organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2014-o2015

(E)-1-(4-Amino­phen­yl)-3-(2-chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, K. L. E. Society's K. L. E. Institute of Technology, Gokul Road, Hubli 590 030, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 August 2008; accepted 22 September 2008; online 27 September 2008)

The title compound, C15H12ClNO, a substituted chalcone, adopts an E configuration with respect to the C=C bond of the enone unit. The mol­ecule is not planar, as can be seen from the dihedral angle of 28.9 (2)° between the two rings which are twisted from each other. The enone segment of the mol­ecule is not coplanar with the chloro­phenyl ring, making a dihedral angle of 23.4 (3)° with it. The amino group is also not coplanar with the ring to which it is bound, making a dihedral angle of 35 (4)°. In the crystal structure, adjacent mol­ecules are linked by N—H⋯O inter­actions into one-dimensional infinite chains along the c axis, and are further stacked as one-dimensional zigzag chains down the b axis, forming two-dimensional extended networks parallel to the bc plane.

Related literature

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Patil et al. (2007a[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth, 303, 520-524.],b[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497-o2498.],c[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122-o2123.]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu et al. (2008a[Gu, B., Ji, W. & Huang, X.-Q. (2008a). Appl. Opt. 47, 1187-1192.],b[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008b). J. Appl. Phys. 103, 103511.],c[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008c). Appl. Phys. Lett. 92, 091118.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO

  • Mr = 257.71

  • Monoclinic, P 21 /c

  • a = 22.4670 (19) Å

  • b = 3.9254 (3) Å

  • c = 14.5796 (11) Å

  • β = 107.944 (6)°

  • V = 1223.26 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100.0 (1) K

  • 0.28 × 0.27 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.985

  • 12218 measured reflections

  • 2509 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.190

  • S = 1.13

  • 2509 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N1i 0.85 (4) 2.30 (5) 3.098 (6) 158 (4)
N1—H2N1⋯O1ii 0.83 (4) 2.10 (4) 2.923 (5) 171 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone derivatives exhibit fascinating nonlinear optical properties (Agrinskaya et al., 1999). Among the nonlinear optical applications, optical limiting (OL) has been particularly promising (Gu et al., 2008a; Gu, et al., 2008c). Optical limiters are devices that strongly attenuate intense optical beams while exhibiting high transmittance for low-intensity ambient light levels. This behavior has applications such as the protection of human eyes and optically sensitive equipments. Chalcone derivatives are very good candidates for optical limiting applications (Gu et al., 2008b). As a part of our crystallographic studies (Patil et al., 2007a; Patil et al., 2007b; Patil et al., 2007c), the title compound was synthesized and its crystal structure is reported.

The title compound (I, Fig 1), a substituted chalcone, adopts an E configuration with respect to the CC bond of the enone unit. Intramolecular C—H···O and C—H···Cl hydrogen bonds involving the enone group generate S(5) ring motifs (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The molecule is not planar, with a maximum deviation from the mean plane of C1–C15/N1/O1 being -1.135 (3) Å for atom Cl1. The amino group is also not coplanar with the phenyl ring to which it is bound. The dihedral angle between the C10–C15 ring and the N1-H1N1-H2N1 plane of the NH2 group is 34.7(3.7)°. The two phenyl rings are twisted to each other with the dihedral angle of 28.9 (2)°. Adjacent molecules are linked together by N—H···O interactions (Table 1) into 1-D infinite chains along the c axis in the crystal structure (Fig. 2). Such chains are further stacked as 1-D zigzag chains down the b-axis (Fig. 3), too, to form 2-D extended networks parallel to the bc plane.

Related literature top

For related literature on hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see Allen et al. (1987). For related structures, see, for example: Patil et al. (2007a,b,c). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Gu et al. (2008a,b,c).

Experimental top

The compound (I) was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol, 1.13 g) with p-aminoacetophenone (0.01 mol, 1.35 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30°). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Crystals suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

The hydrogen atoms of the amino group were located from the difference Fourier map and refined freely. The remaining H atoms were located in the riding model approximation with C—H= 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b-axis, showing 1-D extended chains along the c-axis, and stacking of these chains along the b-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I), viewed down the c-axis, showing 1-D zigzag chains along the b-axis.
(E)-1-(4-Aminophenyl)-3-(2-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H12ClNOF(000) = 536
Mr = 257.71Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2522 reflections
a = 22.4670 (19) Åθ = 2.9–30.2°
b = 3.9254 (3) ŵ = 0.30 mm1
c = 14.5796 (11) ÅT = 100 K
β = 107.944 (6)°Plate, yellow
V = 1223.26 (17) Å30.28 × 0.27 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 26.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.935, Tmax = 0.985k = 44
12218 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0752P)2 + 2.4541P]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C15H12ClNOV = 1223.26 (17) Å3
Mr = 257.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.4670 (19) ŵ = 0.30 mm1
b = 3.9254 (3) ÅT = 100 K
c = 14.5796 (11) Å0.28 × 0.27 × 0.06 mm
β = 107.944 (6)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1717 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.985Rint = 0.090
12218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.41 e Å3
2509 reflectionsΔρmin = 0.40 e Å3
171 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34916 (5)0.9235 (3)0.37527 (7)0.0286 (3)
O10.15206 (14)0.7004 (9)0.45043 (19)0.0269 (8)
N10.05603 (19)0.0034 (9)0.7731 (3)0.0191 (8)
C10.3762 (2)1.0766 (12)0.4936 (3)0.0209 (9)
C20.4360 (2)1.2147 (12)0.5233 (3)0.0253 (10)
H2A0.45941.22830.48070.030*
C30.4604 (2)1.3321 (12)0.6171 (3)0.0252 (10)
H3A0.50061.42300.63830.030*
C40.4246 (2)1.3131 (12)0.6790 (3)0.0249 (10)
H4A0.44071.39390.74170.030*
C50.3654 (2)1.1761 (12)0.6487 (3)0.0224 (10)
H5A0.34221.16670.69150.027*
C60.33907 (19)1.0500 (11)0.5547 (3)0.0190 (9)
C70.2757 (2)0.9108 (11)0.5222 (3)0.0209 (9)
H7A0.25660.89460.45600.025*
C80.24290 (19)0.8055 (11)0.5784 (3)0.0206 (10)
H8A0.26060.81780.64500.025*
C90.1783 (2)0.6678 (11)0.5372 (3)0.0199 (9)
C100.14809 (19)0.4951 (11)0.6006 (3)0.0180 (9)
C110.1771 (2)0.4548 (11)0.7004 (3)0.0195 (9)
H11A0.21720.54140.72840.023*
C120.14740 (19)0.2898 (11)0.7572 (3)0.0199 (9)
H12A0.16750.26550.82290.024*
C130.08702 (19)0.1580 (10)0.7165 (3)0.0169 (9)
C140.0572 (2)0.2036 (11)0.6173 (3)0.0187 (9)
H14A0.01680.12290.58920.022*
C150.08799 (19)0.3678 (11)0.5619 (3)0.0198 (10)
H15A0.06780.39440.49620.024*
H1N10.027 (2)0.133 (12)0.745 (3)0.010 (11)*
H2N10.081 (2)0.044 (11)0.827 (3)0.016 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0359 (7)0.0389 (7)0.0140 (5)0.0011 (6)0.0120 (4)0.0004 (5)
O10.0299 (17)0.040 (2)0.0094 (14)0.0045 (15)0.0036 (12)0.0015 (13)
N10.020 (2)0.022 (2)0.0140 (18)0.0022 (17)0.0038 (16)0.0004 (16)
C10.030 (2)0.021 (2)0.0133 (18)0.004 (2)0.0085 (17)0.0038 (18)
C20.029 (2)0.027 (3)0.023 (2)0.001 (2)0.0129 (19)0.0079 (19)
C30.022 (2)0.024 (3)0.027 (2)0.0013 (19)0.0033 (19)0.0067 (19)
C40.032 (3)0.024 (3)0.016 (2)0.002 (2)0.0024 (18)0.0014 (18)
C50.027 (2)0.025 (3)0.016 (2)0.003 (2)0.0082 (17)0.0047 (18)
C60.026 (2)0.014 (2)0.0195 (19)0.0019 (18)0.0104 (17)0.0034 (17)
C70.026 (2)0.024 (2)0.0122 (18)0.006 (2)0.0053 (16)0.0012 (18)
C80.026 (2)0.023 (2)0.0130 (19)0.0019 (19)0.0060 (17)0.0011 (17)
C90.023 (2)0.024 (2)0.0130 (19)0.0029 (19)0.0054 (17)0.0012 (17)
C100.023 (2)0.020 (2)0.0116 (18)0.0030 (18)0.0066 (16)0.0019 (16)
C110.021 (2)0.023 (2)0.0160 (19)0.0023 (19)0.0072 (16)0.0017 (18)
C120.026 (2)0.023 (2)0.0107 (18)0.0020 (19)0.0061 (17)0.0018 (17)
C130.023 (2)0.015 (2)0.0150 (19)0.0039 (18)0.0097 (16)0.0022 (16)
C140.021 (2)0.019 (2)0.0153 (19)0.0000 (18)0.0036 (16)0.0037 (17)
C150.025 (2)0.023 (3)0.0108 (18)0.0059 (19)0.0052 (16)0.0012 (17)
Geometric parameters (Å, º) top
Cl1—C11.749 (4)C7—C81.325 (6)
O1—C91.226 (5)C7—H7A0.9300
N1—C131.374 (5)C8—C91.491 (6)
N1—H1N10.84 (5)C8—H8A0.9300
N1—H2N10.83 (5)C9—C101.471 (6)
C1—C21.389 (6)C10—C151.386 (6)
C1—C61.400 (5)C10—C111.408 (5)
C2—C31.387 (6)C11—C121.376 (6)
C2—H2A0.9300C11—H11A0.9300
C3—C41.384 (6)C12—C131.401 (6)
C3—H3A0.9300C12—H12A0.9300
C4—C51.375 (6)C13—C141.405 (5)
C4—H4A0.9300C14—C151.375 (6)
C5—C61.404 (6)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.461 (6)
C13—N1—H1N1116 (3)C7—C8—C9121.4 (4)
C13—N1—H2N1111 (3)C7—C8—H8A119.3
H1N1—N1—H2N1120 (4)C9—C8—H8A119.3
C2—C1—C6122.7 (4)O1—C9—C10121.9 (4)
C2—C1—Cl1116.8 (3)O1—C9—C8118.5 (4)
C6—C1—Cl1120.6 (3)C10—C9—C8119.6 (3)
C3—C2—C1119.2 (4)C15—C10—C11117.6 (4)
C3—C2—H2A120.4C15—C10—C9119.3 (3)
C1—C2—H2A120.4C11—C10—C9123.0 (4)
C4—C3—C2119.5 (4)C12—C11—C10121.2 (4)
C4—C3—H3A120.3C12—C11—H11A119.4
C2—C3—H3A120.3C10—C11—H11A119.4
C5—C4—C3120.7 (4)C11—C12—C13120.4 (4)
C5—C4—H4A119.6C11—C12—H12A119.8
C3—C4—H4A119.6C13—C12—H12A119.8
C4—C5—C6121.7 (4)N1—C13—C12120.8 (4)
C4—C5—H5A119.1N1—C13—C14120.4 (4)
C6—C5—H5A119.1C12—C13—C14118.7 (4)
C1—C6—C5116.1 (4)C15—C14—C13119.9 (4)
C1—C6—C7122.2 (4)C15—C14—H14A120.0
C5—C6—C7121.6 (4)C13—C14—H14A120.0
C8—C7—C6126.0 (4)C14—C15—C10122.2 (4)
C8—C7—H7A117.0C14—C15—H15A118.9
C6—C7—H7A117.0C10—C15—H15A118.9
C6—C1—C2—C30.0 (7)C7—C8—C9—C10168.6 (4)
Cl1—C1—C2—C3178.4 (4)O1—C9—C10—C150.6 (6)
C1—C2—C3—C40.7 (7)C8—C9—C10—C15179.9 (4)
C2—C3—C4—C50.7 (7)O1—C9—C10—C11179.9 (4)
C3—C4—C5—C60.2 (7)C8—C9—C10—C110.7 (6)
C2—C1—C6—C50.8 (6)C15—C10—C11—C121.1 (6)
Cl1—C1—C6—C5179.1 (3)C9—C10—C11—C12179.6 (4)
C2—C1—C6—C7178.7 (4)C10—C11—C12—C130.1 (6)
Cl1—C1—C6—C73.0 (6)C11—C12—C13—N1177.7 (4)
C4—C5—C6—C10.9 (6)C11—C12—C13—C141.2 (6)
C4—C5—C6—C7178.8 (4)N1—C13—C14—C15178.0 (4)
C1—C6—C7—C8163.8 (5)C12—C13—C14—C151.5 (6)
C5—C6—C7—C818.5 (7)C13—C14—C15—C100.5 (7)
C6—C7—C8—C9179.9 (4)C11—C10—C15—C140.8 (6)
C7—C8—C9—O110.9 (7)C9—C10—C15—C14179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N1i0.85 (4)2.30 (5)3.098 (6)158 (4)
N1—H2N1···O1ii0.83 (4)2.10 (4)2.923 (5)171 (4)
C7—H7A···Cl10.932.693.081 (5)106
C7—H7A···O10.932.452.775 (6)101
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12ClNO
Mr257.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)22.4670 (19), 3.9254 (3), 14.5796 (11)
β (°) 107.944 (6)
V3)1223.26 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.28 × 0.27 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12218, 2509, 1717
Rint0.090
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.190, 1.13
No. of reflections2509
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N1i0.85 (4)2.30 (5)3.098 (6)158 (4)
N1—H2N1···O1ii0.83 (4)2.10 (4)2.923 (5)171 (4)
C7—H7A···Cl10.93002.69003.081 (5)106.00
C7—H7A···O10.93002.45002.775 (6)101.00
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional address: Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. IAR and HKF thank Universiti Sains Malaysia and the Malaysian Government for FRGS research grant No. 203/PFIZIK/671064. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, B., Ji, W. & Huang, X.-Q. (2008a). Appl. Opt. 47, 1187–1192.  Web of Science CrossRef PubMed Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008b). J. Appl. Phys. 103, 103511.  Web of Science CrossRef Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008c). Appl. Phys. Lett. 92, 091118.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28 659.  CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2014-o2015
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds