'—C15'98.58 (14)
C5—C13—H13C108.6C13'—C14'—C15'113.69 (16)
C14—C13—H13C108.6N3'—C14'—H14'109.8
C5—C13—H13D108.6C13'—C14'—H14'109.8
C14—C13—H13D108.6C15'—C14'—H14'109.8
H13C—C13—H13D107.6O1'—C15'—C14'104.72 (15)
N3—C14—C13113.70 (16)O1'—C15'—H15A110.8
N3—C14—C1599.58 (15)C14'—C15'—H15A110.8
C13—C14—C15112.69 (15)O1'—C15'—H15B110.8
N3—C14—H14110.2C14'—C15'—H15B110.8
C13—C14—H14110.2H15A—C15'—H15B108.9
C15—C14—H14110.2O2'—C16'—N3'129.27 (18)
O1—C15—C14105.69 (15)O2'—C16'—O1'121.34 (16)
O1—C15—H15C110.6N3'—C16'—O1'109.39 (17)
C14—C15—H15C110.6C1'—N1'—C8'108.71 (14)
O1—C15—H15D110.6C1'—N1'—H1'A124.4 (16)
C14—C15—H15D110.6C8'—N1'—H1'A126.8 (16)
H15C—C15—H15D108.7C11'—N2'—C12'110.75 (15)
O2—C16—N3128.96 (18)C11'—N2'—C10'110.42 (12)
O2—C16—O1121.09 (17)C12'—N2'—C10'112.41 (12)
N3—C16—O1109.94 (18)C11'—N2'—H2'108.1 (12)
C1—N1—C8109.17 (14)C12'—N2'—H2'106.7 (13)
C1—N1—H1A126.2 (18)C10'—N2'—H2'108.3 (13)
C8—N1—H1A124.6 (19)C16'—N3'—C14'111.94 (16)
C11—N2—C12111.34 (17)C16'—N3'—H3'121.3 (16)
C11—N2—C10110.51 (12)C14'—N3'—H3'123.6 (17)
C12—N2—C10112.43 (14)C16'—O1'—C15'108.47 (13)
C11—N2—H2104.8 (13)O2A—C1A—O1A127.30 (12)
C12—N2—H2109.8 (13)O2A—C1A—C2A118.92 (12)
C10—N2—H2107.6 (13)O1A—C1A—C2A113.78 (12)
C16—N3—C14113.01 (17)O3A—C2A—O4A125.89 (13)
C16—N3—H3118.9 (16)O3A—C2A—C1A120.80 (13)
C14—N3—H3122.4 (16)O4A—C2A—C1A113.26 (11)
C16—O1—C15109.55 (15)C2A—O4A—H4A111.6 (14)
C2'—C1'—N1'110.24 (17)O1B—C1B—O2B127.48 (12)
C2'—C1'—H1'124.9O1B—C1B—C2B118.58 (11)
N1'—C1'—H1'124.9O2B—C1B—C2B113.95 (11)
C1'—C2'—C3'106.75 (14)O3B—C2B—O4B125.34 (12)
C1'—C2'—C9'126.28 (16)O3B—C2B—C1B121.80 (12)
C3'—C2'—C9'126.93 (14)O4B—C2B—C1B112.86 (11)
C4'—C3'—C8'119.25 (15)C2B—O4B—H4B113.0 (17)
N1—C1—C2—C31.02 (18)C1'—C2'—C3'—C8'1.34 (17)
N1—C1—C2—C9173.66 (15)C9'—C2'—C3'—C8'176.45 (14)
C1—C2—C3—C4177.98 (17)C8'—C3'—C4'—C5'0.0 (2)
C9—C2—C3—C47.4 (3)C2'—C3'—C4'—C5'178.15 (16)
C1—C2—C3—C80.97 (16)C3'—C4'—C5'—C6'1.2 (2)
C9—C2—C3—C8173.69 (14)C3'—C4'—C5'—C13'178.61 (15)
C8—C3—C4—C51.4 (2)C4'—C5'—C6'—C7'0.3 (2)
C2—C3—C4—C5179.76 (16)C13'—C5'—C6'—C7'177.83 (16)
C3—C4—C5—C60.1 (2)C5'—C6'—C7'—C8'1.8 (2)
C3—C4—C5—C13178.44 (15)C6'—C7'—C8'—N1'176.78 (16)
C4—C5—C6—C70.7 (3)C6'—C7'—C8'—C3'3.1 (2)
C13—C5—C6—C7179.04 (16)C4'—C3'—C8'—N1'177.67 (14)
C5—C6—C7—C80.3 (3)C2'—C3'—C8'—N1'0.94 (16)
C6—C7—C8—N1179.40 (16)C4'—C3'—C8'—C7'2.2 (2)
C6—C7—C8—C31.9 (2)C2'—C3'—C8'—C7'179.16 (14)
C4—C3—C8—N1178.56 (14)C1'—C2'—C9'—C10'101.99 (17)
C2—C3—C8—N10.58 (16)C3'—C2'—C9'—C10'75.38 (19)
C4—C3—C8—C72.5 (2)C2'—C9'—C10'—N2'179.60 (12)
C2—C3—C8—C7178.40 (14)C4'—C5'—C13'—C14'41.4 (2)
C1—C2—C9—C1098.35 (18)C6'—C5'—C13'—C14'141.11 (16)
C3—C2—C9—C1075.24 (19)C5'—C13'—C14'—N3'65.1 (2)
C2—C9—C10—N2177.47 (12)C5'—C13'—C14'—C15'177.52 (16)
C4—C5—C13—C14119.89 (18)N3'—C14'—C15'—O1'25.04 (17)
C6—C5—C13—C1461.8 (2)C13'—C14'—C15'—O1'146.84 (16)
C5—C13—C14—N365.7 (2)C2'—C1'—N1'—C8'0.70 (19)
C5—C13—C14—C15178.09 (16)C7'—C8'—N1'—C1'179.93 (16)
N3—C14—C15—O114.00 (18)C3'—C8'—N1'—C1'0.18 (18)
C13—C14—C15—O1134.82 (17)C9'—C10'—N2'—C11'169.42 (14)
C2—C1—N1—C80.7 (2)C9'—C10'—N2'—C12'66.36 (17)
C7—C8—N1—C1178.89 (17)O2'—C16'—N3'—C14'168.4 (2)
C3—C8—N1—C10.04 (18)O1'—C16'—N3'—C14'11.7 (2)
C9—C10—N2—C11168.80 (14)C13'—C14'—N3'—C16'144.04 (16)
C9—C10—N2—C1266.11 (18)C15'—C14'—N3'—C16'22.95 (19)
O2—C16—N3—C14172.21 (18)O2'—C16'—O1'—C15'173.52 (18)
O1—C16—N3—C148.5 (2)N3'—C16'—O1'—C15'6.4 (2)
C13—C14—N3—C16134.08 (18)C14'—C15'—O1'—C16'20.66 (19)
C15—C14—N3—C1614.0 (2)O2A—C1A—C2A—O3A162.2 (2)
O2—C16—O1—C15177.52 (17)O1A—C1A—C2A—O3A18.1 (3)
N3—C16—O1—C151.8 (2)O2A—C1A—C2A—O4A15.6 (2)
C14—C15—O1—C1610.54 (19)O1A—C1A—C2A—O4A164.11 (16)
N1'—C1'—C2'—C3'1.27 (18)O1B—C1B—C2B—O3B167.90 (18)
N1'—C1'—C2'—C9'176.54 (14)O2B—C1B—C2B—O3B12.4 (2)
C1'—C2'—C3'—C4'176.95 (16)O1B—C1B—C2B—O4B12.2 (2)
C9'—C2'—C3'—C4'5.3 (3)O2B—C1B—C2B—O4B167.48 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3A0.94 (3)2.12 (3)2.972 (2)150 (2)
N1—H1A···O1A0.94 (3)2.32 (3)3.048 (2)133 (2)
N2—H2···O1Bi0.92 (2)1.92 (2)2.754 (2)150 (2)
N2—H2···O4Bi0.92 (2)2.25 (2)2.936 (2)131 (2)
N3—H3···O20.84 (2)2.14 (2)2.954 (2)163 (2)
N1—H1A···O2B0.83 (2)2.24 (2)3.010 (2)155 (2)
N1—H1A···O3B0.83 (2)2.43 (2)3.065 (2)135 (2)
N2—H2···O2Aii0.86 (2)2.00 (2)2.775 (2)151 (2)
N2—H2···O4Aii0.86 (2)2.317 (19)2.962 (2)132 (2)
N3—H3···O20.83 (2)2.19 (2)2.963 (2)154 (2)
O4A—H4A···O1Aiii1.00 (3)1.49 (3)2.495 (1)174 (2)
O4B—H4B···O2Biv0.87 (3)1.63 (3)2.503 (1)172 (3)
Symmetry codes: (i) x1, y1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y, z; (iv) x1, y, z.
(II) Dimethyl(2-{5-[(2-oxo-1,3-oxazolidin-4-yl)methyl]-1H-indol-3-yl}ethyl)azanium {2-hydroxy-7,7-dimethylbicyclo[2.2.1]heptan-1-yl}methanesulfonate top
Crystal data top
C16H22N3O2+·C10H15O4SF(000) = 1112
Mr = 519.65Dx = 1.298 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1398 reflections
a = 9.5992 (15) Åθ = 2.4–20.5°
b = 16.361 (3) ŵ = 0.17 mm1
c = 16.927 (2) ÅT = 294 K
V = 2658.4 (7) Å3Needle, colourless
Z = 40.17 × 0.12 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 1212
31108 measured reflectionsk = 2121
6314 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.5005P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6314 reflectionsΔρmax = 0.32 e Å3
341 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), with 2812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C16H22N3O2+·C10H15O4SV = 2658.4 (7) Å3
Mr = 519.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5992 (15) ŵ = 0.17 mm1
b = 16.361 (3) ÅT = 294 K
c = 16.927 (2) Å0.17 × 0.12 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5280 reflections with I > 2σ(I)
31108 measured reflectionsRint = 0.048
6314 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132Δρmax = 0.32 e Å3
S = 1.10Δρmin = 0.16 e Å3
6314 reflectionsAbsolute structure: Flack & Bernardinelli (2000), with 2812 Friedel pairs
341 parametersAbsolute structure parameter: 0.00 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0768 (3)0.5166 (2)0.48754 (18)0.0563 (8)
H10.14090.55920.48580.068*
C20.0661 (3)0.46101 (16)0.54777 (15)0.0415 (6)
C30.0456 (3)0.40754 (16)0.52645 (14)0.0389 (6)
C40.1087 (3)0.34038 (15)0.56393 (14)0.0381 (6)
H40.07330.32100.61150.046*
C50.2239 (3)0.30303 (17)0.53001 (16)0.0454 (7)
C60.2724 (4)0.3318 (2)0.45648 (17)0.0588 (9)
H60.34890.30620.43360.071*
C70.2118 (4)0.3958 (2)0.41731 (16)0.0606 (9)
H70.24510.41290.36840.073*
C80.0986 (3)0.43466 (18)0.45303 (15)0.0476 (7)
C90.1475 (3)0.45724 (17)0.62329 (16)0.0441 (6)
H9A0.18890.40350.62900.053*
H9B0.22200.49720.62190.053*
C100.0528 (3)0.47443 (15)0.69317 (14)0.0376 (6)
H10A0.03120.44190.68770.045*
H10B0.02570.53150.69190.045*
C110.2416 (3)0.5081 (2)0.78690 (19)0.0570 (8)
H11A0.27080.50110.84070.085*
H11B0.31580.49220.75210.085*
H11C0.21840.56440.77780.085*
C120.0137 (4)0.46369 (19)0.83555 (17)0.0582 (8)
H12A0.01730.51930.83920.087*
H12B0.06430.42890.82430.087*
H12C0.05520.44760.88470.087*
C130.2974 (3)0.23536 (18)0.57302 (18)0.0545 (8)
H13A0.34800.20280.53460.065*
H13B0.22770.20030.59690.065*
C140.3990 (3)0.26222 (18)0.63721 (18)0.0507 (7)
H140.44430.21370.65940.061*
C150.5111 (3)0.3232 (2)0.6119 (2)0.0620 (8)
H15A0.60090.29630.60790.074*
H15B0.48830.34680.56090.074*
C160.4055 (3)0.37482 (18)0.72109 (17)0.0493 (7)
N10.0205 (3)0.50032 (18)0.43012 (15)0.0629 (8)
H1N0.033 (3)0.5304 (17)0.3909 (18)0.045 (8)*
N20.1176 (2)0.45637 (13)0.77153 (14)0.0409 (5)
H2N0.140 (3)0.410 (2)0.7665 (18)0.055 (9)*
N30.3355 (3)0.30845 (16)0.70100 (14)0.0475 (6)
H3N0.267 (3)0.2929 (18)0.7295 (17)0.045 (8)*
O10.5145 (2)0.38531 (14)0.67156 (14)0.0645 (6)
O20.3834 (3)0.42235 (15)0.77492 (14)0.0745 (7)
C170.1137 (3)0.19909 (16)0.86265 (14)0.0408 (6)
H17A0.07810.14680.88070.049*
H17B0.08610.23980.90130.049*
C180.2717 (3)0.19445 (14)0.86231 (14)0.0348 (5)
C190.3411 (3)0.14104 (17)0.92874 (16)0.0435 (6)
C200.4911 (3)0.1638 (2)0.9037 (2)0.0604 (8)
H200.56410.13950.93660.072*
C210.4904 (4)0.2560 (2)0.9033 (2)0.0783 (11)
H21A0.51110.27770.95530.094*
H21B0.55710.27750.86560.094*
C220.3429 (4)0.27545 (19)0.87891 (19)0.0620 (9)
C230.4940 (4)0.1362 (3)0.8170 (2)0.0751 (10)
H23A0.56630.16430.78760.090*
H23B0.50830.07770.81280.090*
C240.3464 (3)0.1611 (2)0.78774 (17)0.0558 (8)
H24A0.29720.11430.76640.067*
H24B0.35250.20290.74720.067*
C250.3082 (4)0.0502 (2)0.9218 (3)0.0792 (12)
H25A0.21270.04090.93600.119*
H25B0.32350.03260.86840.119*
H25C0.36780.01990.95660.119*
C260.3051 (4)0.1701 (3)1.01219 (18)0.0801 (12)
H26A0.30630.22881.01370.120*
H26B0.21400.15081.02630.120*
H26C0.37230.14901.04890.120*
O30.0361 (2)0.15236 (11)0.72175 (11)0.0573 (5)
O40.1100 (3)0.2448 (2)0.79331 (14)0.1048 (11)
O50.1058 (3)0.29142 (12)0.73597 (13)0.0749 (8)
O60.2914 (4)0.34217 (14)0.8749 (2)0.1083 (12)
S10.02957 (8)0.22350 (4)0.77060 (4)0.04460 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0593 (19)0.0592 (18)0.0505 (17)0.0088 (15)0.0212 (15)0.0166 (15)
C20.0432 (15)0.0447 (15)0.0365 (13)0.0087 (12)0.0120 (11)0.0081 (11)
C30.0436 (14)0.0465 (14)0.0265 (11)0.0161 (12)0.0052 (10)0.0010 (10)
C40.0453 (14)0.0422 (14)0.0267 (11)0.0141 (12)0.0002 (11)0.0047 (10)
C50.0464 (15)0.0500 (15)0.0397 (14)0.0106 (13)0.0026 (12)0.0189 (12)
C60.0571 (18)0.080 (2)0.0391 (15)0.0181 (17)0.0099 (14)0.0234 (16)
C70.069 (2)0.086 (2)0.0270 (13)0.0355 (19)0.0087 (14)0.0131 (15)
C80.0574 (17)0.0586 (17)0.0267 (12)0.0257 (15)0.0096 (12)0.0046 (12)
C90.0379 (14)0.0460 (15)0.0483 (15)0.0014 (12)0.0050 (12)0.0090 (12)
C100.0427 (14)0.0321 (12)0.0381 (13)0.0045 (11)0.0017 (11)0.0039 (10)
C110.0527 (17)0.0578 (18)0.0604 (19)0.0066 (14)0.0148 (14)0.0020 (15)
C120.076 (2)0.0569 (18)0.0416 (15)0.0020 (16)0.0107 (15)0.0068 (13)
C130.0559 (18)0.0446 (16)0.0631 (18)0.0028 (14)0.0102 (14)0.0240 (14)
C140.0463 (16)0.0484 (16)0.0575 (17)0.0079 (13)0.0056 (13)0.0049 (14)
C150.0440 (17)0.077 (2)0.0649 (19)0.0053 (16)0.0100 (15)0.0075 (17)
C160.0509 (16)0.0526 (16)0.0443 (16)0.0047 (14)0.0071 (14)0.0004 (14)
N10.0788 (19)0.0745 (18)0.0354 (13)0.0276 (16)0.0188 (13)0.0234 (13)
N20.0527 (14)0.0253 (10)0.0448 (12)0.0034 (10)0.0037 (11)0.0049 (10)
N30.0419 (13)0.0567 (14)0.0440 (13)0.0070 (11)0.0081 (11)0.0072 (11)
O10.0548 (14)0.0652 (13)0.0734 (14)0.0148 (11)0.0107 (12)0.0099 (11)
O20.0937 (18)0.0658 (14)0.0641 (14)0.0052 (13)0.0040 (14)0.0220 (12)
C170.0480 (15)0.0470 (15)0.0273 (12)0.0089 (12)0.0093 (11)0.0026 (11)
C180.0429 (13)0.0299 (11)0.0317 (12)0.0003 (10)0.0062 (10)0.0021 (10)
C190.0394 (14)0.0481 (15)0.0429 (14)0.0086 (12)0.0015 (11)0.0141 (12)
C200.0378 (16)0.080 (2)0.0634 (19)0.0016 (15)0.0032 (14)0.0246 (17)
C210.073 (2)0.083 (2)0.079 (2)0.031 (2)0.029 (2)0.0216 (19)
C220.085 (2)0.0398 (16)0.0612 (19)0.0119 (17)0.0350 (17)0.0041 (15)
C230.050 (2)0.102 (3)0.074 (2)0.0079 (19)0.0205 (17)0.013 (2)
C240.0520 (17)0.073 (2)0.0422 (16)0.0025 (15)0.0098 (13)0.0023 (15)
C250.070 (2)0.054 (2)0.115 (3)0.0042 (17)0.005 (2)0.041 (2)
C260.065 (2)0.136 (3)0.0394 (17)0.029 (2)0.0016 (16)0.021 (2)
O30.0829 (14)0.0450 (10)0.0439 (11)0.0185 (10)0.0155 (11)0.0001 (9)
O40.0706 (17)0.185 (3)0.0594 (15)0.056 (2)0.0212 (13)0.0065 (18)
O50.138 (2)0.0327 (10)0.0540 (12)0.0138 (12)0.0425 (14)0.0078 (9)
O60.155 (3)0.0355 (12)0.134 (3)0.0033 (16)0.089 (2)0.0099 (14)
S10.0568 (4)0.0423 (3)0.0347 (3)0.0072 (3)0.0152 (3)0.0009 (3)
Geometric parameters (Å, º) top
C1—C21.370 (4)C15—H15B0.9700
C1—N11.374 (4)C16—O21.217 (4)
C1—H10.9300C16—N31.321 (4)
C2—C31.430 (4)C16—O11.351 (4)
C2—C91.499 (4)N1—H1N0.83 (3)
C3—C41.406 (4)N2—H2N0.79 (3)
C3—C81.414 (4)N3—H3N0.85 (3)
C4—C51.388 (4)C17—C181.519 (4)
C4—H40.9300C17—S11.800 (2)
C5—C61.410 (4)C17—H17A0.9700
C5—C131.501 (4)C17—H17B0.9700
C6—C71.369 (5)C18—C221.517 (4)
C6—H60.9300C18—C241.551 (4)
C7—C81.396 (5)C18—C191.572 (3)
C7—H70.9300C19—C251.524 (4)
C8—N11.366 (4)C19—C261.530 (4)
C9—C101.518 (4)C19—C201.547 (4)
C9—H9A0.9700C20—C211.508 (5)
C9—H9B0.9700C20—C231.535 (5)
C10—N21.495 (3)C20—H200.9800
C10—H10A0.9700C21—C221.509 (5)
C10—H10B0.9700C21—H21A0.9700
C11—N21.483 (4)C21—H21B0.9700
C11—H11A0.9600C22—O61.200 (4)
C11—H11B0.9600C23—C241.555 (5)
C11—H11C0.9600C23—H23A0.9700
C12—N21.478 (4)C23—H23B0.9700
C12—H12A0.9600C24—H24A0.9700
C12—H12B0.9600C24—H24B0.9700
C12—H12C0.9600C25—H25A0.9600
C13—C141.525 (4)C25—H25B0.9600
C13—H13A0.9700C25—H25C0.9600
C13—H13B0.9700C26—H26A0.9600
C14—N31.452 (4)C26—H26B0.9600
C14—C151.528 (4)C26—H26C0.9600
C14—H140.9800O3—S11.429 (2)
C15—O11.433 (4)O4—S11.437 (3)
C15—H15A0.9700O5—S11.454 (2)
C2—C1—N1110.3 (3)C12—N2—C10110.7 (2)
C2—C1—H1124.9C11—N2—C10112.2 (2)
N1—C1—H1124.9C12—N2—H2N110 (2)
C1—C2—C3105.9 (3)C11—N2—H2N111 (2)
C1—C2—C9128.5 (3)C10—N2—H2N102 (2)
C3—C2—C9125.5 (2)C16—N3—C14113.9 (3)
C4—C3—C8119.1 (3)C16—N3—H3N119 (2)
C4—C3—C2133.4 (2)C14—N3—H3N126 (2)
C8—C3—C2107.4 (2)C16—O1—C15109.2 (2)
C5—C4—C3120.1 (2)C18—C17—S1117.12 (19)
C5—C4—H4120.0C18—C17—H17A108.0
C3—C4—H4120.0S1—C17—H17A108.0
C4—C5—C6118.8 (3)C18—C17—H17B108.0
C4—C5—C13119.9 (3)S1—C17—H17B108.0
C6—C5—C13121.3 (3)H17A—C17—H17B107.3
C7—C6—C5122.9 (3)C22—C18—C17113.9 (2)
C7—C6—H6118.6C22—C18—C24104.5 (3)
C5—C6—H6118.6C17—C18—C24118.9 (2)
C6—C7—C8118.0 (3)C22—C18—C1999.3 (2)
C6—C7—H7121.0C17—C18—C19116.6 (2)
C8—C7—H7121.0C24—C18—C19101.0 (2)
N1—C8—C7131.4 (3)C25—C19—C26109.1 (3)
N1—C8—C3107.4 (3)C25—C19—C20114.0 (3)
C7—C8—C3121.2 (3)C26—C19—C20112.9 (3)
C2—C9—C10110.2 (2)C25—C19—C18113.5 (3)
C2—C9—H9A109.6C26—C19—C18113.0 (2)
C10—C9—H9A109.6C20—C19—C1893.7 (2)
C2—C9—H9B109.6C21—C20—C23106.9 (3)
C10—C9—H9B109.6C21—C20—C19103.8 (3)
H9A—C9—H9B108.1C23—C20—C19102.0 (3)
N2—C10—C9113.9 (2)C21—C20—H20114.3
N2—C10—H10A108.8C23—C20—H20114.3
C9—C10—H10A108.8C19—C20—H20114.3
N2—C10—H10B108.8C20—C21—C22102.5 (3)
C9—C10—H10B108.8C20—C21—H21A111.3
H10A—C10—H10B107.7C22—C21—H21A111.3
N2—C11—H11A109.5C20—C21—H21B111.3
N2—C11—H11B109.5C22—C21—H21B111.3
H11A—C11—H11B109.5H21A—C21—H21B109.2
N2—C11—H11C109.5O6—C22—C21126.5 (3)
H11A—C11—H11C109.5O6—C22—C18126.7 (3)
H11B—C11—H11C109.5C21—C22—C18106.8 (3)
N2—C12—H12A109.5C20—C23—C24102.2 (3)
N2—C12—H12B109.5C20—C23—H23A111.3
H12A—C12—H12B109.5C24—C23—H23A111.3
N2—C12—H12C109.5C20—C23—H23B111.3
H12A—C12—H12C109.5C24—C23—H23B111.3
H12B—C12—H12C109.5H23A—C23—H23B109.2
C5—C13—C14115.7 (2)C18—C24—C23104.7 (2)
C5—C13—H13A108.4C18—C24—H24A110.8
C14—C13—H13A108.4C23—C24—H24A110.8
C5—C13—H13B108.4C18—C24—H24B110.8
C14—C13—H13B108.4C23—C24—H24B110.8
H13A—C13—H13B107.4H24A—C24—H24B108.9
N3—C14—C13114.3 (2)C19—C25—H25A109.5
N3—C14—C1599.4 (2)C19—C25—H25B109.5
C13—C14—C15116.0 (3)H25A—C25—H25B109.5
N3—C14—H14108.9C19—C25—H25C109.5
C13—C14—H14108.9H25A—C25—H25C109.5
C15—C14—H14108.9H25B—C25—H25C109.5
O1—C15—C14106.3 (2)C19—C26—H26A109.5
O1—C15—H15A110.5C19—C26—H26B109.5
C14—C15—H15A110.5H26A—C26—H26B109.5
O1—C15—H15B110.5C19—C26—H26C109.5
C14—C15—H15B110.5H26A—C26—H26C109.5
H15A—C15—H15B108.7H26B—C26—H26C109.5
O2—C16—N3129.0 (3)O3—S1—O4113.13 (18)
O2—C16—O1121.3 (3)O3—S1—O5111.55 (13)
N3—C16—O1109.8 (3)O4—S1—O5113.1 (2)
C8—N1—C1108.9 (2)O3—S1—C17107.50 (12)
C8—N1—H1N128 (2)O4—S1—C17103.92 (14)
C1—N1—H1N123 (2)O5—S1—C17107.01 (13)
C12—N2—C11111.5 (2)
N1—C1—C2—C30.5 (3)C14—C15—O1—C169.2 (3)
N1—C1—C2—C9177.7 (2)S1—C17—C18—C2288.9 (3)
C1—C2—C3—C4178.3 (3)S1—C17—C18—C2434.9 (3)
C9—C2—C3—C40.9 (4)S1—C17—C18—C19156.25 (19)
C1—C2—C3—C80.6 (3)C22—C18—C19—C25171.4 (3)
C9—C2—C3—C8176.8 (2)C17—C18—C19—C2565.7 (3)
C8—C3—C4—C51.8 (3)C24—C18—C19—C2564.6 (3)
C2—C3—C4—C5175.7 (3)C22—C18—C19—C2663.6 (3)
C3—C4—C5—C62.3 (4)C17—C18—C19—C2659.3 (3)
C3—C4—C5—C13175.5 (2)C24—C18—C19—C26170.4 (3)
C4—C5—C6—C70.8 (4)C22—C18—C19—C2053.2 (3)
C13—C5—C6—C7176.9 (3)C17—C18—C19—C20176.1 (2)
C5—C6—C7—C81.1 (4)C24—C18—C19—C2053.6 (3)
C6—C7—C8—N1177.9 (3)C25—C19—C20—C21171.3 (3)
C6—C7—C8—C31.6 (4)C26—C19—C20—C2163.4 (3)
C4—C3—C8—N1179.5 (2)C18—C19—C20—C2153.5 (3)
C2—C3—C8—N11.4 (3)C25—C19—C20—C2360.4 (3)
C4—C3—C8—C70.2 (4)C26—C19—C20—C23174.4 (3)
C2—C3—C8—C7178.3 (2)C18—C19—C20—C2357.4 (3)
C1—C2—C9—C10113.1 (3)C23—C20—C21—C2274.8 (4)
C3—C2—C9—C1063.7 (3)C19—C20—C21—C2232.5 (4)
C2—C9—C10—N2168.9 (2)C20—C21—C22—O6175.5 (4)
C4—C5—C13—C1480.6 (3)C20—C21—C22—C183.3 (4)
C6—C5—C13—C1497.2 (3)C17—C18—C22—O617.3 (5)
C5—C13—C14—N360.9 (3)C24—C18—C22—O6113.9 (4)
C5—C13—C14—C1553.9 (3)C19—C18—C22—O6142.1 (4)
N3—C14—C15—O110.8 (3)C17—C18—C22—C21161.4 (3)
C13—C14—C15—O1133.9 (3)C24—C18—C22—C2167.3 (3)
C7—C8—N1—C1177.9 (3)C19—C18—C22—C2136.7 (3)
C3—C8—N1—C11.6 (3)C21—C20—C23—C2469.4 (3)
C2—C1—N1—C81.3 (3)C19—C20—C23—C2439.1 (3)
C9—C10—N2—C12172.2 (2)C22—C18—C24—C2371.1 (3)
C9—C10—N2—C1162.5 (3)C17—C18—C24—C23160.6 (3)
O2—C16—N3—C14175.0 (3)C19—C18—C24—C2331.7 (3)
O1—C16—N3—C144.7 (3)C20—C23—C24—C184.0 (3)
C13—C14—N3—C16134.0 (3)C18—C17—S1—O374.7 (2)
C15—C14—N3—C169.7 (3)C18—C17—S1—O4165.1 (2)
O2—C16—O1—C15177.1 (3)C18—C17—S1—O545.2 (2)
N3—C16—O1—C153.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.26 (3)3.059 (4)161 (3)
N2—H2N···O50.79 (3)2.03 (3)2.767 (3)154 (3)
N3—H3N···O40.85 (3)2.01 (3)2.866 (3)174 (3)
Symmetry code: (i) x+1/2, y+1, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H22N3O2+·C2HO4C16H22N3O2+·C10H15O4S
Mr377.39519.65
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)294294
a, b, c (Å)5.5944 (4), 17.9908 (14), 18.3844 (15)9.5992 (15), 16.361 (3), 16.927 (2)
α, β, γ (°)90, 92.220 (1), 9090, 90, 90
V3)1849.0 (2)2658.4 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.17
Crystal size (mm)0.19 × 0.17 × 0.090.17 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21294, 8509, 7991 31108, 6314, 5280
Rint0.0180.048
(sin θ/λ)max1)0.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04 0.062, 0.132, 1.10
No. of reflections85096314
No. of parameters523341
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.200.32, 0.16
Absolute structureFlack & Bernardinelli (2000), with 4320 Friedel pairsFlack & Bernardinelli (2000), with 2812 Friedel pairs
Absolute structure parameter0.4 (6)0.00 (9)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3A0.94 (3)2.12 (3)2.972 (2)150 (2)
N1—H1A···O1A0.94 (3)2.32 (3)3.048 (2)133 (2)
N2—H2···O1Bi0.92 (2)1.92 (2)2.754 (2)150 (2)
N2—H2···O4Bi0.92 (2)2.25 (2)2.936 (2)131 (2)
N3—H3···O2'0.84 (2)2.14 (2)2.954 (2)163 (2)
N1'—H1'A···O2B0.83 (2)2.24 (2)3.010 (2)155 (2)
N1'—H1'A···O3B0.83 (2)2.43 (2)3.065 (2)135 (2)
N2'—H2'···O2Aii0.86 (2)2.00 (2)2.775 (2)151 (2)
N2'—H2'···O4Aii0.86 (2)2.317 (19)2.962 (2)132 (2)
N3'—H3'···O20.83 (2)2.19 (2)2.963 (2)154 (2)
O4A—H4A···O1Aiii1.00 (3)1.49 (3)2.495 (1)174 (2)
O4B—H4B···O2Biv0.87 (3)1.63 (3)2.503 (1)172 (3)
Symmetry codes: (i) x1, y1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.26 (3)3.059 (4)161 (3)
N2—H2N···O50.79 (3)2.03 (3)2.767 (3)154 (3)
N3—H3N···O40.85 (3)2.01 (3)2.866 (3)174 (3)
Symmetry code: (i) x+1/2, y+1, z1/2.
Selected solid-state features of zolmitriptan structures top
Parameter(I), molecule A(I), molecule B(II)123a456a
ShapeStep-likeStep-likeCupCupL-shapedL-shapedL-shapedL-shapedL-shaped
Oxazolidinone ringEnvelopeTwistedTwistedTwistedTwistedPlanarPlanarPlanarPlanar
Ethylamide chainbac, ap, apac, ap, apac, ap, scac, sc, apsp, ap, apsp, ap, apsp, ap, apsp, ap, apsp, ap, ap
τ155.86 (10)53.16 (9)43.38 (15)77.18 (16)44.9 (3)49.98 (15)49.21 (11)48.78 (12)57.5 (2)
τ268.25 (9)84.86 (9)69.78 (14)69.89 (12)48.8 (2)64.59 (13)64.29 (9)60.83 (12)59.59 (14)
τ379.18 (12)74.20 (11)68.04 (18)68.88 (18)68.1 (3)65.55 (19)63.55 (13)63.46 (16)57.3 (3)
τ41.883 (2)1.7205 (12)1.424 (2)2.430 (2)0.111 (4)1.074 (2)0.1590 (15)0.2081 (17)0.579 (3)
d16.025.715.635.546.344.056.446.446.46
d24.044.234.053.903.996.474.054.044.02
d38.117.575.127.578.158.778.668.618.62
Notes: (I) and (II) = present structures; 1 = zolmitriptan base; 2 = zolmitriptan chloroform solvate; 3 = zolmitriptan phenol solvate; 4 = zolmitriptan benzene solvate; 5 = zolmitriptan pyridine solvate; 6 = zolmitriptan propiophenone solvate; τ1 = dihedral angle between the planes of the ethylamine group and the indole ring; τ2 = dihedral angle between the planes of the oxazolidinone and indole rings; τ3 = dihedral angle between the planes of the ethylamine group and the oxazolidinone ring; τ4 = distance from atom N2 to the plane of the indole ring; d1 = distance from atom N2 to the centroid of the C3–C8 ring; d2 = distance from atom N3 to the centroid of the C3–C8 ring; d3 = N2···N3 distance. (a) Only one zolmitriptan molecule has been taken for comparison. (b) Calculated from three torsion angles, viz.. C1—C2—C9—C10, C2—C9—C10—N2 and C9—C10—N2—C11.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds