organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(2,4-Di­chloro­benzyl­­idene)-2,5-dimeth­­oxy­aniline

aCollege of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia 010051, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: guohaifu@zqu.edu.cn

(Received 26 January 2013; accepted 26 February 2013; online 2 March 2013)

In the title compound, C15H13Cl2NO2, which was obtained by a condensation reaction of 2,5-dimeth­oxy­aniline and 2,4-dichloro­benzaldehyde, the dihedral angle between the benzene rings is 51.94 (2)°. The 2,5-dimeth­oxy­phenyl and 2,4-dichloro­phenyl groups are attached to the ends of the N=C group in an E conformation. Intra­molecular C—H⋯Cl and C—H⋯N contacts are observed. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains parallel to the b axis.

Related literature

For the synthesis and applications of Schiff base–metal complexes, see: Jin et al. (2011[Jin, X.-D., Jin, Y.-H., Zou, Z.-Y., Cui, Z.-G., Wang, H.-B., Kang, P.-L., Ge, C.-H. & Li, K. (2011). J. Coord. Chem. 64, 1533-1543.]). For the preparation of Schiff base compounds by the condensation reaction between 2,4-dichloro­benzaldehyde with organic amines, see: Guo et al. (2012[Guo, H.-F., Pan, Y., Ma, D.-Y., Lu, K. & Qin, L. (2012). Transition Met. Chem. 37, 661-669.]). For standard bond lengths, see: Allen et al. (1987[Allen, F.-H., Kennard, O., Watson, D.-G., Brammer, L., Orpen, A.-G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Cl2NO2

  • Mr = 310.16

  • Monoclinic, P 21 /n

  • a = 13.2879 (12) Å

  • b = 5.1329 (5) Å

  • c = 21.1490 (18) Å

  • β = 96.622 (2)°

  • V = 1432.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.33 × 0.27 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.917

  • 7646 measured reflections

  • 2545 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.093

  • S = 1.04

  • 2545 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.62 3.357 (2) 137
C7—H7⋯Cl1 0.93 2.72 3.100 (1) 106
C13—H13⋯N1 0.93 2.52 2.826 (6) 100
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Burker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Burker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The field of Schiff bases and their complexes is rapidly developing mainly owing to facile synthesis and technological applications in many areas, such as biological activity (Jin et al., 2011). As an extension of our work in the structural characterization of Schiff base compounds (Guo et al., 2012), we synthesized the title compound. The title molecule, Fig. 1, has an E conformation around C=N double bond with a C8—C7—N1—C1 torsion angle = -174.5 (6) Å. The phenyl moiety (C1—C6/O1/O2) [maximum deviation of 0.052 (2) Å for the O2 atom] is almost planar with distances of 0.118 (3) Å (C14) and 0.298 (2) Å (C15) from the plane defined by the atoms C1—C6/O1/O2, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Guo et al., 2012). The dihedral angle between the substituted phenyl rings is 51.94 (2) Å. In the crystal, molecules are linked through C13—H13···O1 hydrogen bonds forming one-dimensional chains parallel to the b axis (Fig. 2). Moreover, intramolecular hydrogen bonding interactions are also observed (Table 1).

Related literature top

For the synthesis and applications of Schiff base–metal complexes, see: Jin et al. (2011). For the preparation of Schiff base compounds by the condensation reaction between 2,4-dichlorobenzaldehyde with organic amines, see: Guo et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Title compound was by prepared by the condensation of 2,5-dimethoxyaniline (4.60 g, 30 mmol) with 2,4-dichlorobenzaldehyde (5.25 g, 30 mmol) in ethanol (20 ml) as the reaction medium. The solution was refluxed for 3–4 h and then allowed to cool to room temperature. The yellow precipitate was recrystallized from ethanol to give the title compound as yellow crystals. Yield 6.20 g (66.7%). [m.p. 363–365 K; 1H NMR(CDCl3, delta, p.p.m.) 8.26 (s, 1H, HC=N), 6.90–7.88 (m, 6H, Ar—H), 3.74–3.86 (m, 6H); 13C NMR (CDCl3, delta, p.p.m.) 171.5, 153.5, 144.3, 140.0, 139.7, 137.4, 131.6, 130.3, 130.5, 129.8, 127.8, 115.5, 114.1, 111.5, 58.3, 57.1, 56.7, 55.9, 55.8, 55.7].

Refinement top

All H atoms were located on the difference maps, and were treated as riding atoms with C—H distances of 0.93 and 0.96 Å, for aryl and methyl, respectively, with Uiso(H) = 1.5Ueq (methyl C-atoms) and 1.2Ueq(non-methyl C-atoms). The hightest peak is located 0.99 Å from Cl2 and the deepest hole is located 0.80 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view parallel to the a axis of crystal packing of the title compound, showing how the molecules are linked via hydrogen bonds (dashed lines). Only the H atoms involved in these interactions are shown.
(E)-N-(2,4-Dichlorobenzylidene)-2,5-dimethoxyaniline top
Crystal data top
C15H13Cl2NO2F(000) = 640
Mr = 310.16Dx = 1.438 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5300 reflections
a = 13.2879 (12) Åθ = 1.3–28.0°
b = 5.1329 (5) ŵ = 0.45 mm1
c = 21.1490 (18) ÅT = 296 K
β = 96.622 (2)°Block, yellow
V = 1432.9 (2) Å30.33 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.875, Tmax = 0.917k = 66
7646 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4104P]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max = 0.002
183 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H13Cl2NO2V = 1432.9 (2) Å3
Mr = 310.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2879 (12) ŵ = 0.45 mm1
b = 5.1329 (5) ÅT = 296 K
c = 21.1490 (18) Å0.33 × 0.27 × 0.22 mm
β = 96.622 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2166 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.917Rint = 0.020
7646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2545 reflectionsΔρmin = 0.18 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23947 (13)0.0926 (3)0.90147 (8)0.0410 (4)
C20.31359 (13)0.0886 (4)0.88812 (8)0.0445 (4)
C30.29198 (16)0.2578 (4)0.83778 (9)0.0534 (5)
H30.34010.38110.82950.064*
C40.20020 (16)0.2487 (4)0.79912 (9)0.0531 (5)
H40.18690.36510.76550.064*
C50.12894 (14)0.0656 (4)0.81105 (8)0.0479 (4)
C60.14928 (14)0.1034 (4)0.86207 (8)0.0449 (4)
H60.10100.22700.86990.054*
C70.19243 (13)0.3032 (4)0.98933 (8)0.0413 (4)
H70.13310.20570.98300.050*
C80.20445 (12)0.4962 (3)1.04073 (7)0.0384 (4)
C90.13326 (13)0.5323 (3)1.08379 (8)0.0395 (4)
C100.14630 (14)0.7172 (4)1.13174 (8)0.0448 (4)
H100.09820.73791.16000.054*
C110.23178 (15)0.8692 (4)1.13661 (8)0.0460 (4)
C120.30436 (16)0.8415 (4)1.09520 (9)0.0526 (5)
H120.36210.94531.09930.063*
C130.28939 (14)0.6569 (4)1.04783 (8)0.0480 (4)
H130.33770.63901.01960.058*
C140.47361 (16)0.2867 (5)0.92139 (12)0.0679 (6)
H14A0.44170.45280.92530.102*
H14B0.53000.26990.95380.102*
H14C0.49710.27360.88020.102*
C150.0017 (2)0.2339 (6)0.73297 (11)0.0803 (8)
H15A0.04480.24780.69960.121*
H15B0.06630.19670.71480.121*
H15C0.00280.39520.75600.121*
Cl10.02571 (3)0.33712 (10)1.08021 (2)0.05366 (16)
Cl20.24982 (5)1.10453 (10)1.19606 (2)0.06520 (19)
N10.26115 (11)0.2661 (3)0.95328 (7)0.0441 (4)
O10.40247 (10)0.0847 (3)0.92844 (7)0.0575 (4)
O20.03701 (11)0.0305 (3)0.77496 (7)0.0662 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (9)0.0381 (10)0.0413 (9)0.0026 (7)0.0125 (7)0.0004 (7)
C20.0446 (10)0.0457 (11)0.0454 (9)0.0017 (8)0.0139 (7)0.0044 (8)
C30.0615 (12)0.0460 (11)0.0561 (11)0.0066 (9)0.0211 (9)0.0026 (9)
C40.0670 (13)0.0485 (12)0.0461 (10)0.0092 (9)0.0164 (9)0.0087 (9)
C50.0491 (10)0.0535 (12)0.0421 (9)0.0095 (9)0.0100 (8)0.0005 (8)
C60.0436 (10)0.0477 (11)0.0449 (9)0.0010 (8)0.0113 (7)0.0028 (8)
C70.0404 (9)0.0417 (10)0.0413 (8)0.0014 (7)0.0034 (7)0.0020 (8)
C80.0423 (9)0.0361 (9)0.0365 (8)0.0048 (7)0.0024 (7)0.0037 (7)
C90.0400 (9)0.0377 (9)0.0403 (8)0.0047 (7)0.0016 (7)0.0062 (7)
C100.0535 (11)0.0430 (10)0.0376 (9)0.0129 (8)0.0046 (7)0.0027 (8)
C110.0643 (12)0.0354 (10)0.0357 (8)0.0070 (8)0.0054 (8)0.0023 (7)
C120.0587 (11)0.0481 (11)0.0491 (10)0.0106 (9)0.0019 (8)0.0025 (9)
C130.0496 (10)0.0517 (12)0.0435 (9)0.0029 (9)0.0090 (8)0.0014 (8)
C140.0483 (12)0.0714 (15)0.0875 (16)0.0155 (10)0.0219 (11)0.0111 (13)
C150.0758 (16)0.102 (2)0.0615 (13)0.0301 (15)0.0016 (11)0.0213 (14)
Cl10.0457 (3)0.0577 (3)0.0593 (3)0.0027 (2)0.0129 (2)0.0005 (2)
Cl20.0955 (4)0.0480 (3)0.0478 (3)0.0076 (3)0.0101 (2)0.0082 (2)
N10.0450 (8)0.0451 (9)0.0425 (8)0.0008 (7)0.0065 (6)0.0023 (7)
O10.0463 (7)0.0635 (9)0.0628 (8)0.0102 (6)0.0072 (6)0.0008 (7)
O20.0571 (9)0.0824 (11)0.0569 (8)0.0062 (8)0.0026 (6)0.0149 (8)
Geometric parameters (Å, º) top
C1—C61.380 (2)C9—C101.385 (3)
C1—C21.407 (2)C9—Cl11.7397 (18)
C1—N11.416 (2)C10—C111.372 (3)
C2—O11.375 (2)C10—H100.9300
C2—C31.379 (3)C11—C121.383 (3)
C3—C41.389 (3)C11—Cl21.7399 (18)
C3—H30.9300C12—C131.376 (3)
C4—C51.378 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—O21.376 (2)C14—O11.423 (2)
C5—C61.387 (3)C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—N11.270 (2)C14—H14C0.9600
C7—C81.466 (2)C15—O21.415 (3)
C7—H70.9300C15—H15A0.9600
C8—C131.392 (3)C15—H15B0.9600
C8—C91.399 (2)C15—H15C0.9600
C6—C1—C2119.02 (16)C11—C10—C9118.51 (16)
C6—C1—N1121.81 (16)C11—C10—H10120.7
C2—C1—N1119.12 (16)C9—C10—H10120.7
O1—C2—C3125.15 (17)C10—C11—C12121.70 (17)
O1—C2—C1115.92 (16)C10—C11—Cl2119.53 (14)
C3—C2—C1118.91 (17)C12—C11—Cl2118.77 (15)
C2—C3—C4121.60 (18)C13—C12—C11118.63 (18)
C2—C3—H3119.2C13—C12—H12120.7
C4—C3—H3119.2C11—C12—H12120.7
C5—C4—C3119.38 (18)C12—C13—C8122.25 (17)
C5—C4—H4120.3C12—C13—H13118.9
C3—C4—H4120.3C8—C13—H13118.9
O2—C5—C4124.94 (17)O1—C14—H14A109.5
O2—C5—C6115.51 (17)O1—C14—H14B109.5
C4—C5—C6119.53 (18)H14A—C14—H14B109.5
C1—C6—C5121.49 (17)O1—C14—H14C109.5
C1—C6—H6119.3H14A—C14—H14C109.5
C5—C6—H6119.3H14B—C14—H14C109.5
N1—C7—C8121.49 (17)O2—C15—H15A109.5
N1—C7—H7119.3O2—C15—H15B109.5
C8—C7—H7119.3H15A—C15—H15B109.5
C13—C8—C9116.89 (16)O2—C15—H15C109.5
C13—C8—C7119.87 (15)H15A—C15—H15C109.5
C9—C8—C7123.23 (16)H15B—C15—H15C109.5
C10—C9—C8122.02 (17)C7—N1—C1117.58 (15)
C10—C9—Cl1117.34 (13)C2—O1—C14117.26 (17)
C8—C9—Cl1120.61 (14)C5—O2—C15117.40 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.623.357 (2)137
C7—H7···Cl10.932.723.100 (1)106
C13—H13···N10.932.522.826 (6)100
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13Cl2NO2
Mr310.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.2879 (12), 5.1329 (5), 21.1490 (18)
β (°) 96.622 (2)
V3)1432.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.33 × 0.27 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
7646, 2545, 2166
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.093, 1.04
No. of reflections2545
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.623.357 (2)137
C7—H7···Cl10.932.723.100 (1)106
C13—H13···N10.932.522.826 (6)100
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported financially by the Science and Technology Planning Project of Zhaoqing City (2012 G030), the Science and Technology Innovation Planning Project of Zhaoqing City (2012 G013) and the Distinguished Young Talents in Higher Education of Guangdong Province (2012LYM_0134).

References

First citationAllen, F.-H., Kennard, O., Watson, D.-G., Brammer, L., Orpen, A.-G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Burker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, H.-F., Pan, Y., Ma, D.-Y., Lu, K. & Qin, L. (2012). Transition Met. Chem. 37, 661–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, X.-D., Jin, Y.-H., Zou, Z.-Y., Cui, Z.-G., Wang, H.-B., Kang, P.-L., Ge, C.-H. & Li, K. (2011). J. Coord. Chem. 64, 1533–1543.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds