Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structural evolution of the nanocrystalline material obtained from the amorphous compound Fe73.5CuNb3Si13.5B9 was investigated by small-angle X-ray scattering. Four sets of amorphous metallic ribbons were produced by melt spinning using different quenching rates. Samples of each set were annealed above the crystallization temperature; X-ray diffraction analysis showed the formation of an ordered Fe-Si solid solution with average grain sizes ranging from 9 to 11 nm. Small-angle scattering curves of the samples in the initial amorphous states revealed different intensities for different quenching rates, caused by the presence of heterogeneities with dimensions larger than those of the crystallites formed after thermal treatment. In addition, scattering measurements carried out in situ during isothermal annealing showed an intensity evolution as a function of time, attributed to electron-density contrast variation caused by the atomic diffusion process that occurs during crystallization.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds