Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The solvothermal reactions of 2,6-bis­(1H-benzimidazol-2-yl)pyridine (H2bpp) and hydrated ZnCl2 in the presence of pyridine-2,4-di­carb­oxy­lic acid (2,4-pdcH2) or pyridine-2,5-di­carb­oxy­lic acid (2,5-pdcH2) afforded the title one-dimensional linear compounds, [Zn(C7H3NO4)(C19H13N5)]n or [Zn(2,4-pdc)(H2bpp)]n, (I), and [Zn(C7H3NO4)(C19H13N5)]n or [Zn(2,5-pdc)(H2bpp)]n, (II), respectively. The ZnII cations in these compounds have closely comparable geometries and both are octa­hedrally coordinated by N4O2 donor sets. The thermal stabilities have been investigated by thermogravimetric analysis (TGA) on the crystalline samples and their solid-state photoluminescence properties have been investigated at room temperature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113016168/yp3033sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016168/yp3033Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S0108270113016168/yp3033Isup3.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016168/yp3033IIsup4.hkl
Contains datablock II

CCDC references: 924309; 924310

Comment top

The rational design and synthesis of inorganic–organic hybrid materials, consisting of N/O-donor ligands and transition metal ions, is an attractive area in materials science (Ho & Wong, 2011). Benzimidazole and its derivatives have rich coordination chemistries and biological activities. Many compounds including this class of ligand exhibit antitumour, antiviral, anticancer, antimicrobial, antiprotozoal or analgesic properties (Hong et al., 2008). 2,6-Bis(1H-benzimidazol-2-yl)pyridine (H2bpp) has two adjacent nucleophilic benzimidazole rings which could bond to metal centres, either in a monodentate manner via the pyridine N atom or in a bridging manner through all the N atoms. In the first case, the pyrrole N—H groups of H2bpp readily form hydrogen-bonding interactions, which may lead to interesting molecular packing in the solid state. Thus, not only may H2bpp act as a tridentate ligand to metal ions but it also has the potential to form supramolecular interactions through ππ stacking and hydrogen bonding (Liu et al., 2011). Although the coordination chemistry of H2bpp is well researched, reports of H2bpp ligands with additional pyridyl multicarboxylic functional binding sites are rare (Tan et al., 2009). Moreover, there has been growing interest in the photochemistry of ZnII-containing coordination polymers because the coordination geometries can vary from tetrahedral through trigonal–bipyramidal and square–pyramidal to octahedral, making them suitable for the construction of luminescent coordination polymers (Zheng & Chen, 2004). Therefore, ZnII coordination compounds containing a mixture of H2bpp and pyridinedicarboxylic acid ligands are worthy of further study.

The asymmetric unit of catena-poly[[[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine]zinc(II)]-µ-pyridine-2,4-dicarboxylato-κ2O2:O4], (I), consists of one H2bpp ligand, one pyridine-2,4-dicarboxylate (2,4-pdc2-) ligand and one octahedrally coordinated ZnII cation (Fig. 1a). The coordination environment of the ZnII cation involves three N atoms from an H2bpp ligand and two symmetry-related 2,4-pdc2- ligands, one donating from the pyridine N atom and a carboxylate O atom, and the other from a carboxylate O atom only. The bridging mode of the 2,4-pdc2- ligand leads to an extended one-dimensional chain along the c axis (Fig. 2). Atoms O2 and O4 form strong hydrogen bonds with the N—H group of an adjacent [Zn(2,4-pdc)(H2bpp)] unit, which is indicated by the shorter N5···O4i and N2···O2ii distances (see Table 2 for hydrogen-bond details and symmetry codes). In addition, extensive intra- and intermolecular ππ interactions are found. The pyridine rings of the H2bpp and 2,4-pdc2- ligands form offset face-to-face ππ stacks, with an average centroid-to-centroid distance of 3.676(s.u.?) Å. π-Stacking interactions also exist between the benzimidazole rings of adjacent chains, with an average centroid-to-centroid distance of 4.139(s.u.?) Å. The pyridine ring of the H2bpp ligand is coplanar with the two adjacent benzimidazole rings. The carboxylate groups of the 2,4-pdc2- ligand form different dihedral angles with respect to the attached pyridine ring, with values of 10.1(s.u.?) and 30.8(s.u.?)°. This difference possibly results from the different bonding modes and intermolecular hydrogen bonds with the N—H group of the H2bpp ligand. These relatively weak interactions could be regarded as the stabilizing factor for (I). The equatorial Zn—N bond lengths are normal (Table 1) and the axial Zn—O bond lengths are similar to those of related Zn compounds containing these types of ligands (Erxleben, 2003). The closest intra-chain Zn···Zn separation is 7.940(s.u.?) Å.

The asymmetric unit of catena-poly[[[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine]zinc(II)]-µ-pyridine-2,5-dicarboxylato-κ2O2:O5], (II), consists of one H2bpp ligand, one pyridine-2,5-dicarboxylate (2,5-pdc2-) ligand and one ZnII cation (Fig. 1b). As in (I), the ZnII cation is six-coordinated in a distorted octahedral geometry via four N- and two O-atom donors. The coordination environment of the ZnII cayion is closely comparable with that of (I). The dihedral angles of the carboxylate groups of the 2,5-pdc2- ligands with respect to the attached pyridine ring are 19.0(s.u.?) and 21.9(s.u.?)°. The N—H groups of the H2bpp ligand also form strong hydrogen bonds with the carboxylate O atoms (N5···O4 and N2···O1; see Table 4 for hydrogen-bond details and symmetry codes). The equatorial Zn—N bond lengths (Table 3) are similar to those of (I). The axial Zn—O3i bond is significantly shorter than the Zn—O1 bond. The bridging behaviour of the 2,5-pdc2- ligand leads to a one-dimensional infinite zigzag chain along the b axis (Fig. 3). The closest intra-chain Zn···Zn separation is 8.488(s.u.?) Å. In the crystal packing, extensive ππ stacking interactions are found between benzimidazole rings, with an average centroid-to-centroid separation of 3.743(s.u.?) Å.

Thermogravimetric analysis (TGA) was performed on single-crystal samples of (I) and (II) under an N2 atmosphere with a heating rate of 10 K min-1. The TGA curve shows that both compounds have good thermal stability, since no clean weight-loss step occurs below 653 K. The sharp weight loss above 797 K is due to the decomposition of the framework structures. [No TGA curves have been supplied - do you wish to include them?]

The photoluminescence properties of (I) and (II) have been explored at room temperature in the solid state, as shown in Fig. 4. The free H2bpp ligand displays blue luminescence with a maximum of 397 nm, which is predominantly fluorescence from π π* transitions. Upon excitation at λex = 370 nm, (I) and (II) show emission maxima at 428 and 414 nm, respectively, which are 31 and 17 nm red-shifted compared with free H2bpp. The emission bands may result from intraligand π π* transition between the π-bonding orbital (highest occupied molecular orbital, HOMO) and π*-antibonding orbital (lowest unoccupied molecular orbital, LUMO) of the H2bpp ligand, rather than metal-to-ligand charge transfer (MLCT) or ligand-to-metal charge transfer (LMCT). The red shift may be assigned to the nature of the ligand bonding (chelating or bridging) to the ZnII centre, which changes the rigidity and conjugation of the H2bpp ligand. These two compounds display photoluminescence in the blue region, which suggests potential as blue light-emitting materials (Liu et al., 2010).

Related literature top

For related literature, see: Erxleben (2003); Ho & Wong (2011); Hong et al. (2008); Liu et al. (2010, 2011); Tan et al. (2009); Zheng & Chen (2004).

Experimental top

For the synthesis of [Zn(2,4-pdc)(H2bpp)]n, (I), the hydrothermal treatment of ZnCl2.4H2O (27.5 mg, 0.2 mmol), 2,6-bis(1H-benzimidazol-2-yl)pyridine (62.2 mg, 0.2 mmol) and pyridine-2,4-dicarboxylic acid (36.8 mg, 0.22 mmol) in a mixture of EtOH and water (13 ml, 1:1v/v) for 3 d at 413 K produced a colourless block-shaped crystalline solid [yield 70.4 mg, 0.13 mmol, 65% based on 2,6-bis(1H-benzimidazol-2-yl)pyridine]. Analysis, calculated for C26H16N6O4Zn: C 57.64, H 2.98, N 15.51%; found: C 57.60, H 2.80, N 15.62%. IR (KBr, ν, cm-1): 3415 (w), 1641 (m), 1599 (s), 1581 (s), 1544 (m), 1463 (s), 1358 (s), 1321 (s), 997 (m), 745 (m), 720 (s).

[Zn(2,5-pdc)(H2bpp)]n, (II), was prepared according to a procedure similar to that used for the preparation of (I), except that pyridine-2,5-dicarboxylic acid (36.8 mg, 0.22 mmol) was used in place of pyridine-2,4-dicarboxylic acid [yield 58.5 mg, 0.11 mmol, 54% based on 2,6-bis(1H-benzimidazol-2-yl)pyridine]. Analysis, calculated for C26H16N6O4Zn: C 57.64, H 2.98, N 15.51%; found: C 57.58, H 3.00, N 15.55%. IR (KBr, ν, cm-1): 3425 (w), 1646 (m), 1614 (s), 1594 (m), 1461 (m), 1395 (s), 1337 (s), 1320 (m), 1037 (m), 821 (m), 769 (m).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
Fig. 1. The molecular structures of (a) (I) and (b) (II), showing the coordination environments of the ZnII cations and the atom-numbering schemes. Displacement ellipsoids are drawn at the ??% probability level [Please complete]. H atoms except those on N atoms have been omitted for clarity. [Symmetry codes: in (I), (i) x + 1/2, -y + 1/2, z + 1/2; in (II), (i) -x + 1, y + 1/2, -z + 1/2.]

Fig. 2. A perspective drawing showing the one-dimensional linear chain of (I).

Fig. 3. A perspective drawing showing the one-dimensional zigzag chain of (II).

Fig. 4. The emission spectra of (I) and (II) in the solid state at room temperature.
(I) catena-Poly[[[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine]zinc(II)]-µ-pyridine-2,4-dicarboxylato-κ2O2:O4] top
Crystal data top
[Zn(C7H3NO4)(C19H13N5)]F(000) = 1104
Mr = 541.82Dx = 1.635 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1463 reflections
a = 8.3782 (6) Åθ = 2.6–28.5°
b = 18.1569 (19) ŵ = 1.17 mm1
c = 14.7588 (15) ÅT = 293 K
β = 101.309 (8)°Block, colourless
V = 2201.6 (4) Å30.26 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEX area-dectector
diffractometer
3858 independent reflections
Radiation source: fine-focus sealed tube3041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.756, Tmax = 0.840k = 2121
6495 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3490 reflectionsΔρmax = 0.44 e Å3
334 parametersΔρmin = 0.33 e Å3
2 restraintsAbsolute structure: Flack (1983), 1602 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (12)
Crystal data top
[Zn(C7H3NO4)(C19H13N5)]V = 2201.6 (4) Å3
Mr = 541.82Z = 4
Monoclinic, CcMo Kα radiation
a = 8.3782 (6) ŵ = 1.17 mm1
b = 18.1569 (19) ÅT = 293 K
c = 14.7588 (15) Å0.26 × 0.20 × 0.15 mm
β = 101.309 (8)°
Data collection top
Bruker APEX area-dectector
diffractometer
3858 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3041 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.840Rint = 0.046
6495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.44 e Å3
S = 1.02Δρmin = 0.33 e Å3
3490 reflectionsAbsolute structure: Flack (1983), 1602 Friedel pairs
334 parametersAbsolute structure parameter: 0.014 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.60568 (5)0.29903 (3)0.72505 (4)0.02624 (14)
N10.4548 (4)0.3858 (2)0.7702 (3)0.0268 (9)
N20.4439 (4)0.4842 (2)0.8584 (3)0.0298 (10)
H2A0.47400.51730.90000.036*
N30.7651 (4)0.3591 (2)0.8306 (3)0.0238 (9)
N40.8305 (4)0.2421 (2)0.7415 (3)0.0254 (9)
N51.0853 (4)0.2286 (2)0.8186 (3)0.0272 (9)
H5A1.17530.23760.85630.033*
N60.4329 (4)0.2641 (2)0.6107 (3)0.0220 (8)
O10.6534 (3)0.37063 (19)0.6201 (2)0.0336 (8)
O20.5524 (4)0.4078 (2)0.4771 (3)0.0525 (11)
O30.0153 (3)0.27838 (18)0.3166 (2)0.0314 (8)
O40.1218 (3)0.2410 (2)0.4235 (2)0.0492 (11)
C10.2988 (5)0.4152 (3)0.7488 (3)0.0270 (11)
C20.1635 (5)0.3925 (3)0.6842 (4)0.0348 (13)
H20.16740.35060.64850.042*
C30.0250 (6)0.4338 (3)0.6748 (4)0.0409 (13)
H30.06750.41950.63280.049*
C40.0207 (6)0.4972 (3)0.7274 (4)0.0499 (16)
H40.07420.52510.71770.060*
C50.1512 (5)0.5203 (3)0.7932 (4)0.0407 (14)
H50.14620.56220.82870.049*
C60.2916 (5)0.4770 (3)0.8032 (3)0.0282 (11)
C70.5356 (5)0.4300 (3)0.8347 (3)0.0268 (11)
C80.7095 (5)0.4165 (2)0.8708 (3)0.0246 (10)
C90.8119 (5)0.4569 (3)0.9397 (3)0.0341 (12)
H90.77350.49680.96850.041*
C100.9725 (5)0.4346 (3)0.9629 (4)0.0379 (13)
H101.04430.46111.00720.045*
C111.0288 (5)0.3743 (3)0.9222 (3)0.0306 (12)
H111.13660.35910.93910.037*
C120.9192 (5)0.3370 (3)0.8551 (3)0.0243 (11)
C130.9475 (5)0.2711 (2)0.8047 (3)0.0227 (10)
C141.0517 (5)0.1684 (3)0.7601 (3)0.0276 (11)
C151.1439 (5)0.1073 (3)0.7470 (4)0.0327 (13)
H151.24830.10030.78140.039*
C161.0740 (6)0.0576 (3)0.6807 (4)0.0378 (14)
H161.13280.01630.66930.045*
C170.9168 (5)0.0679 (3)0.6306 (4)0.0368 (13)
H170.87360.03370.58550.044*
C180.8231 (6)0.1273 (3)0.6456 (3)0.0349 (12)
H180.71700.13290.61300.042*
C190.8935 (5)0.1785 (2)0.7115 (3)0.0247 (11)
C200.4189 (5)0.3103 (2)0.5385 (3)0.0224 (10)
C210.2852 (5)0.3078 (3)0.4668 (3)0.0280 (11)
H210.27990.33890.41620.034*
C220.1590 (5)0.2592 (3)0.4699 (3)0.0242 (10)
C230.1773 (5)0.2114 (3)0.5445 (3)0.0305 (12)
H230.09640.17740.54920.037*
C240.3173 (5)0.2151 (3)0.6117 (3)0.0270 (11)
H240.33070.18140.66000.032*
C250.5538 (5)0.3679 (3)0.5454 (4)0.0293 (11)
C260.0043 (5)0.2595 (3)0.3963 (3)0.0288 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0198 (2)0.0313 (3)0.0236 (3)0.0014 (3)0.00559 (18)0.0038 (3)
N10.0210 (18)0.029 (2)0.029 (2)0.0026 (17)0.0005 (17)0.0001 (18)
N20.029 (2)0.031 (2)0.030 (3)0.0031 (18)0.0056 (18)0.0089 (19)
N30.0181 (19)0.028 (2)0.022 (2)0.0013 (16)0.0033 (16)0.0015 (18)
N40.0203 (18)0.033 (2)0.022 (2)0.0010 (17)0.0008 (16)0.0049 (18)
N50.0199 (19)0.034 (2)0.025 (2)0.0023 (17)0.0042 (17)0.0022 (18)
N60.0207 (18)0.023 (2)0.020 (2)0.0034 (17)0.0028 (16)0.0018 (17)
O10.0256 (17)0.040 (2)0.031 (2)0.0081 (15)0.0067 (15)0.0022 (17)
O20.053 (2)0.054 (3)0.043 (3)0.0185 (19)0.0088 (19)0.028 (2)
O30.0321 (17)0.041 (2)0.0169 (19)0.0005 (15)0.0054 (14)0.0032 (15)
O40.0195 (17)0.083 (3)0.040 (2)0.0045 (18)0.0069 (16)0.007 (2)
C10.022 (2)0.027 (3)0.032 (3)0.003 (2)0.007 (2)0.001 (2)
C20.021 (2)0.041 (3)0.040 (4)0.005 (2)0.001 (2)0.006 (3)
C30.027 (3)0.049 (4)0.044 (4)0.003 (2)0.000 (2)0.001 (3)
C40.024 (3)0.052 (4)0.072 (5)0.015 (3)0.005 (3)0.002 (3)
C50.029 (3)0.041 (3)0.053 (4)0.007 (2)0.010 (3)0.007 (3)
C60.022 (2)0.032 (3)0.029 (3)0.001 (2)0.003 (2)0.002 (2)
C70.027 (3)0.026 (3)0.026 (3)0.005 (2)0.002 (2)0.001 (2)
C80.028 (2)0.022 (3)0.023 (3)0.000 (2)0.002 (2)0.000 (2)
C90.033 (3)0.038 (3)0.027 (3)0.007 (2)0.002 (2)0.010 (2)
C100.034 (3)0.038 (3)0.035 (3)0.001 (2)0.010 (2)0.007 (3)
C110.021 (2)0.031 (3)0.034 (3)0.002 (2)0.008 (2)0.007 (2)
C120.024 (2)0.031 (3)0.018 (3)0.001 (2)0.0034 (19)0.004 (2)
C130.018 (2)0.025 (3)0.023 (3)0.0004 (19)0.0008 (19)0.002 (2)
C140.024 (2)0.029 (3)0.031 (3)0.000 (2)0.009 (2)0.003 (2)
C150.015 (3)0.035 (3)0.047 (4)0.005 (2)0.004 (2)0.013 (3)
C160.038 (3)0.029 (3)0.050 (4)0.001 (2)0.017 (3)0.001 (3)
C170.038 (3)0.036 (3)0.038 (4)0.007 (2)0.011 (2)0.013 (3)
C180.033 (3)0.038 (3)0.031 (3)0.008 (2)0.001 (2)0.006 (2)
C190.022 (2)0.028 (3)0.024 (3)0.001 (2)0.005 (2)0.003 (2)
C200.020 (2)0.029 (3)0.017 (3)0.0019 (19)0.0007 (18)0.002 (2)
C210.028 (2)0.031 (3)0.022 (3)0.004 (2)0.0026 (19)0.002 (2)
C220.020 (2)0.028 (3)0.023 (3)0.001 (2)0.0007 (19)0.004 (2)
C230.021 (2)0.039 (3)0.029 (3)0.010 (2)0.002 (2)0.000 (2)
C240.026 (2)0.030 (3)0.022 (3)0.003 (2)0.001 (2)0.009 (2)
C250.025 (2)0.030 (3)0.031 (3)0.001 (2)0.000 (2)0.002 (2)
C260.020 (2)0.033 (3)0.029 (3)0.003 (2)0.004 (2)0.004 (2)
Geometric parameters (Å, º) top
Zn1—N62.095 (4)C4—H40.9300
Zn1—O12.119 (3)C5—C61.399 (6)
Zn1—N42.120 (3)C5—H50.9300
Zn1—N32.142 (4)C7—C81.470 (6)
Zn1—O3i2.186 (3)C8—C91.401 (6)
Zn1—N12.203 (4)C9—C101.382 (6)
N1—C71.325 (6)C9—H90.9300
N1—C11.390 (5)C10—C111.375 (6)
N2—C71.338 (6)C10—H100.9300
N2—C61.378 (5)C11—C121.388 (6)
N2—H2A0.8600C11—H110.9300
N3—C81.328 (5)C12—C131.454 (6)
N3—C121.333 (5)C14—C151.386 (6)
N4—C131.322 (5)C14—C191.390 (6)
N4—C191.379 (5)C15—C161.374 (6)
N5—C131.369 (5)C15—H150.9300
N5—C141.388 (6)C16—C171.392 (6)
N5—H5A0.8600C16—H160.9300
N6—C241.318 (5)C17—C181.376 (6)
N6—C201.342 (5)C17—H170.9300
O1—C251.247 (5)C18—C191.390 (6)
O2—C251.239 (5)C18—H180.9300
O3—C261.246 (6)C20—C211.383 (6)
O3—Zn1ii2.186 (3)C20—C251.528 (6)
O4—C261.248 (5)C21—C221.384 (6)
C1—C61.388 (7)C21—H210.9300
C1—C21.392 (6)C22—C231.387 (6)
C2—C31.366 (6)C22—C261.519 (6)
C2—H20.9300C23—C241.382 (6)
C3—C41.393 (8)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.377 (7)
N6—Zn1—O178.24 (13)N3—C8—C7112.2 (4)
N6—Zn1—N4113.77 (14)C9—C8—C7126.8 (4)
O1—Zn1—N495.30 (13)C10—C9—C8117.1 (4)
N6—Zn1—N3166.96 (14)C10—C9—H9121.4
O1—Zn1—N392.23 (14)C8—C9—H9121.4
N4—Zn1—N375.63 (14)C11—C10—C9121.6 (4)
N6—Zn1—O3i92.04 (13)C11—C10—H10119.2
O1—Zn1—O3i169.83 (12)C9—C10—H10119.2
N4—Zn1—O3i91.32 (13)C10—C11—C12117.7 (4)
N3—Zn1—O3i96.89 (13)C10—C11—H11121.2
N6—Zn1—N196.48 (13)C12—C11—H11121.2
O1—Zn1—N189.09 (13)N3—C12—C11121.1 (4)
N4—Zn1—N1149.71 (14)N3—C12—C13110.9 (4)
N3—Zn1—N174.26 (13)C11—C12—C13128.0 (4)
O3i—Zn1—N189.08 (13)N4—C13—N5111.7 (4)
C7—N1—C1104.8 (4)N4—C13—C12121.0 (4)
C7—N1—Zn1114.1 (3)N5—C13—C12127.2 (4)
C1—N1—Zn1140.9 (3)C15—C14—N5131.8 (4)
C7—N2—C6106.7 (4)C15—C14—C19122.3 (4)
C7—N2—H2A126.7N5—C14—C19105.9 (4)
C6—N2—H2A126.7C16—C15—C14117.0 (4)
C8—N3—C12121.4 (4)C16—C15—H15121.5
C8—N3—Zn1120.1 (3)C14—C15—H15121.5
C12—N3—Zn1118.5 (3)C15—C16—C17121.1 (4)
C13—N4—C19106.4 (4)C15—C16—H16119.5
C13—N4—Zn1114.0 (3)C17—C16—H16119.5
C19—N4—Zn1139.4 (3)C18—C17—C16122.0 (5)
C13—N5—C14106.7 (3)C18—C17—H17119.0
C13—N5—H5A126.6C16—C17—H17119.0
C14—N5—H5A126.6C17—C18—C19117.4 (4)
C24—N6—C20118.8 (4)C17—C18—H18121.3
C24—N6—Zn1126.0 (3)C19—C18—H18121.3
C20—N6—Zn1112.9 (3)N4—C19—C18130.4 (4)
C25—O1—Zn1115.6 (3)N4—C19—C14109.3 (4)
C26—O3—Zn1ii120.4 (3)C18—C19—C14120.2 (4)
C6—C1—N1108.9 (4)N6—C20—C21121.2 (4)
C6—C1—C2120.9 (4)N6—C20—C25115.2 (4)
N1—C1—C2130.2 (4)C21—C20—C25123.4 (4)
C3—C2—C1118.0 (5)C20—C21—C22120.3 (4)
C3—C2—H2121.0C20—C21—H21119.9
C1—C2—H2121.0C22—C21—H21119.9
C2—C3—C4120.7 (5)C21—C22—C23117.3 (4)
C2—C3—H3119.6C21—C22—C26121.6 (4)
C4—C3—H3119.6C23—C22—C26121.0 (4)
C5—C4—C3122.7 (5)C24—C23—C22119.1 (4)
C5—C4—H4118.6C24—C23—H23120.5
C3—C4—H4118.6C22—C23—H23120.5
C4—C5—C6116.0 (5)N6—C24—C23123.2 (4)
C4—C5—H5122.0N6—C24—H24118.4
C6—C5—H5122.0C23—C24—H24118.4
N2—C6—C1106.3 (4)O2—C25—O1126.4 (4)
N2—C6—C5132.1 (5)O2—C25—C20117.2 (4)
C1—C6—C5121.6 (5)O1—C25—C20116.4 (4)
N1—C7—N2113.3 (4)O3—C26—O4127.0 (4)
N1—C7—C8119.4 (4)O3—C26—C22117.7 (4)
N2—C7—C8127.3 (4)O4—C26—C22115.3 (4)
N3—C8—C9121.0 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O4iii0.861.832.689 (5)173
N2—H2A···O2iv0.861.812.668 (5)173
Symmetry codes: (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2.
(II) catena-Poly[[[2,6-bis(1H-benzimidazol-2-yl-κN3)pyridine]zinc(II)]-µ-pyridine-2,5-dicarboxylato-κ2O2:O5] top
Crystal data top
[Zn(C7H3NO4)(C19H13N5)]F(000) = 1104
Mr = 541.82Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1213 reflections
a = 11.066 (3) Åθ = 2.8–28.4°
b = 9.708 (2) ŵ = 1.14 mm1
c = 21.717 (6) ÅT = 293 K
β = 104.42 (3)°Block, colourless
V = 2259.5 (11) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEX area-dectector
diffractometer
3979 independent reflections
Radiation source: fine-focus sealed tube2454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.959, Tmax = 1.000k = 1111
13029 measured reflectionsl = 2518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
3979 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C7H3NO4)(C19H13N5)]V = 2259.5 (11) Å3
Mr = 541.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.066 (3) ŵ = 1.14 mm1
b = 9.708 (2) ÅT = 293 K
c = 21.717 (6) Å0.22 × 0.18 × 0.16 mm
β = 104.42 (3)°
Data collection top
Bruker APEX area-dectector
diffractometer
3979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2454 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 1.000Rint = 0.094
13029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
3979 reflectionsΔρmin = 0.41 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29752 (5)0.36481 (6)0.09893 (3)0.0367 (2)
N10.1661 (4)0.5253 (4)0.10675 (19)0.0362 (10)
N20.0326 (3)0.6874 (4)0.0577 (2)0.0395 (11)
H2A0.00710.74170.02830.047*
N30.2613 (3)0.4742 (4)0.00976 (19)0.0340 (10)
N40.4268 (3)0.2768 (4)0.04703 (19)0.0372 (10)
N50.4988 (4)0.2791 (4)0.0402 (2)0.0408 (11)
H5A0.50630.30140.07740.049*
N60.3019 (4)0.2062 (4)0.1672 (2)0.0424 (11)
O10.1419 (3)0.2274 (4)0.05410 (17)0.0469 (9)
O20.0347 (4)0.0458 (4)0.0752 (2)0.0866 (15)
O30.5511 (3)0.0518 (4)0.33622 (17)0.0538 (10)
O40.5515 (4)0.1742 (4)0.34483 (18)0.0608 (11)
C10.1008 (4)0.5760 (5)0.1489 (2)0.0378 (13)
C20.1104 (5)0.5416 (6)0.2121 (3)0.0569 (16)
H20.16800.47650.23280.068*
C30.0319 (6)0.6069 (6)0.2431 (3)0.0726 (19)
H30.03580.58480.28520.087*
C40.0532 (6)0.7057 (6)0.2121 (3)0.073 (2)
H40.10560.74700.23420.088*
C50.0624 (5)0.7440 (6)0.1505 (3)0.0615 (17)
H50.11840.81130.13060.074*
C60.0173 (5)0.6766 (5)0.1189 (3)0.0412 (13)
C70.1223 (4)0.5957 (5)0.0533 (2)0.0343 (12)
C80.1732 (4)0.5710 (5)0.0025 (2)0.0345 (12)
C90.1413 (5)0.6396 (5)0.0601 (3)0.0456 (14)
H90.08060.70810.06780.055*
C100.2028 (5)0.6027 (5)0.1060 (3)0.0537 (15)
H100.18300.64600.14540.064*
C110.2938 (5)0.5013 (5)0.0931 (3)0.0485 (14)
H110.33550.47640.12370.058*
C120.3219 (4)0.4377 (5)0.0343 (2)0.0374 (13)
C130.4145 (4)0.3308 (5)0.0102 (2)0.0372 (13)
C140.5701 (5)0.1834 (5)0.0006 (3)0.0421 (14)
C150.6698 (5)0.1015 (5)0.0056 (3)0.0519 (15)
H150.69920.10230.04210.062*
C160.7222 (5)0.0191 (6)0.0459 (3)0.0617 (17)
H160.78880.03780.04400.074*
C170.6785 (5)0.0187 (6)0.1002 (3)0.0638 (18)
H170.71760.03750.13400.077*
C180.5787 (5)0.0990 (6)0.1062 (3)0.0546 (16)
H180.54940.09670.14280.065*
C190.5245 (4)0.1829 (5)0.0552 (3)0.0395 (13)
C200.2266 (5)0.0999 (5)0.1469 (3)0.0422 (13)
C210.2401 (5)0.0256 (6)0.1796 (3)0.0501 (15)
H210.18590.09820.16470.060*
C220.3348 (5)0.0406 (5)0.2343 (3)0.0507 (15)
H220.34720.12460.25550.061*
C230.4117 (5)0.0714 (5)0.2573 (2)0.0395 (13)
C240.3902 (5)0.1929 (5)0.2225 (2)0.0435 (14)
H240.43920.26920.23800.052*
C250.1267 (5)0.1253 (6)0.0867 (3)0.0479 (14)
C260.5188 (5)0.0612 (6)0.3191 (2)0.0357 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0357 (4)0.0404 (4)0.0327 (3)0.0056 (3)0.0062 (3)0.0021 (3)
N10.041 (3)0.034 (2)0.033 (3)0.0093 (19)0.009 (2)0.0030 (19)
N20.042 (3)0.039 (3)0.039 (3)0.010 (2)0.013 (2)0.009 (2)
N30.030 (2)0.038 (2)0.034 (3)0.0013 (19)0.007 (2)0.0005 (19)
N40.032 (2)0.044 (3)0.036 (3)0.010 (2)0.008 (2)0.001 (2)
N50.044 (3)0.049 (3)0.034 (3)0.005 (2)0.016 (2)0.001 (2)
N60.046 (3)0.044 (3)0.036 (3)0.001 (2)0.008 (2)0.002 (2)
O10.041 (2)0.050 (2)0.050 (3)0.0037 (17)0.0113 (19)0.0013 (19)
O20.061 (3)0.085 (3)0.094 (4)0.027 (3)0.019 (3)0.024 (3)
O30.050 (2)0.055 (3)0.050 (3)0.001 (2)0.000 (2)0.008 (2)
O40.071 (3)0.067 (3)0.040 (2)0.003 (2)0.005 (2)0.002 (2)
C10.042 (3)0.039 (3)0.033 (3)0.005 (2)0.012 (3)0.000 (2)
C20.071 (4)0.056 (4)0.046 (4)0.018 (3)0.019 (3)0.006 (3)
C30.109 (6)0.071 (5)0.048 (4)0.020 (4)0.038 (4)0.012 (3)
C40.100 (5)0.068 (4)0.072 (5)0.029 (4)0.059 (5)0.000 (4)
C50.067 (4)0.059 (4)0.067 (5)0.024 (3)0.033 (4)0.008 (3)
C60.045 (3)0.036 (3)0.045 (4)0.003 (2)0.016 (3)0.000 (2)
C70.030 (3)0.035 (3)0.038 (3)0.002 (2)0.009 (3)0.003 (2)
C80.028 (3)0.040 (3)0.034 (3)0.001 (2)0.006 (2)0.001 (2)
C90.041 (3)0.046 (3)0.048 (4)0.012 (3)0.009 (3)0.008 (3)
C100.058 (4)0.064 (4)0.041 (4)0.012 (3)0.015 (3)0.016 (3)
C110.049 (4)0.057 (4)0.046 (4)0.011 (3)0.023 (3)0.002 (3)
C120.035 (3)0.041 (3)0.036 (3)0.001 (2)0.008 (3)0.004 (2)
C130.035 (3)0.039 (3)0.037 (3)0.004 (2)0.008 (3)0.002 (2)
C140.039 (3)0.044 (3)0.044 (4)0.008 (3)0.011 (3)0.007 (3)
C150.046 (4)0.064 (4)0.049 (4)0.010 (3)0.018 (3)0.011 (3)
C160.052 (4)0.064 (4)0.067 (5)0.028 (3)0.011 (4)0.009 (3)
C170.067 (4)0.071 (4)0.053 (4)0.035 (3)0.013 (4)0.004 (3)
C180.048 (4)0.073 (4)0.042 (4)0.020 (3)0.010 (3)0.001 (3)
C190.031 (3)0.042 (3)0.042 (3)0.006 (2)0.002 (3)0.007 (2)
C200.037 (3)0.054 (4)0.036 (3)0.001 (3)0.010 (3)0.001 (3)
C210.048 (4)0.048 (4)0.050 (4)0.007 (3)0.004 (3)0.007 (3)
C220.048 (4)0.050 (4)0.051 (4)0.006 (3)0.008 (3)0.010 (3)
C230.041 (3)0.044 (3)0.036 (3)0.000 (3)0.016 (3)0.004 (3)
C240.039 (3)0.056 (4)0.034 (3)0.002 (3)0.007 (3)0.003 (3)
C250.040 (3)0.053 (4)0.049 (4)0.013 (3)0.009 (3)0.007 (3)
C260.051 (3)0.035 (3)0.028 (3)0.013 (3)0.022 (3)0.003 (2)
Geometric parameters (Å, º) top
Zn1—O3i2.066 (4)C4—H40.9300
Zn1—N62.130 (4)C5—C61.407 (7)
Zn1—N32.157 (4)C5—H50.9300
Zn1—N12.167 (4)C7—C81.477 (7)
Zn1—N42.202 (4)C8—C91.384 (7)
Zn1—O12.204 (3)C9—C101.386 (7)
N1—C71.330 (6)C9—H90.9300
N1—C11.390 (6)C10—C111.385 (6)
N2—C71.355 (5)C10—H100.9300
N2—C61.385 (6)C11—C121.383 (7)
N2—H2A0.8600C11—H110.9300
N3—C81.332 (5)C12—C131.461 (6)
N3—C121.345 (6)C14—C151.392 (6)
N4—C131.325 (6)C14—C191.401 (7)
N4—C191.392 (5)C15—C161.380 (7)
N5—C131.360 (6)C15—H150.9300
N5—C141.386 (6)C16—C171.382 (8)
N5—H5A0.8600C16—H160.9300
N6—C201.331 (6)C17—C181.384 (7)
N6—C241.352 (6)C17—H170.9300
O1—C251.254 (6)C18—C191.386 (7)
O2—C251.251 (6)C18—H180.9300
O3—C261.185 (5)C20—C211.399 (7)
O3—Zn1ii2.066 (4)C20—C251.508 (7)
O4—C261.243 (5)C21—C221.382 (7)
C1—C61.390 (6)C21—H210.9300
C1—C21.390 (7)C22—C231.394 (7)
C2—C31.379 (7)C22—H220.9300
C2—H20.9300C23—C241.389 (7)
C3—C41.394 (8)C23—C261.557 (7)
C3—H30.9300C24—H240.9300
C4—C51.368 (8)
O3i—Zn1—N686.23 (16)N3—C8—C7111.1 (4)
O3i—Zn1—N3110.92 (14)C9—C8—C7126.9 (5)
N6—Zn1—N3161.46 (15)C8—C9—C10117.7 (5)
O3i—Zn1—N196.37 (15)C8—C9—H9121.2
N6—Zn1—N1111.39 (15)C10—C9—H9121.2
N3—Zn1—N174.81 (15)C11—C10—C9120.1 (5)
O3i—Zn1—N488.93 (15)C11—C10—H10119.9
N6—Zn1—N499.84 (15)C9—C10—H10119.9
N3—Zn1—N474.37 (15)C12—C11—C10119.2 (5)
N1—Zn1—N4148.57 (15)C12—C11—H11120.4
O3i—Zn1—O1161.75 (15)C10—C11—H11120.4
N6—Zn1—O175.53 (15)N3—C12—C11120.2 (5)
N3—Zn1—O187.21 (14)N3—C12—C13111.2 (5)
N1—Zn1—O190.23 (13)C11—C12—C13128.6 (5)
N4—Zn1—O194.29 (14)N4—C13—N5112.4 (4)
C7—N1—C1104.9 (4)N4—C13—C12121.1 (4)
C7—N1—Zn1114.0 (3)N5—C13—C12126.5 (5)
C1—N1—Zn1140.8 (3)N5—C14—C15131.3 (5)
C7—N2—C6106.6 (4)N5—C14—C19106.0 (4)
C7—N2—H2A126.7C15—C14—C19122.7 (5)
C6—N2—H2A126.7C16—C15—C14116.0 (5)
C8—N3—C12120.9 (4)C16—C15—H15122.0
C8—N3—Zn1119.3 (3)C14—C15—H15122.0
C12—N3—Zn1119.7 (3)C15—C16—C17121.8 (5)
C13—N4—C19105.9 (4)C15—C16—H16119.1
C13—N4—Zn1113.5 (3)C17—C16—H16119.1
C19—N4—Zn1140.5 (3)C16—C17—C18122.4 (6)
C13—N5—C14106.9 (4)C16—C17—H17118.8
C13—N5—H5A126.5C18—C17—H17118.8
C14—N5—H5A126.5C17—C18—C19116.9 (5)
C20—N6—C24118.4 (5)C17—C18—H18121.6
C20—N6—Zn1115.2 (4)C19—C18—H18121.6
C24—N6—Zn1125.0 (3)C18—C19—N4130.9 (5)
C25—O1—Zn1115.4 (4)C18—C19—C14120.3 (5)
C26—O3—Zn1ii135.0 (4)N4—C19—C14108.8 (4)
N1—C1—C6109.5 (4)N6—C20—C21121.9 (5)
N1—C1—C2129.9 (5)N6—C20—C25115.1 (5)
C6—C1—C2120.7 (5)C21—C20—C25123.0 (5)
C3—C2—C1117.9 (5)C22—C21—C20119.4 (5)
C3—C2—H2121.1C22—C21—H21120.3
C1—C2—H2121.1C20—C21—H21120.3
C2—C3—C4120.9 (6)C21—C22—C23119.4 (5)
C2—C3—H3119.5C21—C22—H22120.3
C4—C3—H3119.5C23—C22—H22120.3
C5—C4—C3122.4 (5)C24—C23—C22117.4 (5)
C5—C4—H4118.8C24—C23—C26120.9 (5)
C3—C4—H4118.8C22—C23—C26121.6 (5)
C4—C5—C6116.6 (5)N6—C24—C23123.5 (5)
C4—C5—H5121.7N6—C24—H24118.3
C6—C5—H5121.7C23—C24—H24118.3
N2—C6—C1106.1 (4)O2—C25—O1126.3 (5)
N2—C6—C5132.4 (5)O2—C25—C20117.1 (5)
C1—C6—C5121.5 (5)O1—C25—C20116.5 (5)
N1—C7—N2112.9 (4)O3—C26—O4130.2 (5)
N1—C7—C8120.1 (4)O3—C26—C23115.8 (5)
N2—C7—C8126.9 (4)O4—C26—C23113.9 (5)
N3—C8—C9121.9 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1iii0.862.052.824 (5)150
N5—H5A···O4iv0.861.892.739 (6)168
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn(C7H3NO4)(C19H13N5)][Zn(C7H3NO4)(C19H13N5)]
Mr541.82541.82
Crystal system, space groupMonoclinic, CcMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)8.3782 (6), 18.1569 (19), 14.7588 (15)11.066 (3), 9.708 (2), 21.717 (6)
β (°) 101.309 (8) 104.42 (3)
V3)2201.6 (4)2259.5 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.171.14
Crystal size (mm)0.26 × 0.20 × 0.150.22 × 0.18 × 0.16
Data collection
DiffractometerBruker APEX area-dectector
diffractometer
Bruker APEX area-dectector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.756, 0.8400.959, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6495, 3858, 3041 13029, 3979, 2454
Rint0.0460.094
(sin θ/λ)max1)0.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.074, 1.02 0.060, 0.121, 1.02
No. of reflections34903979
No. of parameters334334
No. of restraints20
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.330.55, 0.41
Absolute structureFlack (1983), 1602 Friedel pairs?
Absolute structure parameter0.014 (12)?

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) for (I) top
Zn1—N62.095 (4)Zn1—N32.142 (4)
Zn1—O12.119 (3)Zn1—O3i2.186 (3)
Zn1—N42.120 (3)Zn1—N12.203 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O4ii0.861.832.689 (5)172.7
N2—H2A···O2iii0.861.812.668 (5)172.5
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.
Selected bond lengths (Å) for (II) top
Zn1—O3i2.066 (4)Zn1—N12.167 (4)
Zn1—N62.130 (4)Zn1—N42.202 (4)
Zn1—N32.157 (4)Zn1—O12.204 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.052.824 (5)150.0
N5—H5A···O4iii0.861.892.739 (6)168.2
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds