Download citation
Download citation
link to html
The crystal structures of five 1,4-dihydro-2,3-quinoxalinediones, antagonists of the NMDA modulatory glycine binding site on the excitary amino acid (EAA) receptor complex, have been determined: (I) 6,7-dinitro-1,4-dihydro-2,3-quinoxalinedione (DNQX); (II) 5,7-dinitro-1,4-dihydro-2,3-quinoxalinedione (MNQX); (III) 6-nitro-1,4-dihydro-2,3-quinoxalinedione hydrate; (IV) 6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione; (V) 5,7-dichloro-1,4-dihydro-2,3-quinoxalinedione dimethylformamide. The crystal structure of the most active compound (II) contains a unique intramolecular N—H...O(NO2) hydrogen bond, which may be important for activity, as semiempirical calculations show that this bond is stable over a wide range of dihedral angles between the planes of the molecule and of the nitro group. In the other compounds the intermolecular hydrogen bonds connect molecules into three-dimensional networks. In compounds (I), (III) and (IV) head-to-tail: π-stacking is found between molecules connected by a center of symmetry. The geometries of the hydrogen-bonded —NH—C=O fragments show evidence of π-cooperativity or resonance-assisted hydrogen bonding. Graph-set analysis of the hydrogen-bond patterns of quinoxalinedione derivatives shows a tendency to form two types of hydrogen-bonding motifs: a centrosymmetric dimeric ring and an infinite chain. Even though this pattern may be modified by the presence of additional hydrogen-bond acceptors and/or donors, as well as by solvent molecules, general similarities have been found. Comparison of all quinoxalinedione structures suggests that the hydrogen-bonding pattern necessary for the biological activity at the glycine binding site contains one donor and two acceptors.

Supporting information

cif

Crystallographic Information File (CIF)
Contains datablocks text, cr0473a, cr0473b, cr0473c, cr0473d, cr0473e

CCDC references: 131573; 131574; 131575; 131576; 131577

-1
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds