Download citation
Download citation
link to html
The title compound, {[Co(H2O)6][Co(SO4)(C10H8N2)(H2O)3][Co(SO4)2(C10H8N2)(H2O)2]}n, contains three crystallographically unique CoII centres, all of which are in six-coordinated environments. One CoII centre is coordinated by two bridging 4,4'-bipyridine (4,4'-bipy) ligands, one sulfate ion and three aqua ligands. The second CoII centre is surrounded by two N atoms of two 4,4'-bipy ligands and four O atoms, i.e. two O atoms from two monodentate sulfate ions and two from water mol­ecules. The third CoII centre forms part of a hexaaquacobalt(II) ion. In the crystal structure, there are two different one-dimensional chains, one being anionic and the other neutral, and adjacent chains are arranged in a cross-like fashion around the mid-point of the 4,4'-bipy ligands. The structure features O-H...O hydrogen-bonding inter­actions between sulfate anions and water mol­ecules, resulting in a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112034385/wq3017sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112034385/wq3017Isup2.hkl
Contains datablock I

CCDC reference: 826371

Comment top

The self-assembly of coordination polymers and the crystal engineering of metal–organic coordination frameworks have recently attracted great interest, owing to the interesting molecular topologies and potential application as functional materials (Batten & Robson, 1998; Yan & Huang, 2010; Eddaoudi et al., 2001; Dietzel et al., 2005; Chen et al., 2010; Zhang et al., 2010.). 4,4'-Bipyridine (4,4'-bipy) has been widely used as a bridging ligand to construct interesting one-, two- and three-dimensional coordination polymer networks, owing to its rod-like rigidity and length (Lu et al., 1998; Lah & Leban, 2006; Lian et al., 2007; Bo et al., 2008; Li et al., 2009; Zhong et al., 2011). Some interesting coordination polymers assembled with 4,4'-bipy have been reported, showing various structural motifs, such as [Co(SO4)(C10H8N2)(H2O)3].2C2H6O2 (Lu et al., 2006), [Co2(OH)2(4,4'-bipy)8(H2O)2](NO3)2.2(4,4'-bipy).10H2O (Luachan et al., 2007), [Co2(4,4'-bipy)2(SO4)2(H2O)6].4H2O (Prior et al., 2011), [Co(SO4)(4,4'-bipy)(H2O)3].2H2O and [CoCl2(DMSO)2(4,4'-bipy)] (DMSO is dimethyl sulfoxide; Lu et al., 1998). In the present work, we describe the synthesis and structure of a novel complex with 4,4'-bipy coordinated to CoII metal centres, namely {[Co(H2O)6][Co(SO4)2(4,4'-bipy)(H2O)2][Co(SO4)(4,4'-bipy)(H2O)3]}n, (I), which displays a three-dimensional supramolecular network with two kinds of one-dimensional chains and was obtained via a solvothermal reaction.

Part of the structure of (I) is shown in Fig. 1. There are three types of crystallographically independent Co2+ centres, i.e. Co1, Co2 and Co3. Atom Co1 is coordinated by atoms N3 and N4 from bridging 4,4'-bipy ligands occupying the axial positions, atom O4 from a monodentate sulfate ion and water molecules O3W, O4W and O5W occupying the equatorial sites (Fig. 1 and Table 1). Atoms Co1, O4, O3W, O4W and O5W are almost coplanar, the mean deviation from the plane being 0.060 Å. The cis bond angles around each Co1 centre are in the range 85.6 (2)–93.0 (1)° (Fig. 1 and Table 1). The Co2 coordination environment is very similar to that of Co1, with Co2 being octahedrally trans-coordinated in a monodentate mode by sulfate anions and water molecules [Co2—O distances = 2.108 (4) to 2.148 (4) Å]. Atoms N1 and N2 from two symmetry-related 4,4'-bipy ligands occupy the axial positions. The cis bond angles around each Co2 centre lie in the range 87.8 (2)–93.6 (2)° (Table 1 and Fig. 1). The Co3 centre is surrounded by six aqua ligands, having an octahedral geometry. The 4,4'-bipy as bridging ligand links the same CoII centres resulting in two types of one-dimensional linear chain, namely neutral [Co(SO4)(4,4'-bipy)(H2O)3]n chains (bipy–Co1–bipy, chain A) and anionic [Co(SO4)2(4,4'-bipy)(H2O)2]n chains (bipy–Co2–bipy, chain B). The presence of pseudosymmetry in the structure suggests the higher-symmetry space group P1, but attempts to refine the structure in this space group resulted in an unsatisfactory model because of the asymmetry in the coordination environment of the Co2 metal centre. The separation of neighbouring CoII centres in chain A [11.462 (2) Å] is a little longer than that observed in chain B [11.246 (2) Å]. This can be attributed to the coplanarity of the pyridine rings of the bridging 4,4'-bipy ligand in the A chain [dihedral angle between the pyridine rings = 0.9 (2)°], while the pyridine rings of the bridging 4,4'-bipy ligand coordinated to the Co2 atom are puckered in the B chain [corresponding dihedral angle = 8.1 (2)°]. Chains A and B are each arranged in a cross-like fashion, intersecting at the mid-points of the 4,4'-bipy ligands, resulting in rhombic channels (10.504 × 12.208 Å) along the a axis. The [Co(H2O)6]2+ complex cations guest in the structure channels (Fig. 2). Numerous classical O—H···O hydrogen-bonding interactions (Fig. 3 and Table 2) involving the coordinated water molecules and the sulfate ligands result in a three-dimensional supramolecular network.

Related literature top

For related literature, see: Batten & Robson (1998); Bo et al. (2008); Chen et al. (2010); Dietzel et al. (2005); Eddaoudi et al. (2001); Lah & Leban (2006); Li et al. (2009); Lian (2007); Lu et al. (1998, 2006); Luachan et al. (2007); Prior et al. (2011); Yan & Huang (2010); Zhang et al. (2010); Zhong (2011).

Experimental top

4,4'-Bipyridine (0.1 mmol), CoSO4.7H2O (0.1 mmol), propane-1,2-diol (1 ml) and water (4 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h. The tube was cooled to ambient temperature spontaneously, whereupon red block-shaped crystals of (I) were obtained. Analysis found: C 22.63 H 3.12 N 5.36%; calculated for C20H38Co3N4O23S3: C 24.62 H 3.90 N 5.74%.

Refinement top

The 4,4'-bipy H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O). The Flack parameter was refined as a full least-squares parameter, with a refined value of 0.40 (2). The twinning has been applied in the refinement with 2531 Friedel pairs.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the metal atoms in the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The neutral polymeric chains and anionic polymeric chains array in (I), viewed along the a axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The hydrogen-bonding interactions between adjacent chains and complex cations. Hydrogen bonds are represented by dashed lines. The H atoms of the 4,4'-bipy have been omitted for clarity.
catena-poly[[hexaaquacobalt(II)] [[diaquabis(sulfato-κO)cobalt(II)]-µ-4,4'-bipyridine- κ2N:N'] [[triaqua(sulfato-κO)cobalt(II)]-µ-4,4'-bipyridine- κ2N:N']] top
Crystal data top
[Co(H2O)6][Co(SO4)2(C10H8N2)(H2O)2][Co(SO4)(C10H8N2)(H2O)3]Z = 1
Mr = 975.51F(000) = 499
Triclinic, P1Dx = 1.889 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2860 (15) ÅCell parameters from 7593 reflections
b = 11.246 (2) Åθ = 3.1–27.5°
c = 11.462 (2) ŵ = 1.72 mm1
α = 72.21 (3)°T = 223 K
β = 73.57 (3)°Block, pink
γ = 83.50 (3)°0.33 × 0.14 × 0.11 mm
V = 857.4 (3) Å3
Data collection top
Rigaku Graphite Monochromator [MODEL?]
diffractometer
6430 independent reflections
Radiation source: fine-focus sealed tube5533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1414
Tmin = 0.601, Tmax = 0.834l = 1414
8553 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.8892P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
6430 reflectionsΔρmax = 0.83 e Å3
479 parametersΔρmin = 0.61 e Å3
3 restraintsAbsolute structure: Flack (1983), 2531 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.402 (14)
Crystal data top
[Co(H2O)6][Co(SO4)2(C10H8N2)(H2O)2][Co(SO4)(C10H8N2)(H2O)3]γ = 83.50 (3)°
Mr = 975.51V = 857.4 (3) Å3
Triclinic, P1Z = 1
a = 7.2860 (15) ÅMo Kα radiation
b = 11.246 (2) ŵ = 1.72 mm1
c = 11.462 (2) ÅT = 223 K
α = 72.21 (3)°0.33 × 0.14 × 0.11 mm
β = 73.57 (3)°
Data collection top
Rigaku Graphite Monochromator [MODEL?]
diffractometer
6430 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5533 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.834Rint = 0.023
8553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.83 e Å3
S = 1.24Δρmin = 0.61 e Å3
6430 reflectionsAbsolute structure: Flack (1983), 2531 Fridel pairs
479 parametersAbsolute structure parameter: 0.402 (14)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000 (9)0.50000 (6)0.24567 (5)0.01934 (15)
Co20.50218 (10)0.00192 (7)0.71794 (6)0.01779 (13)
Co30.50690 (11)0.00978 (7)0.21887 (7)0.02305 (14)
S10.44606 (17)0.40461 (11)0.20092 (11)0.0229 (3)
S20.91175 (17)0.00961 (11)0.49236 (11)0.0210 (3)
S30.09428 (17)0.00163 (11)0.95204 (10)0.0201 (3)
O10.4814 (5)0.5366 (3)0.1842 (4)0.0363 (9)
O20.5603 (6)0.3684 (4)0.0896 (3)0.0379 (9)
O30.4979 (5)0.3232 (4)0.3148 (3)0.0373 (9)
O40.2432 (5)0.3919 (4)0.2152 (4)0.0308 (9)
O50.9806 (6)0.0842 (4)0.6012 (4)0.0389 (11)
O60.9383 (6)0.0833 (4)0.4029 (4)0.0366 (10)
O71.0165 (6)0.1052 (4)0.4298 (4)0.0441 (11)
O80.7035 (5)0.0226 (3)0.5345 (3)0.0239 (8)
O90.0684 (5)0.0797 (4)1.0351 (4)0.0299 (9)
O100.0129 (5)0.0626 (4)0.8446 (3)0.0296 (9)
O110.0041 (6)0.1192 (4)1.0245 (4)0.0352 (10)
O120.3017 (5)0.0303 (3)0.9057 (3)0.0259 (8)
N10.4733 (7)0.1847 (4)0.7266 (4)0.0243 (10)
N20.5282 (6)0.1859 (4)0.7158 (4)0.0244 (10)
N30.0172 (6)0.4964 (4)0.4323 (3)0.0238 (9)
N40.0110 (6)0.5045 (4)0.0566 (3)0.0228 (9)
C10.4927 (9)0.2789 (5)0.8260 (5)0.0298 (13)
H1A0.49820.26080.89890.036*
C20.5052 (9)0.4024 (5)0.8266 (5)0.0284 (13)
H2A0.52110.46500.89820.034*
C30.4942 (8)0.4330 (5)0.7214 (5)0.0230 (11)
C40.4620 (9)0.3350 (5)0.6200 (5)0.0304 (13)
H4A0.44510.35100.54870.036*
C50.4553 (9)0.2141 (5)0.6261 (5)0.0306 (13)
H5A0.43730.14950.55650.037*
C60.5253 (9)0.2163 (5)0.8203 (5)0.0340 (14)
H6A0.53070.15230.89330.041*
C70.5148 (10)0.3376 (5)0.8251 (5)0.0330 (13)
H7A0.50940.35390.90080.040*
C80.5121 (8)0.4355 (5)0.7174 (5)0.0211 (11)
C90.5234 (9)0.4040 (5)0.6075 (5)0.0281 (13)
H9A0.52780.46620.53160.034*
C100.5280 (8)0.2797 (5)0.6116 (4)0.0269 (12)
H10A0.53100.26050.53770.032*
C110.0450 (8)0.3922 (5)0.5203 (5)0.0293 (13)
H11A0.06880.31780.49820.035*
C120.0405 (9)0.3886 (5)0.6426 (5)0.0316 (13)
H12A0.06000.31280.70030.038*
C130.0069 (7)0.4977 (5)0.6802 (4)0.0163 (10)
C140.0193 (8)0.6061 (5)0.5870 (5)0.0297 (12)
H14A0.03970.68240.60530.036*
C150.0150 (8)0.6011 (5)0.4670 (4)0.0245 (11)
H15A0.03590.67510.40740.029*
C160.0361 (8)0.6078 (5)0.0338 (5)0.0300 (12)
H16A0.05930.68290.01310.036*
C170.0300 (9)0.6102 (5)0.1547 (5)0.0323 (13)
H17A0.04590.68560.21400.039*
C180.0000 (8)0.4996 (5)0.1891 (4)0.0227 (11)
C190.0241 (9)0.3922 (5)0.0962 (4)0.0290 (13)
H19A0.04470.31580.11430.035*
C200.0178 (8)0.3972 (5)0.0234 (5)0.0298 (12)
H20A0.03420.32310.08430.036*
O1W0.2806 (5)0.0689 (4)0.6283 (3)0.0297 (9)
H1WA0.18750.06560.68890.045*
H1WB0.25610.04500.57410.045*
O2W0.7302 (5)0.0594 (3)0.8092 (3)0.0267 (8)
H2WA0.81670.08360.75750.040*
H2WB0.76910.00720.83190.040*
O3W0.1445 (5)0.3340 (3)0.3216 (3)0.0333 (9)
H3WA0.09320.26880.35520.050*
H3WB0.25270.32080.32120.050*
O4W0.1576 (5)0.6711 (3)0.1778 (3)0.0295 (8)
H4WA0.14100.72950.11770.044*
H4WB0.26920.64520.16340.044*
O5W0.2586 (5)0.6059 (4)0.2704 (4)0.0347 (10)
H5WA0.27580.67360.28550.052*
H5WB0.34030.59490.23840.052*
O6W0.7459 (5)0.1278 (3)0.2532 (3)0.0281 (8)
H6WA0.79030.11470.30630.042*
H6WB0.82780.12000.18570.042*
O7W0.2731 (6)0.1037 (4)0.1880 (4)0.0373 (10)
H7WA0.20680.13530.24220.056*
H7WB0.21790.10780.13360.056*
O8W0.4817 (6)0.0654 (4)0.3679 (3)0.0344 (9)
H8WA0.43290.13600.35400.052*
H8WB0.54080.05370.42180.052*
O9W0.6757 (6)0.1339 (4)0.0936 (4)0.0386 (10)
H9WA0.63660.19950.11060.058*
H9WB0.79280.12800.07890.058*
O10W0.5297 (6)0.1009 (4)0.0751 (3)0.0366 (10)
H10W0.45760.08310.02840.055*
HW100.64200.09540.03380.055*
O11W0.3219 (6)0.1573 (4)0.3334 (4)0.0430 (11)
H11W0.21310.12640.34430.064*
HW110.33420.20840.29350.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0203 (3)0.0211 (3)0.0191 (4)0.0016 (2)0.0088 (3)0.0067 (3)
Co20.0216 (3)0.0148 (3)0.0188 (3)0.0004 (2)0.0057 (2)0.0074 (2)
Co30.0208 (3)0.0284 (4)0.0202 (3)0.0018 (2)0.0058 (2)0.0078 (3)
S10.0217 (6)0.0248 (6)0.0247 (6)0.0032 (5)0.0099 (5)0.0085 (5)
S20.0194 (6)0.0225 (6)0.0234 (6)0.0009 (5)0.0065 (5)0.0094 (5)
S30.0212 (6)0.0203 (6)0.0199 (5)0.0005 (5)0.0055 (5)0.0074 (5)
O10.032 (2)0.029 (2)0.055 (2)0.0009 (16)0.0208 (19)0.0141 (18)
O20.043 (2)0.037 (2)0.0293 (19)0.0099 (18)0.0043 (17)0.0113 (17)
O30.037 (2)0.045 (2)0.0300 (19)0.0002 (18)0.0183 (17)0.0019 (18)
O40.0172 (19)0.031 (2)0.054 (2)0.0035 (15)0.0143 (17)0.0234 (18)
O50.036 (2)0.051 (3)0.033 (2)0.019 (2)0.0167 (19)0.0168 (19)
O60.034 (2)0.049 (3)0.038 (2)0.007 (2)0.0114 (19)0.029 (2)
O70.026 (2)0.033 (2)0.069 (3)0.0044 (18)0.001 (2)0.017 (2)
O80.0174 (19)0.030 (2)0.0250 (17)0.0042 (15)0.0061 (15)0.0099 (15)
O90.025 (2)0.036 (2)0.039 (2)0.0045 (17)0.0101 (17)0.0258 (18)
O100.024 (2)0.039 (2)0.0248 (18)0.0025 (17)0.0092 (16)0.0067 (17)
O110.042 (3)0.021 (2)0.034 (2)0.0068 (18)0.0010 (18)0.0024 (17)
O120.025 (2)0.031 (2)0.0220 (17)0.0057 (16)0.0069 (15)0.0094 (15)
N10.035 (3)0.015 (2)0.024 (2)0.0023 (19)0.0081 (19)0.0086 (17)
N20.037 (3)0.016 (2)0.0218 (19)0.0016 (19)0.0059 (19)0.0086 (16)
N30.029 (2)0.024 (2)0.022 (2)0.0033 (18)0.0087 (19)0.0099 (18)
N40.030 (2)0.025 (2)0.0164 (18)0.0051 (18)0.0111 (17)0.0076 (17)
C10.048 (4)0.021 (3)0.024 (2)0.002 (2)0.011 (2)0.011 (2)
C20.047 (4)0.016 (3)0.023 (3)0.003 (2)0.015 (2)0.002 (2)
C30.024 (3)0.015 (3)0.030 (2)0.001 (2)0.007 (2)0.007 (2)
C40.046 (4)0.023 (3)0.028 (3)0.002 (2)0.017 (3)0.010 (2)
C50.049 (4)0.017 (3)0.030 (3)0.000 (2)0.018 (3)0.007 (2)
C60.064 (4)0.015 (3)0.024 (2)0.001 (3)0.019 (3)0.002 (2)
C70.057 (4)0.021 (3)0.028 (3)0.001 (3)0.018 (3)0.013 (2)
C80.023 (3)0.016 (2)0.025 (2)0.000 (2)0.004 (2)0.009 (2)
C90.048 (4)0.017 (3)0.018 (2)0.002 (2)0.010 (2)0.002 (2)
C100.044 (4)0.023 (3)0.019 (2)0.006 (2)0.010 (2)0.010 (2)
C110.051 (4)0.021 (3)0.019 (2)0.008 (2)0.016 (2)0.006 (2)
C120.046 (4)0.024 (3)0.029 (3)0.010 (2)0.020 (3)0.009 (2)
C130.016 (2)0.018 (2)0.016 (2)0.0017 (18)0.003 (2)0.008 (2)
C140.040 (3)0.028 (3)0.027 (3)0.007 (2)0.015 (2)0.013 (2)
C150.036 (3)0.020 (3)0.017 (2)0.001 (2)0.011 (2)0.0015 (19)
C160.040 (3)0.027 (3)0.032 (3)0.007 (2)0.019 (3)0.017 (2)
C170.057 (4)0.020 (3)0.024 (3)0.006 (2)0.020 (3)0.005 (2)
C180.024 (3)0.029 (3)0.015 (2)0.003 (2)0.006 (2)0.007 (2)
C190.049 (4)0.021 (3)0.017 (2)0.002 (2)0.011 (2)0.005 (2)
C200.048 (4)0.018 (3)0.025 (3)0.004 (2)0.015 (2)0.005 (2)
O1W0.028 (2)0.040 (2)0.0275 (17)0.0042 (17)0.0116 (16)0.0166 (16)
O2W0.026 (2)0.029 (2)0.0285 (17)0.0027 (15)0.0101 (15)0.0119 (15)
O3W0.030 (2)0.027 (2)0.041 (2)0.0096 (16)0.0165 (17)0.0037 (17)
O4W0.030 (2)0.0234 (19)0.0307 (18)0.0008 (15)0.0066 (16)0.0031 (15)
O5W0.030 (2)0.034 (2)0.053 (2)0.0125 (17)0.0244 (19)0.0243 (19)
O6W0.023 (2)0.032 (2)0.0308 (18)0.0028 (15)0.0091 (16)0.0104 (16)
O7W0.030 (2)0.052 (3)0.039 (2)0.0178 (19)0.0161 (19)0.026 (2)
O8W0.044 (2)0.040 (2)0.0263 (18)0.0101 (18)0.0183 (17)0.0159 (17)
O9W0.031 (2)0.028 (2)0.046 (2)0.0024 (17)0.0015 (18)0.0061 (18)
O10W0.036 (2)0.053 (3)0.0264 (19)0.0020 (19)0.0109 (17)0.0178 (19)
O11W0.029 (2)0.046 (3)0.047 (2)0.0028 (18)0.0034 (19)0.016 (2)
Geometric parameters (Å, º) top
Co1—O42.040 (4)C6—H6A0.9300
Co1—O3W2.070 (4)C7—C81.384 (7)
Co1—O4W2.169 (4)C7—H7A0.9300
Co1—O5W2.108 (4)C8—C91.389 (7)
Co1—N32.166 (4)C8—C3ii1.483 (5)
Co1—N42.177 (4)C9—C101.381 (7)
Co2—O82.159 (3)C9—H9A0.9300
Co2—O122.182 (3)C10—H10A0.9300
Co2—O1W2.102 (4)C11—C121.381 (7)
Co2—O2W2.147 (4)C11—H11A0.9300
Co2—N12.103 (4)C12—C131.396 (7)
Co2—N22.091 (4)C12—H12A0.9300
Co3—O6W2.120 (4)C13—C141.389 (7)
Co3—O7W2.056 (4)C13—C18iii1.491 (6)
Co3—O8W2.082 (4)C14—C151.385 (7)
Co3—O9W2.054 (4)C14—H14A0.9300
Co3—O10W2.152 (4)C15—H15A0.9300
Co3—O11W2.114 (4)C16—C171.366 (7)
S1—O21.458 (4)C16—H16A0.9300
S1—O41.459 (4)C17—C181.393 (7)
S1—O31.467 (4)C17—H17A0.9300
S1—O11.481 (4)C18—C191.377 (7)
S2—O71.453 (4)C18—C13iv1.491 (6)
S2—O51.460 (4)C19—C201.377 (7)
S2—O61.465 (4)C19—H19A0.9300
S2—O81.495 (4)C20—H20A0.9300
S3—O111.469 (4)O1W—H1WA0.8170
S3—O101.470 (4)O1W—H1WB0.8157
S3—O91.474 (3)O2W—H2WA0.8186
S3—O121.487 (4)O2W—H2WB0.8154
N1—C11.327 (7)O3W—H3WA0.8201
N1—C51.335 (7)O3W—H3WB0.8200
N2—C101.330 (7)O4W—H4WA0.8199
N2—C61.337 (6)O4W—H4WB0.8200
N3—C151.330 (6)O5W—H5WA0.8200
N3—C111.331 (6)O5W—H5WB0.8200
N4—C161.334 (7)O6W—H6WA0.8201
N4—C201.349 (6)O6W—H6WB0.8199
C1—C21.379 (7)O7W—H7WA0.8200
C1—H1A0.9300O7W—H7WB0.8199
C2—C31.376 (7)O8W—H8WA0.8199
C2—H2A0.9300O8W—H8WB0.8200
C3—C41.391 (7)O9W—H9WA0.8200
C3—C8i1.483 (5)O9W—H9WB0.8200
C4—C51.377 (7)O10W—H10W0.8200
C4—H4A0.9300O10W—HW100.8200
C5—H5A0.9300O11W—H11W0.8200
C6—C71.374 (7)O11W—HW110.8200
O4—Co1—O3W86.12 (16)C4—C3—C8i121.6 (4)
O4—Co1—O5W176.22 (16)C5—C4—C3119.3 (5)
O3W—Co1—O5W91.71 (16)C5—C4—H4A120.3
O4—Co1—O4W92.89 (15)C3—C4—H4A120.3
O3W—Co1—O4W176.13 (14)N1—C5—C4123.5 (5)
O5W—Co1—O4W89.48 (15)N1—C5—H5A118.3
O4—Co1—N486.16 (15)C4—C5—H5A118.3
O3W—Co1—N490.14 (16)N2—C6—C7123.2 (5)
O5W—Co1—N490.76 (15)N2—C6—H6A118.4
O4W—Co1—N493.54 (16)C7—C6—H6A118.4
O3W—Co1—N390.67 (16)C6—C7—C8120.1 (5)
O4W—Co1—N385.64 (15)C6—C7—H7A119.9
O5W—Co1—N390.09 (15)C8—C7—H7A119.9
N3—Co1—N4178.8 (2)C7—C8—C9116.7 (5)
N3—Co1—O493.02 (16)C7—C8—C3ii121.0 (4)
O1W—Co2—N193.63 (17)C9—C8—C3ii122.3 (4)
O1W—Co2—N287.17 (16)C10—C9—C8119.6 (5)
O2W—Co2—N290.68 (16)C10—C9—H9A120.2
N1—Co2—N2178.15 (18)C8—C9—H9A120.2
O9W—Co3—O7W87.62 (18)N2—C10—C9123.4 (4)
O7W—Co3—O8W85.07 (16)N2—C10—H10A118.3
O7W—Co3—O11W89.57 (18)C9—C10—H10A118.3
O9W—Co3—O6W93.01 (16)N3—C11—C12123.5 (5)
O7W—Co3—O6W179.25 (19)N3—C11—H11A118.2
O8W—Co3—O6W94.49 (15)C12—C11—H11A118.2
O11W—Co3—O6W89.84 (16)C11—C12—C13120.5 (5)
O7W—Co3—O10W97.01 (16)C11—C12—H12A119.8
O6W—Co3—O10W83.39 (15)C13—C12—H12A119.8
O1W—Co2—O2W177.85 (17)C14—C13—C12115.5 (4)
N1—Co2—O2W88.52 (16)C14—C13—C18iii121.6 (4)
N2—Co2—O893.74 (15)C12—C13—C18iii122.9 (4)
O1W—Co2—O889.64 (14)C15—C14—C13120.3 (5)
N1—Co2—O887.93 (15)C15—C14—H14A119.9
O2W—Co2—O890.39 (14)C13—C14—H14A119.9
N2—Co2—O1289.26 (15)N3—C15—C14123.7 (5)
O1W—Co2—O1291.66 (14)N3—C15—H15A118.2
N1—Co2—O1289.05 (15)C14—C15—H15A118.2
O2W—Co2—O1288.42 (14)N4—C16—C17124.0 (5)
O8—Co2—O12176.78 (16)N4—C16—H16A118.0
O9W—Co3—O8W91.15 (17)C17—C16—H16A118.0
O9W—Co3—O11W174.50 (19)C16—C17—C18120.0 (5)
O8W—Co3—O11W93.31 (17)C16—C17—H17A120.0
O9W—Co3—O10W92.63 (17)C18—C17—H17A120.0
O8W—Co3—O10W175.76 (19)C19—C18—C17116.4 (4)
O11W—Co3—O10W83.03 (16)C19—C18—C13iv121.8 (4)
O2—S1—O4109.8 (2)C17—C18—C13iv121.8 (4)
O2—S1—O3109.6 (2)C20—C19—C18120.3 (5)
O4—S1—O3109.0 (2)C20—C19—H19A119.8
O2—S1—O1109.2 (2)C18—C19—H19A119.8
O4—S1—O1109.0 (2)N4—C20—C19123.2 (5)
O3—S1—O1110.3 (2)N4—C20—H20A118.4
O7—S2—O5110.7 (3)C19—C20—H20A118.4
O7—S2—O6109.6 (3)Co2—O1W—H1WA101.9
O5—S2—O6108.6 (2)Co2—O1W—H1WB127.1
O7—S2—O8108.9 (2)H1WA—O1W—H1WB111.5
O5—S2—O8110.1 (2)Co2—O2W—H2WA105.2
O6—S2—O8108.8 (2)Co2—O2W—H2WB115.9
O11—S3—O10109.8 (3)H2WA—O2W—H2WB110.2
O11—S3—O9109.4 (2)Co1—O3W—H3WA121.3
O10—S3—O9109.0 (2)Co1—O3W—H3WB128.5
O11—S3—O12108.8 (2)H3WA—O3W—H3WB110.2
O10—S3—O12110.4 (2)Co1—O4W—H4WA122.7
O9—S3—O12109.5 (2)Co1—O4W—H4WB102.3
S1—O4—Co1136.1 (2)H4WA—O4W—H4WB110.5
S2—O8—Co2133.7 (2)Co1—O5W—H5WA127.0
S3—O12—Co2134.1 (2)Co1—O5W—H5WB118.3
C1—N1—C5116.9 (4)H5WA—O5W—H5WB111.0
C1—N1—Co2121.8 (3)Co3—O6W—H6WA113.5
C5—N1—Co2120.9 (3)Co3—O6W—H6WB108.6
C10—N2—C6116.9 (4)H6WA—O6W—H6WB110.7
C10—N2—Co2120.4 (3)Co3—O7W—H7WA121.1
C6—N2—Co2122.3 (3)Co3—O7W—H7WB125.9
C15—N3—C11116.6 (4)H7WA—O7W—H7WB110.9
C15—N3—Co1119.7 (3)Co3—O8W—H8WA111.4
C11—N3—Co1123.5 (3)Co3—O8W—H8WB133.5
C16—N4—C20116.0 (4)H8WA—O8W—H8WB110.7
C16—N4—Co1124.7 (3)Co3—O9W—H9WA109.7
C20—N4—Co1119.2 (3)Co3—O9W—H9WB121.1
N1—C1—C2123.2 (5)H9WA—O9W—H9WB110.3
N1—C1—H1A118.4Co3—O10W—H10W122.2
C2—C1—H1A118.4Co3—O10W—HW10105.5
C3—C2—C1120.1 (5)H10W—O10W—HW10111.1
C3—C2—H2A120.0Co3—O11W—H11W106.3
C1—C2—H2A120.0Co3—O11W—HW11107.1
C2—C3—C4116.8 (5)H11W—O11W—HW11110.7
C2—C3—C8i121.6 (4)
O2—S1—O4—Co1131.7 (3)O5W—Co1—N4—C1651.3 (5)
O3—S1—O4—Co1108.3 (4)O4W—Co1—N4—C1638.2 (4)
O1—S1—O4—Co112.2 (4)O4—Co1—N4—C2045.9 (4)
O3W—Co1—O4—S1155.3 (4)O3W—Co1—N4—C2040.2 (4)
N3—Co1—O4—S164.9 (4)O5W—Co1—N4—C20131.9 (4)
O4W—Co1—O4—S120.9 (4)O4W—Co1—N4—C20138.6 (4)
N4—Co1—O4—S1114.3 (4)C5—N1—C1—C23.6 (9)
O7—S2—O8—Co2112.7 (3)Co2—N1—C1—C2169.3 (5)
O5—S2—O8—Co28.9 (4)N1—C1—C2—C31.2 (10)
O6—S2—O8—Co2127.9 (3)C1—C2—C3—C42.8 (9)
N2—Co2—O8—S297.6 (3)C1—C2—C3—C8i178.4 (5)
O1W—Co2—O8—S2175.2 (3)C2—C3—C4—C54.1 (9)
N1—Co2—O8—S281.6 (3)C8i—C3—C4—C5177.0 (5)
O2W—Co2—O8—S26.9 (3)C1—N1—C5—C42.1 (9)
O11—S3—O12—Co2120.4 (3)Co2—N1—C5—C4170.9 (5)
O10—S3—O12—Co20.2 (4)C3—C4—C5—N11.8 (10)
O9—S3—O12—Co2120.1 (3)C10—N2—C6—C72.6 (9)
N2—Co2—O12—S380.6 (3)Co2—N2—C6—C7170.4 (5)
O1W—Co2—O12—S36.5 (3)N2—C6—C7—C81.9 (10)
N1—Co2—O12—S3100.1 (3)C6—C7—C8—C90.9 (9)
O2W—Co2—O12—S3171.3 (3)C6—C7—C8—C3ii177.9 (5)
O1W—Co2—N1—C1142.0 (4)C7—C8—C9—C102.8 (9)
O2W—Co2—N1—C138.0 (4)C3ii—C8—C9—C10176.0 (5)
O8—Co2—N1—C1128.5 (4)C6—N2—C10—C90.5 (9)
O12—Co2—N1—C150.4 (4)Co2—N2—C10—C9172.6 (5)
O1W—Co2—N1—C545.3 (4)C8—C9—C10—N22.2 (10)
O2W—Co2—N1—C5134.6 (4)C15—N3—C11—C120.5 (8)
O8—Co2—N1—C544.2 (4)Co1—N3—C11—C12174.5 (5)
O12—Co2—N1—C5136.9 (4)N3—C11—C12—C130.5 (9)
O1W—Co2—N2—C1045.1 (4)C11—C12—C13—C140.4 (8)
O2W—Co2—N2—C10134.8 (4)C11—C12—C13—C18iii179.9 (5)
O8—Co2—N2—C1044.4 (4)C12—C13—C14—C151.3 (8)
O12—Co2—N2—C10136.8 (4)C18iii—C13—C14—C15179.0 (5)
O1W—Co2—N2—C6127.7 (5)C11—N3—C15—C140.5 (8)
O2W—Co2—N2—C652.4 (5)Co1—N3—C15—C14175.7 (4)
O8—Co2—N2—C6142.8 (5)C13—C14—C15—N31.4 (9)
O12—Co2—N2—C636.0 (5)C20—N4—C16—C171.5 (9)
O4—Co1—N3—C15136.2 (4)Co1—N4—C16—C17175.5 (5)
O3W—Co1—N3—C15137.7 (4)N4—C16—C17—C181.4 (10)
O5W—Co1—N3—C1546.0 (4)C16—C17—C18—C190.6 (9)
O4W—Co1—N3—C1543.5 (4)C16—C17—C18—C13iv179.7 (5)
O4—Co1—N3—C1149.0 (5)C17—C18—C19—C200.0 (9)
O3W—Co1—N3—C1137.2 (4)C13iv—C18—C19—C20179.7 (5)
O5W—Co1—N3—C11128.9 (4)C16—N4—C20—C190.8 (9)
O4W—Co1—N3—C11141.7 (5)Co1—N4—C20—C19176.3 (5)
O4—Co1—N4—C16130.9 (5)C18—C19—C20—N40.2 (10)
O3W—Co1—N4—C16143.0 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O100.821.872.674 (5)168
O1W—H1WB···O5v0.822.503.066 (6)127
O2W—H2WA···O50.821.852.631 (5)158
O2W—H2WB···O10vi0.822.082.783 (6)144
O3W—H3WA···O7v0.821.962.779 (6)175
O3W—H3WB···O3v0.821.842.646 (5)169
O4W—H4WA···O11vii0.822.072.837 (5)156
O4W—H4WB···O10.821.882.661 (5)158
O5W—H5WA···O6Wviii0.822.172.943 (5)158
O5W—H5WB···O1v0.821.842.652 (5)168
O6W—H6WA···O60.821.872.684 (5)169
O6W—H6WB···O11ix0.821.902.717 (5)171
O7W—H7WA···O7v0.822.152.875 (6)147
O7W—H7WB···O9iv0.821.882.688 (5)166
O8W—H8WA···O30.822.092.784 (6)142
O8W—H8WB···O80.821.922.738 (5)174
O9W—H9WA···O20.821.882.666 (5)161
O9W—H9WB···O9ix0.821.982.788 (5)168
O10W—H10W···O12iv0.821.972.783 (5)175
O10W—HW10···O2Wiv0.822.392.900 (5)122
O11W—H11W···O6v0.821.982.786 (6)168
Symmetry codes: (iv) x, y, z1; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y+1, z1; (viii) x1, y+1, z; (ix) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6][Co(SO4)2(C10H8N2)(H2O)2][Co(SO4)(C10H8N2)(H2O)3]
Mr975.51
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.2860 (15), 11.246 (2), 11.462 (2)
α, β, γ (°)72.21 (3), 73.57 (3), 83.50 (3)
V3)857.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.33 × 0.14 × 0.11
Data collection
DiffractometerRigaku Graphite Monochromator [MODEL?]
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.601, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
8553, 6430, 5533
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.080, 1.24
No. of reflections6430
No. of parameters479
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.61
Absolute structureFlack (1983), 2531 Fridel pairs
Absolute structure parameter0.402 (14)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O42.040 (4)Co2—O2W2.147 (4)
Co1—O3W2.070 (4)Co2—N12.103 (4)
Co1—O4W2.169 (4)Co2—N22.091 (4)
Co1—O5W2.108 (4)Co3—O6W2.120 (4)
Co1—N32.166 (4)Co3—O7W2.056 (4)
Co1—N42.177 (4)Co3—O8W2.082 (4)
Co2—O82.159 (3)Co3—O9W2.054 (4)
Co2—O122.182 (3)Co3—O10W2.152 (4)
Co2—O1W2.102 (4)Co3—O11W2.114 (4)
O3W—Co1—N390.67 (16)O9W—Co3—O7W87.62 (18)
O4W—Co1—N385.64 (15)O7W—Co3—O8W85.07 (16)
O5W—Co1—N390.09 (15)O7W—Co3—O11W89.57 (18)
N3—Co1—N4178.8 (2)O9W—Co3—O6W93.01 (16)
N3—Co1—O493.02 (16)O7W—Co3—O6W179.25 (19)
O1W—Co2—N193.63 (17)O8W—Co3—O6W94.49 (15)
O1W—Co2—N287.17 (16)O11W—Co3—O6W89.84 (16)
O2W—Co2—N290.68 (16)O7W—Co3—O10W97.01 (16)
N1—Co2—N2178.15 (18)O6W—Co3—O10W83.39 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O100.821.872.674 (5)167.6
O1W—H1WB···O5i0.822.503.066 (6)127.2
O2W—H2WA···O50.821.852.631 (5)158.3
O2W—H2WB···O10ii0.822.082.783 (6)144.3
O3W—H3WA···O7i0.821.962.779 (6)174.9
O3W—H3WB···O3i0.821.842.646 (5)169.2
O4W—H4WA···O11iii0.822.072.837 (5)156.0
O4W—H4WB···O10.821.882.661 (5)158.2
O5W—H5WA···O6Wiv0.822.172.943 (5)158.4
O5W—H5WB···O1i0.821.842.652 (5)168.4
O6W—H6WA···O60.821.872.684 (5)168.6
O6W—H6WB···O11v0.821.902.717 (5)171.3
O7W—H7WA···O7i0.822.152.875 (6)147.0
O7W—H7WB···O9vi0.821.882.688 (5)166.2
O8W—H8WA···O30.822.092.784 (6)141.5
O8W—H8WB···O80.821.922.738 (5)173.7
O9W—H9WA···O20.821.882.666 (5)160.5
O9W—H9WB···O9v0.821.982.788 (5)167.5
O10W—H10W···O12vi0.821.972.783 (5)175.0
O10W—HW10···O2Wvi0.822.392.900 (5)121.5
O11W—H11W···O6i0.821.982.786 (6)167.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1, z1; (iv) x1, y+1, z; (v) x+1, y, z1; (vi) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds