Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Bis­[[mu]-di-tert-butyl­(hy­droxy)­silanol­ato]­bis­[chlorido­indium(III)], [In2(C8H19O2Si)2Cl4], (I), is a centrosymmetric two-centre indium complex featuring a system of three annulated four-membered rings; the structure is the first example of an In2O2 ring which is annulated with two Si-O units to form a ring system composed of three rings. The coordination environment of the In centres is a distorted trigonal bipyramid. The crystal packing of (I) is characterized by chains of mol­ecules connected by O-H...Cl hydrogen bonds. The crystal of (I) was a nonmerohedral twin. There is no known example of an In2O2 ring in which the In atoms carry any two halogen ligands. The structure of tetra­kis­(tetra­hydro­furan)­lithium tetra­kis­[(tri­methyl­silyl)­methyl]­borate, [Li(C4H8O)4](C16H44BSi4), (II), is composed of discrete cations and anions. The coordination geometries of the Li and B centres is tetra­hedral. The cations and anions lie in planes parallel to the ab plane. There are no short contacts between the cations and anions. Compound (II) is the first example of a B centre bonded to four -CH2Si units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113009311/wq3030sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009311/wq3030Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009311/wq3030IIsup3.hkl
Contains datablock II

CCDC references: 950396; 950397

Comment top

Weakly coordinating anions have gained prominence in a wide variety of applications in both research laboratories and industry. One approach to create such anions is by the tetrasubstitution of trieles to [EX4]- (where E = B, Al, Ga or In). Normally, the use of alkyl substituents (X = R) is inadequate for this approach, because the [ER4]- anions are too reactive and most of them ignite in the presence of traces of water or oxygen. In contrast with alkyl substituents, alkoxy or alkynyl ligands can stabilize this type of anion {e.g. [EX4]- with X = CCSiMe3 or CCSi(iPr)3 (Lerner et al., 2007, 2012) or X = OC(CF3)3 (Reisinger et al., 2007)}. In addition, the related anions [E(cat)2]- (where cat is C6H4O22-, the catecholate dianion, as ligand for E3+ = B3+, Al3+, Ga3+ or In3+) also find applications, e.g. as electrolytes in cyclic voltammetry (Röder et al., 2008). In this context, weakly coordinating anions which are soluble in organic solvents are of great interest.

In the course of our long-standing studies of silanolate (siloxide) ligands (Kern et al., 2008; Kückmann et al., 2007; Lerner, 2005; Lerner et al., 2002, 2005), we have found a convenient preparation route for the silandiol tBu2Si(OH)2. Therefore, it was obvious to introduce tBu2Si(OH)2 as a chelating ligand to prepare the corresponding indium siloxide complexes. In a second approach, we prepared a novel alkyl-substituted borate, Li[B(CH2SiMe3)4], which possesses bulky silyl substituents on the chain ends. In this paper, we report the crystal structures of the indium siloxide [InCl2{O(HO)Si(tBu)2}]2, (I), and the lithium borate [Li(thf)4][B(CH2SiMe3)4] (thf is tetrahydrofuran), (II).

Siloxide (I) can be prepared from InCl3 and (tBu)2Si(OH)2, as shown in Scheme 1. When InCl3 was treated with an excess of the silandiol (tBu)2Si(OH)2 in the presence of +NEt3 in benzene at ambient temperature, [InCl2{O(HO)Si(tBu)2}]2 was formed, rather than [InCl{O2Si(tBu)2}] or {[In{O2Si(tBu)2}]2}-. X-ray quality crystals of (I) were grown from the reaction solution at ambient temperature.

Another approach to creating weakly coordinating anions is to stabilize alkyl-substituted borates using bulky end groups, e.g. SiMe3. Therefore, we decided to prepare [Li(thf)4][B(CH2SiMe3)4], (II), which was synthesized in good yield from BCl3 and Li[CH2SiMe3], as shown in Scheme 2. X-ray quality crystals of (II) were obtained from a hexane solution at ambient temperature.

Compound (I) features a centrosymmetric two-centre indium complex (Fig. 1). Each In centre is pentacoordinated by two terminal chloride ligands and three O atoms. The two In—Cl bonds are of comparable length, but there are two short In—O bonds to bridging O atoms and a longer In—O bond to the hydroxy O atom (Table 1). The central In2O2 ring is exactly planar due to inversion symmetry. The InSiO2 rings are essentially planar (r.m.s. deviation = 0.024 Å) and close to coplanar with the In2O2 ring, with a dihedral angle of 3.0 (4)° between the two rings. The coordination geometry of the In centres can be described as a distorted trigonal bipyramid. The bond angle between the two axial ligands, the hydroxy O atom and one of the bridging O atoms [142.7 (2)°] is significantly distorted from idealized linear geometry, but the bond angles in the equatorial plane are reasonably close to the ideal value of 120° (Table 1). The Si—O bond to the hydroxy O atom is significantly longer than that to the bridging O atom, but the two Si—C bonds are not significantly different (Table 1). In the crystal structure, molecules of (I) are linked by O—H···Cl hydrogen bonds into chains running along the a axis (Fig. 2 and Table 2). There are no further short contacts between the molecules. This structure is the first example of an In2O2 ring which is annulated with two Si—O units to form a ring system composed of three rings [Cambridge Structural Database (CSD), Version 5.34, November 2012 plus one update; Allen, 2002]. A search of the CSD for an In2O2 ring with the In atoms carrying any two halogen ligands gave no hits. However, a search for just an In2O2 ring yielded 36 hits, with a mean In—O bond length of 2.24 (7) Å, which is slightly longer than the In—O bond lengths [2.122 (5) and 2.160 (5) Å] in the In2O2 ring of (I).

Compound (II) crystallizes with discrete tetrakis(thf)lithium cations and tetrakis[(trimethylsilyl)methyl]borate anions in the asymmetric unit (Fig. 3). The coordination geometry around the Li atom is tetrahedral, with three Li—O bonds of almost equal length and one slightly longer one. All the O—Li—O angles are close to idealized tetrahedral values (Table 3). The B atom is also tetrahedrally coordinated. There are no appreciable differences between the B—C bonds and all C—B—C angles are close to the ideal tetrahedral value (Table 3). It is noteworthy that all four B—C—Si angles are significantly widened to more than 120°, due to steric repulsion between the SiMe3 and BC3 units (Table 3). The crystal packing of (II) shows that the molecules are located in planes parallel to (110) (Fig. 4), within which the cations and anions adopt alternating positions. There are no short contacts, either between molecules within the plane or between adjacent planes. Compound (II) is the first example of a structure with a boron centre bonded to four –CH2Si units (CSD). A search of the CSD for the B(CH2)4 fragment yielded nine hits. Eight of these were for tetraethylborate and one was a tetra-n-butylborate. The mean B—C bond length in all these fragments is 1.65 (1) Å, which is not significantly different from the mean B—C bond [1.67 (1) Å] in (II).

Related literature top

For related literature, see: Allen (2002); Flack (1983); Kückmann et al. (2007); Kern et al. (2008); Lerner (2005); Lerner et al. (2002, 2007, 2012); Lerner, Scholz, Wiberg, Polborn, Bolte & Wagner (2005); Röder et al. (2008); Reisinger et al. (2007).

Experimental top

For the preparation of [InCl2{O(HO)Si(tBu)2}]2, (I), a mixture of InCl3 (0.43 g, 1.95 mmol), (tBu)2Si(OH)2 (1.47 g, 8.35 mmol) and NEt3 (0.95 g, 9.41 mmol) was dissolved in benzene (30 ml). After stirring for 24 h at room temperature, the reaction mixture was filtered to remove any insoluble material. Single crystals of (I) were grown from this solution at ambient temperature (yield 55%).

For the preparation of [Li(thf)4][B(CH2SiMe3)4], (II), a solution (0.78 m) [ml or mol?] of Li[CH2SiMe3] in hexane (25.6 ml) was added dropwise to a cooled (273 K) solution of BCl3 (5.0 mmol) in heptane (5 ml). The precipitate obtained was filtered off (Celite). The solution was first diluted with tetrahydrofuran (20 ml) and then concentrated to 20 ml. After cooling to 248 K, single crystals of (II) were obtained (yield 60%).

Refinement top

The hydroxy H atom in (I) was found in a difference map but was refined as riding, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). C-bound H atoms in (I) and (II) were refined using a riding model, with methyl C—H = 0.98 Å and secondary C—H = 0.99 Å, and with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for secondary H atoms. The crystal of (I) was a nonmerohedral twin with a fractional contribution of 0.088 (2) for the minor domain. The twin law is (100/010/0.5 0 1).

In (II), three of the four tetrahydrofuran rings show disorder. In one ring [Atom numbers?], two methylene groups are disordered over two positions, with a site-occupancy factor of 0.69 (3) for the major occupied site. In the second ring [Atom numbers?], one methylene group is disordered over two positions, with a site-occupancy factor of 0.63 (3) for the major occupied site. In the third ring [Atom numbers?], all methylene groups are disordered over two positions, with a site-occupancy factor of 0.74 (2) for the major occupied site. The C52'—C53', C63—C64, C73—C74, C84—C85 and C84'—C85' bond lengths were restrained to 1.50 (1) Å. The displacement ellipsoids of the disordered atoms were restrained to isotropic behaviour, with an effective standard deviation of 0.01 Å2. The Flack x parameter (Flack, 1983) for (II) refined to 0.17 (16).

Structure description top

Weakly coordinating anions have gained prominence in a wide variety of applications in both research laboratories and industry. One approach to create such anions is by the tetrasubstitution of trieles to [EX4]- (where E = B, Al, Ga or In). Normally, the use of alkyl substituents (X = R) is inadequate for this approach, because the [ER4]- anions are too reactive and most of them ignite in the presence of traces of water or oxygen. In contrast with alkyl substituents, alkoxy or alkynyl ligands can stabilize this type of anion {e.g. [EX4]- with X = CCSiMe3 or CCSi(iPr)3 (Lerner et al., 2007, 2012) or X = OC(CF3)3 (Reisinger et al., 2007)}. In addition, the related anions [E(cat)2]- (where cat is C6H4O22-, the catecholate dianion, as ligand for E3+ = B3+, Al3+, Ga3+ or In3+) also find applications, e.g. as electrolytes in cyclic voltammetry (Röder et al., 2008). In this context, weakly coordinating anions which are soluble in organic solvents are of great interest.

In the course of our long-standing studies of silanolate (siloxide) ligands (Kern et al., 2008; Kückmann et al., 2007; Lerner, 2005; Lerner et al., 2002, 2005), we have found a convenient preparation route for the silandiol tBu2Si(OH)2. Therefore, it was obvious to introduce tBu2Si(OH)2 as a chelating ligand to prepare the corresponding indium siloxide complexes. In a second approach, we prepared a novel alkyl-substituted borate, Li[B(CH2SiMe3)4], which possesses bulky silyl substituents on the chain ends. In this paper, we report the crystal structures of the indium siloxide [InCl2{O(HO)Si(tBu)2}]2, (I), and the lithium borate [Li(thf)4][B(CH2SiMe3)4] (thf is tetrahydrofuran), (II).

Siloxide (I) can be prepared from InCl3 and (tBu)2Si(OH)2, as shown in Scheme 1. When InCl3 was treated with an excess of the silandiol (tBu)2Si(OH)2 in the presence of +NEt3 in benzene at ambient temperature, [InCl2{O(HO)Si(tBu)2}]2 was formed, rather than [InCl{O2Si(tBu)2}] or {[In{O2Si(tBu)2}]2}-. X-ray quality crystals of (I) were grown from the reaction solution at ambient temperature.

Another approach to creating weakly coordinating anions is to stabilize alkyl-substituted borates using bulky end groups, e.g. SiMe3. Therefore, we decided to prepare [Li(thf)4][B(CH2SiMe3)4], (II), which was synthesized in good yield from BCl3 and Li[CH2SiMe3], as shown in Scheme 2. X-ray quality crystals of (II) were obtained from a hexane solution at ambient temperature.

Compound (I) features a centrosymmetric two-centre indium complex (Fig. 1). Each In centre is pentacoordinated by two terminal chloride ligands and three O atoms. The two In—Cl bonds are of comparable length, but there are two short In—O bonds to bridging O atoms and a longer In—O bond to the hydroxy O atom (Table 1). The central In2O2 ring is exactly planar due to inversion symmetry. The InSiO2 rings are essentially planar (r.m.s. deviation = 0.024 Å) and close to coplanar with the In2O2 ring, with a dihedral angle of 3.0 (4)° between the two rings. The coordination geometry of the In centres can be described as a distorted trigonal bipyramid. The bond angle between the two axial ligands, the hydroxy O atom and one of the bridging O atoms [142.7 (2)°] is significantly distorted from idealized linear geometry, but the bond angles in the equatorial plane are reasonably close to the ideal value of 120° (Table 1). The Si—O bond to the hydroxy O atom is significantly longer than that to the bridging O atom, but the two Si—C bonds are not significantly different (Table 1). In the crystal structure, molecules of (I) are linked by O—H···Cl hydrogen bonds into chains running along the a axis (Fig. 2 and Table 2). There are no further short contacts between the molecules. This structure is the first example of an In2O2 ring which is annulated with two Si—O units to form a ring system composed of three rings [Cambridge Structural Database (CSD), Version 5.34, November 2012 plus one update; Allen, 2002]. A search of the CSD for an In2O2 ring with the In atoms carrying any two halogen ligands gave no hits. However, a search for just an In2O2 ring yielded 36 hits, with a mean In—O bond length of 2.24 (7) Å, which is slightly longer than the In—O bond lengths [2.122 (5) and 2.160 (5) Å] in the In2O2 ring of (I).

Compound (II) crystallizes with discrete tetrakis(thf)lithium cations and tetrakis[(trimethylsilyl)methyl]borate anions in the asymmetric unit (Fig. 3). The coordination geometry around the Li atom is tetrahedral, with three Li—O bonds of almost equal length and one slightly longer one. All the O—Li—O angles are close to idealized tetrahedral values (Table 3). The B atom is also tetrahedrally coordinated. There are no appreciable differences between the B—C bonds and all C—B—C angles are close to the ideal tetrahedral value (Table 3). It is noteworthy that all four B—C—Si angles are significantly widened to more than 120°, due to steric repulsion between the SiMe3 and BC3 units (Table 3). The crystal packing of (II) shows that the molecules are located in planes parallel to (110) (Fig. 4), within which the cations and anions adopt alternating positions. There are no short contacts, either between molecules within the plane or between adjacent planes. Compound (II) is the first example of a structure with a boron centre bonded to four –CH2Si units (CSD). A search of the CSD for the B(CH2)4 fragment yielded nine hits. Eight of these were for tetraethylborate and one was a tetra-n-butylborate. The mean B—C bond length in all these fragments is 1.65 (1) Å, which is not significantly different from the mean B—C bond [1.67 (1) Å] in (II).

For related literature, see: Allen (2002); Flack (1983); Kückmann et al. (2007); Kern et al. (2008); Lerner (2005); Lerner et al. (2002, 2007, 2012); Lerner, Scholz, Wiberg, Polborn, Bolte & Wagner (2005); Röder et al. (2008); Reisinger et al. (2007).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix A were generated by applying the symmetry operator (-x - 1, -y - 1, -z - 1).
[Figure 2] Fig. 2. A partial packing diagram for (I), viewed in the ac plane. Chains of (I) run parallel to [100]. O—H···Cl hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. The minor occupied sites of the disordered atoms in the thf ligands have been omitted for clarity.
[Figure 4] Fig. 4. A partial packing diagram for (II), viewed in the ab plane. H atoms and the minor occupied sites of the disordered atoms in the thf ligands have been omitted for clarity.
(I) Bis[µ-di-tert-butyl(hydroxy)silanolato]bis[chloridoindium(III)] top
Crystal data top
[In2(C8H19O2Si)2Cl4]F(000) = 720
Mr = 722.08Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6359 reflections
a = 8.3467 (10) Åθ = 3.5–25.6°
b = 10.453 (1) ŵ = 2.06 mm1
c = 16.7393 (18) ÅT = 173 K
β = 96.689 (9)°Block, colourless
V = 1450.5 (3) Å30.16 × 0.14 × 0.13 mm
Z = 2
Data collection top
Stoe IPDS II two-circle
diffractometer
2690 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1010
Tmin = 0.734, Tmax = 0.776k = 1212
7213 measured reflectionsl = 320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0621P)2 + 9.1817P]
where P = (Fo2 + 2Fc2)/3
2690 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[In2(C8H19O2Si)2Cl4]V = 1450.5 (3) Å3
Mr = 722.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3467 (10) ŵ = 2.06 mm1
b = 10.453 (1) ÅT = 173 K
c = 16.7393 (18) Å0.16 × 0.14 × 0.13 mm
β = 96.689 (9)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2690 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2137 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.776Rint = 0.071
7213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.06Δρmax = 1.18 e Å3
2690 reflectionsΔρmin = 1.05 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.68156 (6)0.55896 (5)0.48517 (3)0.01843 (19)
Si10.7219 (3)0.3474 (2)0.60948 (13)0.0187 (4)
Cl10.7714 (3)0.7569 (2)0.53770 (17)0.0393 (6)
Cl20.7831 (2)0.4956 (2)0.36461 (13)0.0307 (5)
O10.8612 (6)0.4359 (6)0.5667 (4)0.0244 (12)
H10.96250.43480.57340.037*
O20.5676 (6)0.4189 (5)0.5548 (3)0.0204 (12)
C10.7289 (10)0.3914 (8)0.7195 (5)0.0254 (18)
C20.7414 (10)0.1756 (8)0.5789 (5)0.0226 (17)
C110.7197 (15)0.5382 (9)0.7256 (6)0.041 (2)
H11A0.61980.56840.69480.062*
H11B0.81250.57640.70370.062*
H11C0.72080.56310.78200.062*
C120.8855 (11)0.3459 (11)0.7679 (6)0.036 (2)
H12A0.97790.38400.74550.054*
H12B0.89220.25250.76500.054*
H12C0.88670.37230.82410.054*
C130.5859 (11)0.3317 (11)0.7559 (6)0.036 (2)
H13A0.48480.35940.72510.054*
H13B0.58780.35930.81200.054*
H13C0.59370.23820.75390.054*
C210.6107 (14)0.0905 (9)0.6096 (7)0.041 (2)
H21A0.50370.12430.59000.062*
H21B0.62440.09020.66850.062*
H21C0.62080.00300.58970.062*
C220.7227 (13)0.1705 (10)0.4862 (5)0.036 (2)
H22A0.61660.20410.46500.053*
H22B0.73240.08180.46850.053*
H22C0.80720.22250.46610.053*
C230.9093 (13)0.1224 (11)0.6097 (8)0.048 (3)
H23A0.99260.17650.59030.073*
H23B0.91930.03490.58960.073*
H23C0.92300.12170.66860.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0170 (3)0.0180 (3)0.0200 (3)0.0025 (2)0.00106 (19)0.0021 (3)
Si10.0209 (10)0.0174 (10)0.0171 (11)0.0002 (8)0.0006 (8)0.0005 (9)
Cl10.0409 (12)0.0197 (11)0.0554 (16)0.0077 (9)0.0020 (11)0.0072 (11)
Cl20.0239 (10)0.0467 (13)0.0217 (10)0.0016 (9)0.0034 (8)0.0012 (10)
O10.016 (3)0.024 (3)0.033 (3)0.002 (2)0.003 (2)0.008 (3)
O20.018 (2)0.019 (3)0.023 (3)0.004 (2)0.002 (2)0.004 (2)
C10.031 (4)0.022 (4)0.023 (4)0.002 (4)0.003 (3)0.001 (4)
C20.027 (4)0.017 (4)0.023 (4)0.001 (3)0.001 (3)0.003 (3)
C110.069 (7)0.025 (5)0.031 (5)0.002 (5)0.010 (5)0.004 (4)
C120.038 (5)0.051 (6)0.019 (4)0.006 (5)0.002 (4)0.003 (4)
C130.038 (5)0.051 (6)0.020 (4)0.006 (5)0.003 (4)0.002 (5)
C210.059 (7)0.019 (5)0.047 (6)0.008 (4)0.015 (5)0.004 (4)
C220.059 (6)0.030 (5)0.019 (4)0.004 (4)0.010 (4)0.004 (4)
C230.046 (6)0.034 (6)0.062 (8)0.016 (5)0.006 (5)0.009 (6)
Geometric parameters (Å, º) top
In1—O2i2.122 (5)C11—H11A0.9800
In1—O22.160 (5)C11—H11B0.9800
In1—O12.300 (6)C11—H11C0.9800
In1—Cl12.337 (2)C12—H12A0.9800
In1—Cl22.372 (2)C12—H12B0.9800
In1—Si13.028 (2)C12—H12C0.9800
In1—In1i3.3619 (11)C13—H13A0.9800
Si1—O21.668 (6)C13—H13B0.9800
Si1—O11.707 (6)C13—H13C0.9800
Si1—C21.879 (9)C21—H21A0.9800
Si1—C11.893 (9)C21—H21B0.9800
O1—H10.8400C21—H21C0.9800
O2—In1i2.122 (5)C22—H22A0.9800
C1—C121.530 (13)C22—H22B0.9800
C1—C131.535 (12)C22—H22C0.9800
C1—C111.541 (13)C23—H23A0.9800
C2—C211.541 (13)C23—H23B0.9800
C2—C231.540 (13)C23—H23C0.9800
C2—C221.543 (12)
O2i—In1—O276.5 (2)C21—C2—C23109.4 (8)
O2i—In1—O1142.7 (2)C21—C2—C22108.8 (8)
O2—In1—O166.31 (19)C23—C2—C22107.8 (8)
O2i—In1—Cl1106.36 (16)C21—C2—Si1111.9 (6)
O2—In1—Cl1122.63 (17)C23—C2—Si1111.0 (6)
O1—In1—Cl196.51 (17)C22—C2—Si1107.8 (6)
O2i—In1—Cl2101.33 (16)C1—C11—H11A109.5
O2—In1—Cl2119.54 (16)C1—C11—H11B109.5
O1—In1—Cl294.36 (16)H11A—C11—H11B109.5
Cl1—In1—Cl2115.89 (9)C1—C11—H11C109.5
O2i—In1—Si1108.83 (15)H11A—C11—H11C109.5
O2—In1—Si132.32 (15)H11B—C11—H11C109.5
O1—In1—Si134.01 (14)C1—C12—H12A109.5
Cl1—In1—Si1112.51 (8)C1—C12—H12B109.5
Cl2—In1—Si1111.00 (7)H12A—C12—H12B109.5
O2i—In1—In1i38.67 (14)C1—C12—H12C109.5
O2—In1—In1i37.86 (14)H12A—C12—H12C109.5
O1—In1—In1i104.12 (14)H12B—C12—H12C109.5
Cl1—In1—In1i121.61 (7)C1—C13—H13A109.5
Cl2—In1—In1i116.15 (6)C1—C13—H13B109.5
Si1—In1—In1i70.17 (4)H13A—C13—H13B109.5
O2—Si1—O192.7 (3)C1—C13—H13C109.5
O2—Si1—C2111.4 (3)H13A—C13—H13C109.5
O1—Si1—C2108.6 (3)H13B—C13—H13C109.5
O2—Si1—C1111.1 (3)C2—C21—H21A109.5
O1—Si1—C1109.3 (4)C2—C21—H21B109.5
C2—Si1—C1120.2 (4)H21A—C21—H21B109.5
O1—Si1—In148.9 (2)C2—C21—H21C109.5
C2—Si1—In1121.1 (3)H21A—C21—H21C109.5
C1—Si1—In1118.7 (3)H21B—C21—H21C109.5
Si1—O1—In197.1 (2)C2—C22—H22A109.5
Si1—O1—H1131.4C2—C22—H22B109.5
In1—O1—H1131.6H22A—C22—H22B109.5
Si1—O2—In1i152.6 (3)C2—C22—H22C109.5
Si1—O2—In1103.9 (3)H22A—C22—H22C109.5
In1i—O2—In1103.5 (2)H22B—C22—H22C109.5
C12—C1—C13108.7 (8)C2—C23—H23A109.5
C12—C1—C11108.7 (8)C2—C23—H23B109.5
C13—C1—C11109.4 (8)H23A—C23—H23B109.5
C12—C1—Si1111.5 (6)C2—C23—H23C109.5
C13—C1—Si1110.5 (6)H23A—C23—H23C109.5
C11—C1—Si1108.0 (6)H23B—C23—H23C109.5
O2i—In1—Si1—O21.7 (4)C1—Si1—O2—In1109.9 (4)
O1—In1—Si1—O2177.4 (4)O2i—In1—O2—Si1178.3 (4)
Cl1—In1—Si1—O2115.9 (3)O1—In1—O2—Si11.6 (3)
Cl2—In1—Si1—O2112.4 (3)Cl1—In1—O2—Si180.7 (3)
In1i—In1—Si1—O21.1 (3)Cl2—In1—O2—Si182.8 (3)
O2i—In1—Si1—O1175.6 (3)In1i—In1—O2—Si1178.3 (4)
O2—In1—Si1—O1177.4 (4)O2i—In1—O2—In1i0.0
Cl1—In1—Si1—O166.7 (3)O1—In1—O2—In1i176.7 (3)
Cl2—In1—Si1—O165.0 (3)Cl1—In1—O2—In1i101.0 (2)
In1i—In1—Si1—O1176.3 (3)Cl2—In1—O2—In1i95.5 (2)
O2i—In1—Si1—C287.5 (3)Si1—In1—O2—In1i178.3 (4)
O2—In1—Si1—C289.2 (4)O2—Si1—C1—C12170.0 (6)
O1—In1—Si1—C288.2 (4)O1—Si1—C1—C1269.1 (7)
Cl1—In1—Si1—C2154.9 (3)C2—Si1—C1—C1257.4 (8)
Cl2—In1—Si1—C223.2 (3)In1—Si1—C1—C12122.1 (6)
In1i—In1—Si1—C288.1 (3)O2—Si1—C1—C1369.0 (7)
O2i—In1—Si1—C193.0 (4)O1—Si1—C1—C13169.9 (6)
O2—In1—Si1—C191.3 (4)C2—Si1—C1—C1363.6 (8)
O1—In1—Si1—C191.3 (4)In1—Si1—C1—C13116.9 (6)
Cl1—In1—Si1—C124.6 (3)O2—Si1—C1—C1150.6 (7)
Cl2—In1—Si1—C1156.3 (3)O1—Si1—C1—C1150.3 (7)
In1i—In1—Si1—C192.4 (3)C2—Si1—C1—C11176.8 (6)
O2—Si1—O1—In11.8 (3)In1—Si1—C1—C112.7 (8)
C2—Si1—O1—In1115.5 (3)O2—Si1—C2—C2174.8 (7)
C1—Si1—O1—In1111.6 (3)O1—Si1—C2—C21175.5 (6)
O2i—In1—O1—Si16.8 (5)C1—Si1—C2—C2157.7 (8)
O2—In1—O1—Si11.5 (2)In1—Si1—C2—C21122.8 (6)
Cl1—In1—O1—Si1121.3 (2)O2—Si1—C2—C23162.6 (7)
Cl2—In1—O1—Si1122.0 (2)O1—Si1—C2—C2361.9 (8)
In1i—In1—O1—Si13.6 (3)C1—Si1—C2—C2364.9 (8)
O1—Si1—O2—In1i174.5 (7)In1—Si1—C2—C23114.6 (7)
C2—Si1—O2—In1i63.3 (8)O2—Si1—C2—C2244.8 (7)
C1—Si1—O2—In1i73.6 (8)O1—Si1—C2—C2255.9 (7)
In1—Si1—O2—In1i176.5 (9)C1—Si1—C2—C22177.2 (6)
O1—Si1—O2—In12.0 (3)In1—Si1—C2—C223.3 (7)
C2—Si1—O2—In1113.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2ii0.842.373.139 (6)153
Symmetry code: (ii) x+2, y+1, z+1.
(II) Tetrakis(tetrahydrofuran)lithium tetrakis[(trimethylsilyl)methyl]borate top
Crystal data top
[Li(C4H8O)4](C16H44BSi4)F(000) = 728
Mr = 655.04Dx = 0.969 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 10358 reflections
a = 10.5661 (7) Åθ = 3.5–25.2°
b = 11.7334 (10) ŵ = 0.16 mm1
c = 18.1342 (12) ÅT = 173 K
β = 93.153 (5)°Block, colourless
V = 2244.8 (3) Å30.32 × 0.31 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS II two-circle
diffractometer
8399 independent reflections
Radiation source: fine-focus sealed tube4944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 25.7°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1212
Tmin = 0.951, Tmax = 0.969k = 1414
30264 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
8399 reflectionsΔρmax = 0.24 e Å3
445 parametersΔρmin = 0.24 e Å3
91 restraintsAbsolute structure: Flack (1983), with 4774 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (16)
Crystal data top
[Li(C4H8O)4](C16H44BSi4)V = 2244.8 (3) Å3
Mr = 655.04Z = 2
Monoclinic, PnMo Kα radiation
a = 10.5661 (7) ŵ = 0.16 mm1
b = 11.7334 (10) ÅT = 173 K
c = 18.1342 (12) Å0.32 × 0.31 × 0.20 mm
β = 93.153 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
8399 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
4944 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.969Rint = 0.089
30264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.24 e Å3
S = 0.96Δρmin = 0.24 e Å3
8399 reflectionsAbsolute structure: Flack (1983), with 4774 Friedel pairs
445 parametersAbsolute structure parameter: 0.17 (16)
91 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.6387 (5)0.8507 (4)0.3473 (3)0.0323 (12)
Si10.49480 (14)1.05393 (11)0.27056 (8)0.0398 (4)
Si20.89748 (14)0.90862 (11)0.27955 (9)0.0395 (4)
Si30.50492 (14)0.61682 (11)0.31190 (9)0.0429 (4)
Si40.62049 (15)0.84902 (12)0.51766 (9)0.0474 (4)
C10.6006 (5)0.9899 (3)0.3450 (3)0.0339 (11)
H1A0.68141.03270.34560.041*
H1B0.56191.00710.39230.041*
C20.7496 (4)0.8221 (4)0.2871 (3)0.0331 (11)
H2A0.70580.82230.23740.040*
H2B0.77740.74270.29680.040*
C30.5100 (4)0.7742 (3)0.3251 (3)0.0320 (11)
H3A0.47290.80740.27860.038*
H3B0.44950.79110.36350.038*
C40.6979 (4)0.8142 (4)0.4312 (2)0.0343 (11)
H4A0.78420.84700.43630.041*
H4B0.70840.73040.43060.041*
C110.5156 (6)1.2147 (4)0.2692 (4)0.0593 (17)
H11A0.46011.24740.22970.089*
H11B0.60411.23310.26060.089*
H11C0.49351.24650.31680.089*
C120.5194 (6)1.0028 (5)0.1736 (3)0.0604 (16)
H12A0.45921.04120.13890.091*
H12B0.50580.92030.17090.091*
H12C0.60621.02040.16070.091*
C130.3231 (5)1.0295 (5)0.2871 (4)0.0626 (18)
H13A0.27041.06340.24670.094*
H13B0.30281.06480.33400.094*
H13C0.30650.94740.28920.094*
C210.9699 (5)0.9697 (4)0.3678 (3)0.0544 (15)
H21A1.04581.01340.35730.082*
H21B0.99310.90770.40210.082*
H21C0.90851.02000.39010.082*
C220.8715 (6)1.0356 (4)0.2163 (3)0.0587 (16)
H22A0.95061.07880.21440.088*
H22B0.80551.08470.23520.088*
H22C0.84481.00920.16660.088*
C231.0228 (6)0.8199 (5)0.2384 (4)0.0625 (17)
H23A1.10000.86550.23470.094*
H23B0.99280.79440.18900.094*
H23C1.04140.75340.26990.094*
C310.5869 (8)0.5299 (5)0.3898 (4)0.087 (3)
H31A0.58020.44850.37800.130*
H31B0.54610.54500.43610.130*
H31C0.67650.55160.39540.130*
C320.5764 (6)0.5715 (5)0.2244 (3)0.0669 (18)
H32A0.57230.48830.22010.100*
H32B0.66510.59620.22530.100*
H32C0.52930.60620.18220.100*
C330.3360 (6)0.5656 (5)0.3044 (4)0.0670 (18)
H33A0.33460.48270.29740.100*
H33B0.29100.60240.26210.100*
H33C0.29430.58490.34970.100*
C410.4445 (7)0.8366 (7)0.5125 (4)0.091 (2)
H41A0.41200.85720.56030.137*
H41B0.42020.75800.50020.137*
H41C0.40870.88810.47420.137*
C420.6583 (7)1.0008 (5)0.5488 (4)0.074 (2)
H42A0.61551.01710.59430.112*
H42B0.62871.05430.51010.112*
H42C0.75011.00900.55820.112*
C430.6859 (8)0.7602 (6)0.5977 (3)0.090 (3)
H43A0.64280.78060.64240.135*
H43B0.77700.77460.60570.135*
H43C0.67190.67930.58670.135*
Li10.0293 (10)0.4131 (8)0.4574 (6)0.062 (3)
O510.1117 (5)0.3835 (4)0.5165 (3)0.1044 (18)
C520.1713 (16)0.2805 (11)0.5287 (11)0.094 (5)0.69 (3)
H52A0.10720.22010.53880.113*0.69 (3)
H52B0.22450.25840.48430.113*0.69 (3)
C530.2477 (19)0.2930 (11)0.5900 (10)0.103 (5)0.69 (3)
H53A0.19860.27490.63660.123*0.69 (3)
H53B0.32220.24180.58520.123*0.69 (3)
C52'0.225 (3)0.296 (3)0.486 (2)0.096 (10)0.31 (3)
H52C0.26960.32330.43950.115*0.31 (3)
H52D0.19440.21700.47890.115*0.31 (3)
C53'0.303 (3)0.308 (2)0.5508 (18)0.068 (9)0.31 (3)
H53C0.39320.29740.53470.081*0.31 (3)
H53D0.27970.24600.58620.081*0.31 (3)
C540.2890 (8)0.4165 (7)0.5889 (5)0.099 (2)
H54A0.30280.44490.63920.119*0.69 (3)
H54B0.36720.42780.55710.119*0.69 (3)
H54C0.27390.40470.64270.119*0.31 (3)
H54D0.36610.46360.58020.119*0.31 (3)
C550.1744 (7)0.4740 (6)0.5563 (4)0.075 (2)
H55A0.20190.53640.52230.091*
H55B0.11660.50580.59600.091*
O610.0945 (4)0.5631 (3)0.4840 (2)0.0651 (12)
C620.0564 (9)0.6757 (6)0.4602 (4)0.095 (3)
H62A0.03530.67650.44550.114*
H62B0.10390.69890.41720.114*
C630.0829 (9)0.7551 (6)0.5219 (4)0.106 (3)
H63A0.13890.81750.50680.127*
H63B0.00310.78870.53820.127*
C640.1453 (8)0.6879 (6)0.5816 (4)0.089 (2)
H64A0.08600.67120.62060.106*
H64B0.21980.72890.60390.106*
C650.1854 (8)0.5791 (6)0.5441 (4)0.082 (2)
H65A0.27170.58710.52600.099*
H65B0.18460.51390.57870.099*
O710.0174 (5)0.4109 (3)0.3537 (3)0.0819 (14)
C720.0776 (19)0.3173 (9)0.3168 (8)0.084 (6)0.63 (3)
H72A0.15750.29820.34000.101*0.63 (3)
H72B0.02160.24960.31960.101*0.63 (3)
C72'0.021 (4)0.314 (2)0.2894 (16)0.112 (11)0.37 (3)
H72C0.10220.32990.26680.135*0.37 (3)
H72D0.01790.23400.30690.135*0.37 (3)
C730.1048 (11)0.3516 (7)0.2372 (5)0.133 (4)
H73A0.07140.29380.20350.160*0.63 (3)
H73B0.19730.35930.22620.160*0.63 (3)
H73C0.11750.30700.19100.160*0.37 (3)
H73D0.18400.35640.26380.160*0.37 (3)
C740.0419 (8)0.4603 (7)0.2280 (4)0.097 (3)
H74A0.09540.51200.19630.116*
H74B0.04030.44960.20530.116*
C750.0230 (8)0.5067 (6)0.3028 (4)0.088 (2)
H75A0.05680.55090.30750.105*
H75B0.09410.55780.31380.105*
O810.1599 (5)0.3009 (4)0.4784 (3)0.0883 (16)
C820.1561 (15)0.2048 (12)0.5278 (7)0.089 (4)0.74 (2)
H82A0.08500.15330.51270.107*0.74 (2)
H82B0.14540.23050.57900.107*0.74 (2)
C830.2784 (16)0.1463 (14)0.5222 (9)0.127 (6)0.74 (2)
H83A0.31740.12980.57190.152*0.74 (2)
H83B0.26690.07360.49490.152*0.74 (2)
C840.3582 (17)0.2247 (16)0.4822 (10)0.128 (7)0.74 (2)
H84A0.41980.18270.45320.154*0.74 (2)
H84B0.40470.27760.51650.154*0.74 (2)
C850.2631 (13)0.2872 (12)0.4326 (7)0.086 (4)0.74 (2)
H85A0.29660.36180.41730.104*0.74 (2)
H85B0.23850.24180.38810.104*0.74 (2)
C82'0.214 (3)0.243 (3)0.5476 (16)0.058 (9)0.26 (2)
H82C0.19730.29140.59070.070*0.26 (2)
H82D0.16870.16980.55380.070*0.26 (2)
C83'0.337 (3)0.222 (3)0.5477 (17)0.075 (11)0.26 (2)
H83C0.35010.13980.55740.091*0.26 (2)
H83D0.37890.26420.58950.091*0.26 (2)
C84'0.405 (4)0.253 (4)0.477 (3)0.114 (17)0.26 (2)
H84C0.48880.29020.48630.136*0.26 (2)
H84D0.41040.18960.44110.136*0.26 (2)
C85'0.298 (4)0.334 (4)0.460 (3)0.121 (17)0.26 (2)
H85C0.29720.35080.40630.145*0.26 (2)
H85D0.31960.40620.48610.145*0.26 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.038 (3)0.024 (2)0.036 (3)0.005 (2)0.005 (3)0.000 (2)
Si10.0433 (9)0.0293 (7)0.0463 (9)0.0000 (7)0.0023 (7)0.0041 (7)
Si20.0401 (9)0.0367 (8)0.0431 (9)0.0098 (7)0.0139 (7)0.0013 (7)
Si30.0533 (11)0.0270 (7)0.0476 (9)0.0096 (7)0.0042 (7)0.0012 (6)
Si40.0603 (11)0.0477 (9)0.0348 (8)0.0004 (8)0.0091 (7)0.0044 (7)
C10.034 (3)0.031 (2)0.036 (3)0.004 (2)0.003 (2)0.001 (2)
C20.031 (3)0.032 (2)0.036 (3)0.004 (2)0.006 (2)0.001 (2)
C30.030 (3)0.027 (2)0.039 (3)0.003 (2)0.005 (2)0.008 (2)
C40.034 (3)0.033 (2)0.036 (3)0.007 (2)0.002 (2)0.002 (2)
C110.068 (5)0.033 (3)0.076 (4)0.003 (3)0.001 (4)0.009 (3)
C120.076 (4)0.057 (3)0.047 (3)0.006 (3)0.010 (3)0.000 (3)
C130.040 (4)0.057 (4)0.089 (5)0.003 (3)0.015 (3)0.001 (3)
C210.049 (4)0.053 (3)0.062 (4)0.020 (3)0.006 (3)0.003 (3)
C220.071 (4)0.054 (3)0.051 (4)0.026 (3)0.010 (3)0.010 (3)
C230.048 (4)0.061 (4)0.081 (5)0.012 (3)0.025 (3)0.004 (3)
C310.129 (6)0.034 (3)0.091 (5)0.014 (3)0.047 (5)0.014 (3)
C320.069 (4)0.053 (3)0.079 (5)0.007 (3)0.008 (3)0.028 (3)
C330.067 (4)0.056 (4)0.078 (5)0.021 (3)0.004 (3)0.003 (3)
C410.085 (5)0.113 (6)0.080 (5)0.016 (5)0.036 (4)0.030 (4)
C420.094 (5)0.061 (4)0.066 (5)0.006 (4)0.011 (4)0.015 (4)
C430.148 (8)0.078 (5)0.046 (4)0.010 (5)0.019 (5)0.007 (3)
Li10.065 (7)0.049 (5)0.074 (7)0.006 (5)0.008 (5)0.001 (5)
O510.102 (4)0.073 (3)0.145 (5)0.015 (3)0.060 (4)0.012 (3)
C520.100 (9)0.069 (6)0.114 (9)0.026 (6)0.032 (7)0.018 (6)
C530.124 (9)0.080 (7)0.105 (8)0.023 (6)0.016 (7)0.008 (6)
C52'0.113 (14)0.077 (12)0.098 (13)0.011 (9)0.014 (9)0.007 (9)
C53'0.061 (11)0.056 (10)0.087 (12)0.013 (8)0.007 (8)0.006 (8)
C540.113 (7)0.090 (6)0.096 (6)0.006 (5)0.022 (5)0.014 (5)
C550.065 (5)0.075 (5)0.085 (5)0.011 (4)0.002 (4)0.008 (4)
O610.081 (3)0.050 (2)0.063 (3)0.003 (2)0.011 (2)0.002 (2)
C620.141 (8)0.059 (4)0.083 (6)0.024 (4)0.022 (5)0.006 (4)
C630.140 (8)0.077 (5)0.098 (6)0.019 (5)0.023 (6)0.036 (5)
C640.122 (7)0.086 (5)0.057 (5)0.042 (5)0.000 (5)0.011 (4)
C650.101 (6)0.070 (5)0.075 (5)0.021 (4)0.009 (4)0.012 (4)
O710.120 (4)0.050 (2)0.073 (3)0.013 (3)0.016 (3)0.006 (2)
C720.110 (10)0.058 (7)0.082 (8)0.019 (6)0.021 (6)0.005 (5)
C72'0.119 (15)0.097 (12)0.120 (14)0.009 (9)0.005 (9)0.008 (9)
C730.194 (12)0.102 (7)0.099 (7)0.023 (7)0.034 (7)0.013 (6)
C740.113 (7)0.106 (6)0.071 (5)0.025 (5)0.010 (5)0.016 (5)
C750.107 (7)0.072 (4)0.086 (6)0.012 (4)0.006 (5)0.003 (4)
O810.106 (4)0.067 (3)0.097 (4)0.033 (3)0.040 (3)0.033 (3)
C820.103 (8)0.092 (7)0.073 (7)0.003 (6)0.005 (6)0.027 (6)
C830.130 (9)0.122 (9)0.127 (9)0.045 (7)0.009 (7)0.036 (7)
C840.095 (9)0.154 (10)0.138 (10)0.031 (8)0.020 (8)0.003 (8)
C850.098 (7)0.081 (6)0.083 (7)0.026 (6)0.022 (6)0.012 (5)
C82'0.056 (12)0.075 (12)0.045 (11)0.007 (8)0.018 (8)0.015 (8)
C83'0.069 (13)0.094 (14)0.063 (13)0.001 (9)0.002 (9)0.013 (9)
C84'0.11 (2)0.112 (19)0.116 (19)0.010 (10)0.002 (10)0.004 (10)
C85'0.118 (19)0.123 (19)0.122 (19)0.002 (10)0.008 (10)0.000 (10)
Geometric parameters (Å, º) top
B1—C31.661 (7)C53—C541.513 (16)
B1—C41.669 (7)C53—H53A0.9900
B1—C21.678 (7)C53—H53B0.9900
B1—C11.683 (6)C52'—C53'1.483 (10)
Si1—C11.863 (5)C52'—H52C0.9900
Si1—C131.877 (6)C52'—H52D0.9900
Si1—C121.889 (5)C53'—C541.45 (2)
Si1—C111.900 (5)C53'—H53C0.9900
Si2—C231.872 (6)C53'—H53D0.9900
Si2—C21.874 (5)C54—C551.533 (10)
Si2—C211.878 (6)C54—H54A0.9900
Si2—C221.891 (5)C54—H54B0.9900
Si3—C31.862 (4)C54—H54C0.9900
Si3—C321.871 (6)C54—H54D0.9900
Si3—C331.881 (6)C55—H55A0.9900
Si3—C311.912 (6)C55—H55B0.9900
Si4—C41.854 (5)O61—C651.425 (7)
Si4—C411.862 (8)O61—C621.441 (7)
Si4—C431.887 (7)C62—C631.471 (9)
Si4—C421.904 (6)C62—H62A0.9900
C1—H1A0.9900C62—H62B0.9900
C1—H1B0.9900C63—C641.466 (7)
C2—H2A0.9900C63—H63A0.9900
C2—H2B0.9900C63—H63B0.9900
C3—H3A0.9900C64—C651.518 (10)
C3—H3B0.9900C64—H64A0.9900
C4—H4A0.9900C64—H64B0.9900
C4—H4B0.9900C65—H65A0.9900
C11—H11A0.9800C65—H65B0.9900
C11—H11B0.9800O71—C721.419 (11)
C11—H11C0.9800O71—C751.453 (7)
C12—H12A0.9800O71—C72'1.70 (3)
C12—H12B0.9800C72—C731.511 (15)
C12—H12C0.9800C72—H72A0.9900
C13—H13A0.9800C72—H72B0.9900
C13—H13B0.9800C72'—C731.65 (3)
C13—H13C0.9800C72'—H72C0.9900
C21—H21A0.9800C72'—H72D0.9900
C21—H21B0.9800C73—C741.452 (8)
C21—H21C0.9800C73—H73A0.9900
C22—H22A0.9800C73—H73B0.9900
C22—H22B0.9800C73—H73C0.9900
C22—H22C0.9800C73—H73D0.9900
C23—H23A0.9800C74—C751.465 (9)
C23—H23B0.9800C74—H74A0.9900
C23—H23C0.9800C74—H74B0.9900
C31—H31A0.9800C75—H75A0.9900
C31—H31B0.9800C75—H75B0.9900
C31—H31C0.9800O81—C851.416 (12)
C32—H32A0.9800O81—C821.441 (11)
C32—H32B0.9800O81—C82'1.51 (3)
C32—H32C0.9800O81—C85'1.57 (4)
C33—H33A0.9800C82—C831.472 (17)
C33—H33B0.9800C82—H82A0.9900
C33—H33C0.9800C82—H82B0.9900
C41—H41A0.9800C83—C841.47 (2)
C41—H41B0.9800C83—H83A0.9900
C41—H41C0.9800C83—H83B0.9900
C42—H42A0.9800C84—C851.502 (9)
C42—H42B0.9800C84—H84A0.9900
C42—H42C0.9800C84—H84B0.9900
C43—H43A0.9800C85—H85A0.9900
C43—H43B0.9800C85—H85B0.9900
C43—H43C0.9800C82'—C83'1.32 (4)
Li1—O511.914 (12)C82'—H82C0.9900
Li1—O711.918 (12)C82'—H82D0.9900
Li1—O811.930 (11)C83'—C84'1.55 (6)
Li1—O611.941 (10)C83'—H83C0.9900
O51—C521.386 (12)C83'—H83D0.9900
O51—C551.464 (8)C84'—C85'1.496 (10)
O51—C52'1.65 (3)C84'—H84C0.9900
C52—C531.418 (15)C84'—H84D0.9900
C52—H52A0.9900C85'—H85C0.9900
C52—H52B0.9900C85'—H85D0.9900
C3—B1—C4110.0 (4)C53—C54—C55101.2 (8)
C3—B1—C2109.1 (4)C53'—C54—H54A135.8
C4—B1—C2107.6 (4)C53—C54—H54A111.5
C3—B1—C1109.1 (4)C55—C54—H54A111.5
C4—B1—C1110.4 (4)C53'—C54—H54B77.4
C2—B1—C1110.7 (4)C53—C54—H54B111.5
C1—Si1—C13111.7 (3)C55—C54—H54B111.5
C1—Si1—C12116.0 (2)H54A—C54—H54B109.4
C13—Si1—C12106.5 (3)C53'—C54—H54C110.7
C1—Si1—C11110.1 (2)C53—C54—H54C79.8
C13—Si1—C11105.5 (3)C55—C54—H54C110.7
C12—Si1—C11106.4 (3)H54A—C54—H54C33.1
C23—Si2—C2109.8 (2)H54B—C54—H54C132.7
C23—Si2—C21106.8 (3)C53'—C54—H54D110.7
C2—Si2—C21116.5 (2)C53—C54—H54D140.4
C23—Si2—C22106.2 (3)C55—C54—H54D110.7
C2—Si2—C22112.1 (2)H54A—C54—H54D78.3
C21—Si2—C22104.8 (3)H54B—C54—H54D34.8
C3—Si3—C32112.4 (3)H54C—C54—H54D108.8
C3—Si3—C33110.3 (3)O51—C55—C54105.0 (6)
C32—Si3—C33105.9 (3)O51—C55—H55A110.7
C3—Si3—C31115.2 (2)C54—C55—H55A110.7
C32—Si3—C31106.7 (3)O51—C55—H55B110.7
C33—Si3—C31105.8 (3)C54—C55—H55B110.7
C4—Si4—C41115.2 (3)H55A—C55—H55B108.8
C4—Si4—C43111.7 (3)C65—O61—C62105.9 (5)
C41—Si4—C43108.5 (4)C65—O61—Li1121.7 (5)
C4—Si4—C42111.2 (3)C62—O61—Li1131.9 (5)
C41—Si4—C42106.3 (3)O61—C62—C63108.3 (6)
C43—Si4—C42103.1 (3)O61—C62—H62A110.0
B1—C1—Si1122.8 (3)C63—C62—H62A110.0
B1—C1—H1A106.6O61—C62—H62B110.0
Si1—C1—H1A106.6C63—C62—H62B110.0
B1—C1—H1B106.6H62A—C62—H62B108.4
Si1—C1—H1B106.6C64—C63—C62106.3 (6)
H1A—C1—H1B106.6C64—C63—H63A110.5
B1—C2—Si2123.6 (3)C62—C63—H63A110.5
B1—C2—H2A106.4C64—C63—H63B110.5
Si2—C2—H2A106.4C62—C63—H63B110.5
B1—C2—H2B106.4H63A—C63—H63B108.7
Si2—C2—H2B106.4C63—C64—C65104.3 (6)
H2A—C2—H2B106.5C63—C64—H64A110.9
B1—C3—Si3125.8 (3)C65—C64—H64A110.9
B1—C3—H3A105.9C63—C64—H64B110.9
Si3—C3—H3A105.9C65—C64—H64B110.9
B1—C3—H3B105.9H64A—C64—H64B108.9
Si3—C3—H3B105.9O61—C65—C64105.1 (6)
H3A—C3—H3B106.2O61—C65—H65A110.7
B1—C4—Si4123.7 (3)C64—C65—H65A110.7
B1—C4—H4A106.4O61—C65—H65B110.7
Si4—C4—H4A106.4C64—C65—H65B110.7
B1—C4—H4B106.4H65A—C65—H65B108.8
Si4—C4—H4B106.4C72—O71—C75107.2 (6)
H4A—C4—H4B106.5C72—O71—C72'43.3 (10)
Si1—C11—H11A109.5C75—O71—C72'94.9 (11)
Si1—C11—H11B109.5C72—O71—Li1123.9 (7)
H11A—C11—H11B109.5C75—O71—Li1127.7 (5)
Si1—C11—H11C109.5C72'—O71—Li1128.7 (9)
H11A—C11—H11C109.5O71—C72—C73107.6 (9)
H11B—C11—H11C109.5O71—C72—H72A110.2
Si1—C12—H12A109.5C73—C72—H72A110.2
Si1—C12—H12B109.5O71—C72—H72B110.2
H12A—C12—H12B109.5C73—C72—H72B110.2
Si1—C12—H12C109.5H72A—C72—H72B108.5
H12A—C12—H12C109.5C73—C72'—O7190.0 (17)
H12B—C12—H12C109.5C73—C72'—H72C113.6
Si1—C13—H13A109.5O71—C72'—H72C113.6
Si1—C13—H13B109.5C73—C72'—H72D113.6
H13A—C13—H13B109.5O71—C72'—H72D113.6
Si1—C13—H13C109.5H72C—C72'—H72D110.9
H13A—C13—H13C109.5C74—C73—C72106.2 (8)
H13B—C13—H13C109.5C74—C73—C72'86.7 (13)
Si2—C21—H21A109.5C72—C73—C72'43.5 (11)
Si2—C21—H21B109.5C74—C73—H73A110.5
H21A—C21—H21B109.5C72—C73—H73A110.5
Si2—C21—H21C109.5C72'—C73—H73A82.3
H21A—C21—H21C109.5C74—C73—H73B110.5
H21B—C21—H21C109.5C72—C73—H73B110.5
Si2—C22—H22A109.5C72'—C73—H73B153.4
Si2—C22—H22B109.5H73A—C73—H73B108.7
H22A—C22—H22B109.5C74—C73—H73C114.2
Si2—C22—H22C109.5C72—C73—H73C132.5
H22A—C22—H22C109.5C72'—C73—H73C114.2
H22B—C22—H22C109.5H73A—C73—H73C32.2
Si2—C23—H23A109.5H73B—C73—H73C78.0
Si2—C23—H23B109.5C74—C73—H73D114.2
H23A—C23—H23B109.5C72—C73—H73D70.7
Si2—C23—H23C109.5C72'—C73—H73D114.2
H23A—C23—H23C109.5H73A—C73—H73D132.8
H23B—C23—H23C109.5H73B—C73—H73D40.8
Si3—C31—H31A109.5H73C—C73—H73D111.4
Si3—C31—H31B109.5C73—C74—C75105.1 (7)
H31A—C31—H31B109.5C73—C74—H74A110.7
Si3—C31—H31C109.5C75—C74—H74A110.7
H31A—C31—H31C109.5C73—C74—H74B110.7
H31B—C31—H31C109.5C75—C74—H74B110.7
Si3—C32—H32A109.5H74A—C74—H74B108.8
Si3—C32—H32B109.5O71—C75—C74107.5 (6)
H32A—C32—H32B109.5O71—C75—H75A110.2
Si3—C32—H32C109.5C74—C75—H75A110.2
H32A—C32—H32C109.5O71—C75—H75B110.2
H32B—C32—H32C109.5C74—C75—H75B110.2
Si3—C33—H33A109.5H75A—C75—H75B108.5
Si3—C33—H33B109.5C85—O81—C82108.9 (7)
H33A—C33—H33B109.5C85—O81—C82'99.7 (13)
Si3—C33—H33C109.5C82—O81—C82'32.3 (11)
H33A—C33—H33C109.5C85—O81—C85'31.2 (18)
H33B—C33—H33C109.5C82—O81—C85'112.6 (16)
Si4—C41—H41A109.5C82'—O81—C85'89 (2)
Si4—C41—H41B109.5C85—O81—Li1121.8 (6)
H41A—C41—H41B109.5C82—O81—Li1127.8 (7)
Si4—C41—H41C109.5C82'—O81—Li1134.8 (12)
H41A—C41—H41C109.5C85'—O81—Li1117.0 (15)
H41B—C41—H41C109.5O81—C82—C83105.5 (10)
Si4—C42—H42A109.5O81—C82—H82A110.6
Si4—C42—H42B109.5C83—C82—H82A110.6
H42A—C42—H42B109.5O81—C82—H82B110.6
Si4—C42—H42C109.5C83—C82—H82B110.6
H42A—C42—H42C109.5H82A—C82—H82B108.8
H42B—C42—H42C109.5C84—C83—C82105.8 (10)
Si4—C43—H43A109.5C84—C83—H83A110.6
Si4—C43—H43B109.5C82—C83—H83A110.6
H43A—C43—H43B109.5C84—C83—H83B110.6
Si4—C43—H43C109.5C82—C83—H83B110.6
H43A—C43—H43C109.5H83A—C83—H83B108.7
H43B—C43—H43C109.5C83—C84—C85102.6 (12)
O51—Li1—O71112.3 (6)C83—C84—H84A111.2
O51—Li1—O81109.6 (5)C85—C84—H84A111.2
O71—Li1—O81109.1 (5)C83—C84—H84B111.2
O51—Li1—O61107.6 (5)C85—C84—H84B111.2
O71—Li1—O61108.9 (5)H84A—C84—H84B109.2
O81—Li1—O61109.2 (5)O81—C85—C84102.4 (10)
C52—O51—C55109.4 (7)O81—C85—H85A111.3
C55—O51—C52'106.2 (10)C84—C85—H85A111.3
C52—O51—Li1128.5 (7)O81—C85—H85B111.3
C55—O51—Li1122.1 (5)C84—C85—H85B111.3
C52'—O51—Li1119.7 (9)H85A—C85—H85B109.2
O51—C52—C53108.6 (10)C83'—C82'—O81114 (2)
O51—C52—H52A110.0C83'—C82'—H82C108.7
C53—C52—H52A110.0O81—C82'—H82C108.7
O51—C52—H52B110.0C83'—C82'—H82D108.7
C53—C52—H52B110.0O81—C82'—H82D108.7
H52A—C52—H52B108.4H82C—C82'—H82D107.6
C52—C53—C54105.3 (11)C82'—C83'—C84'117 (3)
C52—C53—H53A110.7C82'—C83'—H83C108.0
C54—C53—H53A110.7C84'—C83'—H83C108.0
C52—C53—H53B110.7C82'—C83'—H83D108.0
C54—C53—H53B110.7C84'—C83'—H83D108.0
H53A—C53—H53B108.8H83C—C83'—H83D107.2
C53'—C52'—O5195.4 (18)C85'—C84'—C83'86 (3)
C53'—C52'—H52C112.7C85'—C84'—H84C114.3
O51—C52'—H52C112.7C83'—C84'—H84C114.3
C53'—C52'—H52D112.7C85'—C84'—H84D114.3
O51—C52'—H52D112.7C83'—C84'—H84D114.3
C54—C53'—C52'114.6 (19)H84C—C84'—H84D111.4
C54—C53'—H53C108.6C84'—C85'—O81120 (3)
C52'—C53'—H53C108.6C84'—C85'—H85C107.3
C54—C53'—H53D108.6O81—C85'—H85C107.3
C52'—C53'—H53D108.6C84'—C85'—H85D107.3
H53C—C53'—H53D107.6O81—C85'—H85D107.3
C53'—C54—C55105.3 (10)H85C—C85'—H85D106.9
C3—B1—C1—Si142.5 (5)Li1—O61—C65—C64140.4 (6)
C4—B1—C1—Si1163.5 (3)C63—C64—C65—O6129.4 (8)
C2—B1—C1—Si177.5 (5)O51—Li1—O71—C7255.8 (13)
C13—Si1—C1—B181.2 (4)O81—Li1—O71—C7265.9 (12)
C12—Si1—C1—B141.1 (5)O61—Li1—O71—C72175.0 (11)
C11—Si1—C1—B1161.9 (4)O51—Li1—O71—C75110.6 (7)
C3—B1—C2—Si2167.8 (3)O81—Li1—O71—C75127.7 (7)
C4—B1—C2—Si272.9 (4)O61—Li1—O71—C758.5 (9)
C1—B1—C2—Si247.8 (5)O51—Li1—O71—C72'110.0 (18)
C23—Si2—C2—B1156.3 (4)O81—Li1—O71—C72'11.7 (19)
C21—Si2—C2—B134.8 (5)O61—Li1—O71—C72'130.8 (18)
C22—Si2—C2—B185.9 (4)C75—O71—C72—C738.0 (16)
C4—B1—C3—Si364.3 (5)C72'—O71—C72—C7370.5 (17)
C2—B1—C3—Si353.5 (5)Li1—O71—C72—C73176.8 (9)
C1—B1—C3—Si3174.5 (3)C72—O71—C72'—C7355.4 (14)
C32—Si3—C3—B172.4 (5)C75—O71—C72'—C7354.6 (15)
C33—Si3—C3—B1169.8 (4)Li1—O71—C72'—C73156.5 (7)
C31—Si3—C3—B150.1 (5)O71—C72—C73—C748.1 (17)
C3—B1—C4—Si470.6 (4)O71—C72—C73—C72'75.0 (17)
C2—B1—C4—Si4170.7 (3)O71—C72'—C73—C7467.4 (13)
C1—B1—C4—Si449.8 (5)O71—C72'—C73—C7250.4 (12)
C41—Si4—C4—B139.1 (5)C72—C73—C74—C7520.7 (13)
C43—Si4—C4—B1163.5 (4)C72'—C73—C74—C7560.1 (15)
C42—Si4—C4—B182.0 (4)C72—O71—C75—C7421.3 (12)
O71—Li1—O51—C5275.1 (14)C72'—O71—C75—C7421.1 (15)
O81—Li1—O51—C5246.3 (15)Li1—O71—C75—C74170.4 (7)
O61—Li1—O51—C52165.0 (13)C73—C74—C75—O7126.2 (10)
O71—Li1—O51—C55104.2 (7)O51—Li1—O81—C85166.7 (9)
O81—Li1—O51—C55134.3 (6)O71—Li1—O81—C8543.3 (11)
O61—Li1—O51—C5515.6 (8)O61—Li1—O81—C8575.6 (11)
O71—Li1—O51—C52'33.3 (18)O51—Li1—O81—C822.5 (12)
O81—Li1—O51—C52'88.1 (18)O71—Li1—O81—C82120.9 (10)
O61—Li1—O51—C52'153.2 (17)O61—Li1—O81—C82120.2 (10)
C55—O51—C52—C5315.6 (15)O51—Li1—O81—C82'40 (2)
C52'—O51—C52—C53107 (2)O71—Li1—O81—C82'163 (2)
Li1—O51—C52—C53165.0 (10)O61—Li1—O81—C82'78 (2)
O51—C52—C53—C5430.4 (16)O51—Li1—O81—C85'158 (2)
C52—O51—C52'—C53'64.9 (17)O71—Li1—O81—C85'79 (2)
C55—O51—C52'—C53'36 (2)O61—Li1—O81—C85'40 (2)
Li1—O51—C52'—C53'179.4 (14)C85—O81—C82—C8313.2 (15)
O51—C52'—C53'—C5428 (3)C82'—O81—C82—C8365 (2)
C52'—C53'—C54—C5399 (3)C85'—O81—C82—C8320 (3)
C52'—C53'—C54—C5511 (3)Li1—O81—C82—C83179.0 (9)
C52—C53—C54—C53'69.0 (19)O81—C82—C83—C8411.9 (17)
C52—C53—C54—C5531.7 (13)C82—C83—C84—C8530.8 (17)
C52—O51—C55—C545.4 (12)C82—O81—C85—C8432.1 (15)
C52'—O51—C55—C5431.7 (16)C82'—O81—C85—C840.1 (19)
Li1—O51—C55—C54174.1 (6)C85'—O81—C85—C8471 (3)
C53'—C54—C55—O5114.2 (17)Li1—O81—C85—C84161.0 (10)
C53—C54—C55—O5122.3 (11)C83—C84—C85—O8138.3 (16)
O51—Li1—O61—C6586.5 (7)C85—O81—C82'—C83'12 (3)
O71—Li1—O61—C65151.5 (6)C82—O81—C82'—C83'123 (4)
O81—Li1—O61—C6532.5 (8)C85'—O81—C82'—C83'17 (3)
O51—Li1—O61—C6283.4 (8)Li1—O81—C82'—C83'145 (2)
O71—Li1—O61—C6238.7 (9)O81—C82'—C83'—C84'3 (5)
O81—Li1—O61—C62157.7 (6)C82'—C83'—C84'—C85'22 (5)
C65—O61—C62—C6322.5 (9)C83'—C84'—C85'—O8137 (5)
Li1—O61—C62—C63148.5 (7)C85—O81—C85'—C84'74 (5)
O61—C62—C63—C643.5 (11)C82—O81—C85'—C84'15 (5)
C62—C63—C64—C6515.5 (10)C82'—O81—C85'—C84'37 (5)
C62—O61—C65—C6431.8 (7)Li1—O81—C85'—C84'178 (4)

Experimental details

(I)(II)
Crystal data
Chemical formula[In2(C8H19O2Si)2Cl4][Li(C4H8O)4](C16H44BSi4)
Mr722.08655.04
Crystal system, space groupMonoclinic, P21/cMonoclinic, Pn
Temperature (K)173173
a, b, c (Å)8.3467 (10), 10.453 (1), 16.7393 (18)10.5661 (7), 11.7334 (10), 18.1342 (12)
β (°) 96.689 (9) 93.153 (5)
V3)1450.5 (3)2244.8 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)2.060.16
Crystal size (mm)0.16 × 0.14 × 0.130.32 × 0.31 × 0.20
Data collection
DiffractometerStoe IPDS II two-circleStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.734, 0.7760.951, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
7213, 2690, 2137 30264, 8399, 4944
Rint0.0710.089
(sin θ/λ)max1)0.6070.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.06 0.071, 0.135, 0.96
No. of reflections26908399
No. of parameters128445
No. of restraints091
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 1.050.24, 0.24
Absolute structure?Flack (1983), with 4774 Friedel pairs
Absolute structure parameter?0.17 (16)

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) for (I) top
In1—O2i2.122 (5)Si1—O21.668 (6)
In1—O22.160 (5)Si1—O11.707 (6)
In1—O12.300 (6)Si1—C21.879 (9)
In1—Cl12.337 (2)Si1—C11.893 (9)
In1—Cl22.372 (2)
O2i—In1—O1142.7 (2)O2—In1—Cl2119.54 (16)
O2—In1—Cl1122.63 (17)Cl1—In1—Cl2115.89 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2ii0.842.373.139 (6)153.1
Symmetry code: (ii) x+2, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
B1—C31.661 (7)Si3—C31.862 (4)
B1—C41.669 (7)Si4—C41.854 (5)
B1—C21.678 (7)Li1—O511.914 (12)
B1—C11.683 (6)Li1—O711.918 (12)
Si1—C11.863 (5)Li1—O811.930 (11)
Si2—C21.874 (5)Li1—O611.941 (10)
C3—B1—C4110.0 (4)B1—C3—Si3125.8 (3)
C3—B1—C2109.1 (4)B1—C4—Si4123.7 (3)
C4—B1—C2107.6 (4)O51—Li1—O71112.3 (6)
C3—B1—C1109.1 (4)O51—Li1—O81109.6 (5)
C4—B1—C1110.4 (4)O71—Li1—O81109.1 (5)
C2—B1—C1110.7 (4)O51—Li1—O61107.6 (5)
B1—C1—Si1122.8 (3)O71—Li1—O61108.9 (5)
B1—C2—Si2123.6 (3)O81—Li1—O61109.2 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds