Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The monolithic double-crystal spectrometer (MDCS) is a perfect-crystal device allowing X-ray spectroscopic measurements on an absolute energy scale with an accuracy of better than 1 in 106. This paper presents a detailed analysis of its properties using the dynamical theory of X-ray propagation in perfect crystals. The transmitted wavelength, the transmission window profile, the energy dispersion and the integrated intensity of the transmitted radiation and their dependence on the scanning angle of rotation are derived. The polarization mixing is shown to have a subtle yet important effect on the transmission of the MDCS. An example of a specific MDCS, designed for measuring the Cu emission spectra, is discussed in detail. The results of the study highlight the advantages and limitations of this device and yield tools for optimizing the MDCS for a wide class of X-ray spectroscopic measurements and for correcting the inevitable, although minimal, distortions introduced by the finite instrumental window of the device.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds