Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The synthesis and characterization of two new dinuclear nickel(II) complexes, namely bis­{[mu]-3-[2-(dimethyl­amino)­ethyl­imino]butan-2-one oximato}dinickel(II) bis­(perchlorate) acetonitrile solvate, [Ni2(C8H16N3O)2](ClO4)2·CH3CN, (I), and bis­{[mu]-3-[2-(dimethyl­amino)ethyl­imino]-3-phenyl­propan-2-one oximato}dinickel(II) bis­(perchlorate), [Ni2(C13H18N3O)2](ClO4)2, (II), are reported. Single-crystal X-ray analyses of the complexes reveal that the nickel(II) ions are in square-planar N3O environments and form six-membered (NiNO)2 metallacycles. The cation in (II) possesses crystallographically imposed inversion symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107048937/tr3024sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107048937/tr3024Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107048937/tr3024IIsup3.hkl
Contains datablock II

CCDC references: 292398; 292399

Comment top

There are many nickel(II) complexes with ligands incorporating oximate donors that have been shown to stabilize the nickel(III) and nickel(IV) oxidation states at low potential (Mohanty et al., 1975, Singh et al., 1977; Singh & Chakravorty, 1980; Kruger et al., 1991; Berkessel et al., 1996). Such complexes in different oxidation states have a strong role in bioinorganic chemistry and redox enzyme systems (Lancaster, 1988; Kolodziej, 1994), and may provide the basis for models for active sites of biological systems (Parashar et al., 1988; West et al., 1993) or may act as catalysts (Beley et al., 1986; Fujita et al., 1994; Kimura et al., 1994). Oximes represent a very important class of ligands in coordination chemistry (Kukushkin & Pombeiro, 1999; Chaudhuri, 2003). Recent interest in oxime ligands is mostly due to the remarkable ability of the deprotonated oximato groups to form bridges between metal ions, giving rise to polynuclear complexes of different nuclearity with different types of oximate bridges (Costes et al., 1998; Colacio et al., 1997; Cervera et al., 1997). The vast majority of oximate complexes published during the past 15 years have dealt with the synthesis and study of magnetic properties of polynuclear µ-oximato complexes (Pavlishchuk et al., 2001, 2003). These complexes exhibit octahedral coordination geometry at the nickel(II) centers. Recently, Goldcamp et al. (2002) reported that the ligand tris(2-hydroxyiminopropyl)amine binds to the NiII ion in multiple protonation states, yielding mononuclear and oximate-bridged dinuclear complexes. The dinuclear complex of the fully deprotonated ligand in acetonitrile undergoes oxidation by O2 and this system oxidizes PPh3 with incorporation of oxygen from O2. With a similar system, they also reported substrate oxidation by the first NiII + O2 reaction that does not proceed via irreversible ligand oxidation (Edison et al., 2004). We report here the synthesis and X-ray structure of two oximate-bridged square-planar dinuclear nickel(II) complexes, (I) and (II).

Complex (I) (Fig. 1 and Table 1) consists of a dinuclear [NiII2(µ-L1)2]2+ cation, two perchlorate anions, and one molecule of acetonitrile located 2.5118 (17) Å from atom Ni1. Complex (II) is composed of a dinuclear [NiII2(µ-L2)2]2+ cation and two perchlorate anions. The cations represent the first examples of oximate-bridged square-planar dinickel(II/II) complexes. Each cation involves two dianionic ligands and two nickel(II) cations. The coordination geometries around each nickel(II) ion in (I) and (II) are best described as distorted square-planar N3O environments. One amine N, one imine N, one oxime N and one oximate O atoms satisfy the square-planar coordination geometry of each nickel(II) ion.

Around atom Ni1 of (I), the four donor atoms alternate above and below the mean plane by 0.02 Å. Atom Ni1 is displaced 0.138 Å from this plane towards acetonitrile atom N7. The atoms coordinated to Ni2 show greater deviation than those around Ni1, alternating ~0.09 Å above and below the mean plane. Atom Ni2 is displaced 0.072 Å from this plane. The angle between these two planes is 22.2°.

In complex (II) (Fig. 2), the deviations from the plane of the four donor atoms are approximately 0.013 Å, alternating above and below the plane. Atom Ni1 lies 0.012 Å out of the mean basal plane. Because of crystallographically imposed inversion symmetry, the coordination planes of the two metal centers are coincident.

In both (I) and (II), three N atoms of each ligand are coordinated to one metal center, forming two five-membered (N—Ni—N) chelate rings. The average chelate bite angles for the five-membered rings in (I) and (II) are in the range 82.74 (5)–85.88 (6)° and 82.99 (17)–85.67 (17)°, respectively. In complexes (I) and (II), a central six-membered dimetallic chelate ring (Ni1/N1/O1/Ni2/N4/O2 and Ni1/N1/O1/Ni1A/N1A/O1A, respectively), is formed through the coordination of oxime N and oximate O atoms to each nickel(II) ion in a trans arrangement. The average C—N and N—O distances of the –(CH3)CN—O– oximate groups are 1.318 (17) and 1.338 (15) Å, respectively, in (I) and 1.313 (6) and 1.326 (5) Å, respectively, in (II). These distances are consistent with the deprotonated form of oxime functional groups (Bera et al., 2006; Gupta Sreerama & Pal, 2002; Birkelbach et al., 1997; Pal et al., 1986). The C Nimine distances are significantly shorter than the CNoximate distances in both complexes. The intradimer Ni···Ni distances are 3.602 Å in (I) and 3.653 Å in (II), which are consistent with that in the octahedral dinickel(II) complex reported by Goldcamp et al. (2002) but larger than those in other square-planar dinickel(II) systems (Rispens et al., 1996; Brooker et al., 2000; Aukauloo et al., 1999).

An interesting feature of the crystal structure lies in the packing of (I) (Fig. 3). In the structure of (I), the geometry of the perchlorate groups shows some typical disorder. The disordered perchlorate anion fills the channels that run parallel to the b-axis direction. The other perchlorate anion is in pockets surrounded by cations. Within the channels the uncoordinated acetonitrile molecule makes a 2.513 Å contact with the Ni1 ion. The Ni—N—C contact angle is 172.75°. There are no such channels in (II).

Related literature top

For related literature, see: Aukauloo et al. (1999); Beley et al. (1986); Bera et al. (2006); Berkessel et al. (1996); Birkelbach et al. (1997); Brooker et al. (2000); Cervera et al. (1997); Chaudhuri (2003); Colacio et al. (1997); Costes et al. (1998); Edison et al. (2004); Fujita et al. (1994); Goldcamp et al. (2002); Gupta Sreerama & Pal (2002); Kimura, Wada, Shionoya & Okazaki (1994, 1994); Kolodziej (1994); Kruger et al. (1991); Kukushkin & Pombeiro (1999); Lancaster (1988); Mohanty et al. (1975); Pal et al. (1986); Parashar et al. (1988); Pavlishchuk et al. (2001, 2003); Rispens et al. (1996); Singh & Chakravorty (1980); Singh et al. (1977); West et al. (1993).

Experimental top

For the preparation of (I), a methanol solution (20 ml) of N,N-dimethyl ethylenediamine (0.40 ml, 3.8 mmol) and 2,3-butanedione monoxime (0.38 g, 3.8 mmol) was stirred at room temperature. After stirring for an hour, a methanol solution (20 ml) of Ni(ClO4)2·6H2O (1.38 g, 3.8 mmol) and then NEt3(0.52 ml, 3.8 mmol) were added. After complete addition, a dark-orange–red compound was seen separating in solution. The whole reaction mixture was stirred for another hour at room temperature. The solvent was evaporated in air. The orange–red precipitate was filtered off through a glass frit and washed with ethanol and hexane. Recrystallization from acetonitrile/dichloromethane gave needle-shaped crystals. The products were dried in vacuo over fused CaCl2. Yield 1.11 g (85%). Analysis calculated for C18H35Cl2N7Ni2O10: C 30.98, H 5.05, N 14.05, Ni 16.75%; found: C 30.67, H 4.97, N 14.27, Ni 16.86%. 1H NMR ([D6]DMSO): δ 3.53–3.65 (m, 4H, CH2 attached to imine N), 2.65–2.69 (m, 4H, CH2 attached to amine N), 2.19 (s, 6H, imine CH3), 2.27 (s, 6H, oxime CH3), 1.92 (s, 12H, amine CH3). FT–IR (cm-1, KBr disk): ν 3429 (b), 2924 (m), 1632 (s), 1583 (s), 1537 (s), 1475 (s), 1237(s),1091 (s), 963 (s), 714 (s). Molar conductance, ΛM (MeCN solution): 190.34 Ω-1cm2mol-1. UV–vis spectra [λmax, nm (ε, l mol-1 cm-1)]: (MeCN solution) 556 (290), 395 (8770), 341 (8565), 225 (18750).

For the preparation of (II), this complex was prepared in a similar manner to (I) using 1-phenyl-1,2-propanedione-2-oxime. Yield: 1.38 g (92%). Analysis calculated for C26H36Cl2N6Ni2O10: C 39.98, H 4.64, N 10.76, Ni 14.96%; found: C 39.53, H 4.77, N 10.57, Ni 14.75%. 1H NMR ([D6]DMSO): δ 7.21–7.65 (m, 10H, C6H5), 3.47–3.65 (m, 4H, CH2 attached to imine N), 2.68–2.78 (m, 4H, CH2 attached to amine N), 2.22 (s, 6H, oxime CH3), 1.90 (s, 12H, amine CH3). FT–IR (cm-1, KBr disk): ν 3425 (b), 2936 (m), 1627 (s), 1587 (s), 1520 (s), 1447 (s), 1234 (s),1094 (s), 924 (s), 722 (s). Molar conductance ΛM (MeCN solution): 194.46 Ω-1cm2mol-1. UV–vis spectra [λmax, nm (ε, L mol-1 cm-1)]: (MeCN solution) 563 (225), 387 (6240), 343 (7550), 231 (20435).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Sheldrick, 2003); program(s) used to solve structure: XS (Sheldrick, 2001); program(s) used to refine structure: XL (Sheldrick, 2001); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XCIF (Sheldrick, 2001) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid diagram of (I), showing only the cation. H atoms have been omitted for clarity. Ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A displacement ellipsoid plot of the cation of (II). Ellipsoids are shown at the at 50% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The packing for (I), illustrating channels for solvent motion.
(I) bis{µ-3-[2-(dimethylamino)ethylimino]butan-2-one oximato}dinickel(II) bis(perchlorate) acetonitrile solvate top
Crystal data top
[Ni2(C8H16N3O)2](ClO4)2·C2H3NF(000) = 1448
Mr = 697.85Dx = 1.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9844 reflections
a = 13.1320 (3) Åθ = 2.6–41.5°
b = 12.2045 (3) ŵ = 1.62 mm1
c = 17.2959 (5) ÅT = 100 K
β = 91.6220 (14)°Needle, deep violet
V = 2770.89 (12) Å30.23 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker D8-APEXII CCD
diffractometer
14483 independent reflections
Radiation source: fine-focus sealed tube, Siemens KFFMO2K-9012536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.33 pixels mm-1θmax = 31.5°, θmin = 1.9°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(TWINABS; Blessing, 1995; Sheldrick, 2004)
k = 017
Tmin = 0.708, Tmax = 0.806l = 025
290302 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0471P)2 + 2.0073P]
where P = (Fo2 + 2Fc2)/3
14483 reflections(Δ/σ)max = 0.005
375 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni2(C8H16N3O)2](ClO4)2·C2H3NV = 2770.89 (12) Å3
Mr = 697.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1320 (3) ŵ = 1.62 mm1
b = 12.2045 (3) ÅT = 100 K
c = 17.2959 (5) Å0.23 × 0.22 × 0.14 mm
β = 91.6220 (14)°
Data collection top
Bruker D8-APEXII CCD
diffractometer
14483 independent reflections
Absorption correction: multi-scan
(TWINABS; Blessing, 1995; Sheldrick, 2004)
12536 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.806Rint = 0.075
290302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.84 e Å3
14483 reflectionsΔρmin = 0.48 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. This crystal was a nonmerohedral twin, refined in 2 domains. The scale factor relating the second domain to the first is 0.3448 (8). Indexing was done with Cell_Now (Sheldrick, G. M. (2005). University of Göttingen, Germany) and scaled with TWINABS (Sheldrick, G. M. (2004). University of Göttingen, Germany). Because of twinning, there are more reflections than expected in the intensity data file.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.314793 (15)0.528113 (15)0.146451 (10)0.01178 (4)
Ni20.190627 (14)0.732682 (15)0.026918 (10)0.01180 (4)
N10.17710 (10)0.57300 (10)0.14498 (6)0.0134 (2)
N20.26571 (10)0.41760 (10)0.20861 (7)0.0145 (2)
N30.44934 (10)0.46613 (10)0.17170 (7)0.0138 (2)
N40.33105 (10)0.71370 (9)0.04892 (6)0.0125 (2)
N50.23690 (10)0.83038 (10)0.04527 (7)0.0141 (2)
N60.05362 (10)0.76740 (11)0.01262 (7)0.0159 (2)
O10.13318 (9)0.65820 (9)0.10779 (6)0.0171 (2)
O20.37719 (9)0.64824 (9)0.10076 (6)0.01545 (19)
C10.11735 (12)0.51627 (11)0.18975 (8)0.0142 (2)
C20.17097 (12)0.42295 (11)0.22602 (8)0.0149 (2)
C30.33902 (13)0.33598 (12)0.23874 (8)0.0175 (3)
H3A0.31000.26130.23500.021*
H3B0.35790.35140.29350.021*
C40.43115 (13)0.34670 (12)0.18808 (8)0.0176 (3)
H4A0.49180.31470.21480.021*
H4B0.41890.30660.13890.021*
C50.00841 (12)0.54481 (13)0.20181 (9)0.0185 (3)
H5A0.00340.62200.21670.028*
H5B0.01850.49870.24290.028*
H5C0.03120.53250.15370.028*
C60.11909 (14)0.34423 (13)0.27795 (9)0.0206 (3)
H6A0.15590.27440.27860.031*
H6B0.04900.33230.25890.031*
H6C0.11830.37430.33050.031*
C70.48936 (13)0.52391 (13)0.24228 (9)0.0197 (3)
H7A0.55360.49000.25980.029*
H7B0.43960.51850.28330.029*
H7C0.50110.60120.23010.029*
C80.52589 (13)0.47497 (13)0.11041 (9)0.0193 (3)
H8A0.54160.55230.10140.029*
H8B0.49840.44220.06250.029*
H8C0.58820.43630.12690.029*
C90.39127 (11)0.77998 (11)0.01071 (8)0.0129 (2)
C100.33371 (12)0.84850 (11)0.04498 (8)0.0141 (2)
C110.15946 (13)0.89131 (13)0.09018 (9)0.0198 (3)
H11A0.18220.90420.14350.024*
H11B0.14600.96300.06570.024*
C120.06449 (13)0.82041 (14)0.09100 (9)0.0219 (3)
H12A0.00380.86590.10340.026*
H12B0.06950.76310.13130.026*
C130.50370 (12)0.78311 (12)0.02534 (8)0.0171 (3)
H13A0.51820.80150.07970.026*
H13B0.53390.83860.00790.026*
H13C0.53290.71120.01390.026*
C140.38431 (14)0.93132 (13)0.09506 (9)0.0219 (3)
H14A0.34210.94390.14190.033*
H14B0.45130.90390.10950.033*
H14C0.39261.00030.06660.033*
C150.00375 (14)0.84296 (14)0.04152 (9)0.0228 (3)
H15A0.06440.86160.02110.034*
H15B0.04450.90990.04730.034*
H15C0.00180.80740.09200.034*
C160.01185 (14)0.66763 (14)0.02411 (10)0.0245 (3)
H16A0.02440.63390.02620.037*
H16B0.02300.61500.05700.037*
H16C0.07690.68880.04900.037*
Cl10.25360 (3)0.09139 (3)0.09637 (2)0.01817 (7)
O30.35602 (10)0.08956 (11)0.12973 (8)0.0269 (3)
O40.25676 (12)0.11858 (14)0.01532 (7)0.0357 (3)
O50.20689 (13)0.01533 (12)0.10457 (8)0.0329 (3)
O60.19360 (12)0.17170 (14)0.13583 (9)0.0390 (4)
Cl20.72907 (8)0.85138 (8)0.27801 (6)0.0208 (2)0.859 (9)
Cl2'0.7404 (9)0.8436 (10)0.2529 (14)0.060 (3)0.141 (9)
O70.80798 (12)0.76884 (14)0.28286 (9)0.0377 (3)
O80.63731 (11)0.80429 (13)0.24328 (8)0.0329 (3)
O90.70873 (13)0.89029 (13)0.35479 (9)0.0377 (3)
O100.7598 (2)0.9448 (3)0.2339 (2)0.0495 (9)0.859 (9)
O10'0.7787 (14)0.9087 (18)0.2026 (13)0.0495 (9)0.141 (9)
N70.28970 (15)0.43173 (16)0.01895 (10)0.0345 (4)
C170.26751 (14)0.39004 (15)0.03841 (10)0.0246 (3)
C180.24276 (16)0.33569 (17)0.11159 (10)0.0296 (4)
H18A0.30260.29570.12910.044*
H18B0.22250.39060.15040.044*
H18C0.18650.28420.10450.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01100 (8)0.01228 (8)0.01207 (7)0.00042 (6)0.00042 (6)0.00198 (5)
Ni20.01000 (8)0.01294 (8)0.01248 (7)0.00045 (6)0.00078 (6)0.00259 (6)
N10.0134 (5)0.0145 (5)0.0122 (4)0.0005 (4)0.0007 (4)0.0019 (4)
N20.0166 (6)0.0143 (5)0.0127 (5)0.0002 (4)0.0004 (4)0.0022 (4)
N30.0141 (6)0.0142 (5)0.0130 (5)0.0010 (4)0.0000 (4)0.0006 (4)
N40.0123 (5)0.0122 (5)0.0130 (5)0.0009 (4)0.0008 (4)0.0000 (4)
N50.0145 (6)0.0144 (5)0.0134 (5)0.0006 (4)0.0003 (4)0.0018 (4)
N60.0139 (6)0.0177 (5)0.0161 (5)0.0002 (5)0.0003 (4)0.0033 (4)
O10.0134 (5)0.0190 (5)0.0192 (4)0.0038 (4)0.0034 (4)0.0083 (4)
O20.0130 (5)0.0159 (4)0.0173 (4)0.0006 (4)0.0011 (4)0.0050 (3)
C10.0141 (6)0.0156 (6)0.0129 (5)0.0007 (5)0.0000 (5)0.0017 (4)
C20.0176 (7)0.0149 (6)0.0120 (5)0.0024 (5)0.0007 (5)0.0010 (4)
C30.0195 (7)0.0151 (6)0.0178 (6)0.0020 (5)0.0005 (5)0.0044 (5)
C40.0184 (7)0.0145 (6)0.0198 (6)0.0033 (5)0.0004 (5)0.0011 (5)
C50.0142 (7)0.0221 (7)0.0193 (6)0.0008 (5)0.0036 (5)0.0030 (5)
C60.0210 (7)0.0212 (7)0.0197 (6)0.0045 (6)0.0026 (6)0.0076 (5)
C70.0191 (7)0.0224 (7)0.0173 (6)0.0003 (6)0.0042 (5)0.0026 (5)
C80.0167 (7)0.0222 (7)0.0193 (6)0.0033 (6)0.0038 (5)0.0028 (5)
C90.0126 (6)0.0123 (5)0.0138 (5)0.0001 (5)0.0015 (5)0.0006 (4)
C100.0158 (6)0.0130 (5)0.0135 (5)0.0001 (5)0.0014 (5)0.0003 (4)
C110.0160 (7)0.0223 (7)0.0211 (6)0.0017 (6)0.0012 (5)0.0093 (5)
C120.0180 (7)0.0288 (8)0.0189 (6)0.0003 (6)0.0020 (5)0.0062 (5)
C130.0127 (6)0.0188 (6)0.0197 (6)0.0011 (5)0.0017 (5)0.0015 (5)
C140.0197 (7)0.0219 (7)0.0242 (7)0.0037 (6)0.0030 (6)0.0092 (5)
C150.0197 (8)0.0243 (7)0.0244 (7)0.0058 (6)0.0007 (6)0.0034 (6)
C160.0220 (8)0.0232 (7)0.0280 (7)0.0050 (6)0.0038 (6)0.0011 (6)
Cl10.01349 (15)0.02239 (16)0.01862 (14)0.00163 (12)0.00052 (12)0.00028 (11)
O30.0148 (6)0.0340 (7)0.0318 (6)0.0002 (5)0.0037 (5)0.0037 (5)
O40.0297 (7)0.0552 (9)0.0220 (6)0.0062 (7)0.0007 (5)0.0122 (6)
O50.0374 (8)0.0303 (7)0.0309 (6)0.0171 (6)0.0019 (6)0.0016 (5)
O60.0257 (7)0.0439 (8)0.0472 (8)0.0098 (6)0.0011 (6)0.0198 (7)
Cl20.0139 (3)0.0254 (3)0.0229 (4)0.00297 (19)0.0022 (2)0.0079 (2)
Cl2'0.028 (3)0.070 (4)0.082 (9)0.005 (3)0.009 (4)0.032 (5)
O70.0271 (8)0.0472 (8)0.0385 (7)0.0119 (7)0.0035 (6)0.0001 (6)
O80.0180 (6)0.0465 (8)0.0341 (7)0.0053 (6)0.0012 (5)0.0075 (6)
O90.0373 (9)0.0353 (7)0.0401 (7)0.0003 (7)0.0052 (7)0.0088 (6)
O100.0386 (12)0.0599 (16)0.0495 (17)0.0166 (12)0.0096 (12)0.0377 (14)
O10'0.0386 (12)0.0599 (16)0.0495 (17)0.0166 (12)0.0096 (12)0.0377 (14)
N70.0295 (9)0.0466 (10)0.0276 (7)0.0060 (8)0.0052 (7)0.0088 (7)
C170.0189 (8)0.0287 (8)0.0262 (7)0.0010 (6)0.0032 (6)0.0007 (6)
C180.0267 (9)0.0369 (9)0.0252 (8)0.0016 (8)0.0012 (7)0.0062 (7)
Geometric parameters (Å, º) top
Ni1—N21.8519 (12)C8—H8B0.9800
Ni1—O21.8660 (10)C8—H8C0.9800
Ni1—N11.8888 (13)C9—C101.469 (2)
Ni1—N31.9598 (13)C9—C131.491 (2)
Ni2—N51.8420 (12)C10—C141.499 (2)
Ni2—O11.8471 (10)C11—C121.518 (2)
Ni2—N41.8866 (13)C11—H11A0.9900
Ni2—N61.9531 (14)C11—H11B0.9900
N1—C11.3150 (18)C12—H12A0.9900
N1—O11.3441 (15)C12—H12B0.9900
N2—C21.290 (2)C13—H13A0.9800
N2—C31.470 (2)C13—H13B0.9800
N3—C81.4854 (19)C13—H13C0.9800
N3—C71.4924 (19)C14—H14A0.9800
N3—C41.5052 (19)C14—H14B0.9800
N4—C91.3213 (17)C14—H14C0.9800
N4—O21.3337 (15)C15—H15A0.9800
N5—C101.290 (2)C15—H15B0.9800
N5—C111.4648 (19)C15—H15C0.9800
N6—C151.480 (2)C16—H16A0.9800
N6—C161.501 (2)C16—H16B0.9800
N6—C121.5125 (19)C16—H16C0.9800
C1—C21.470 (2)Cl1—O61.4414 (14)
C1—C51.493 (2)Cl1—O41.4423 (13)
C2—C61.4929 (19)Cl1—O51.4483 (14)
C3—C41.519 (2)Cl1—O31.4487 (14)
C3—H3A0.9900Cl2—O101.436 (2)
C3—H3B0.9900Cl2—O91.4425 (18)
C4—H4A0.9900Cl2—O71.4459 (18)
C4—H4B0.9900Cl2—O81.4499 (17)
C5—H5A0.9800Cl2'—O10'1.289 (17)
C5—H5B0.9800Cl2'—O71.366 (9)
C5—H5C0.9800Cl2'—O81.441 (9)
C6—H6A0.9800Cl2'—O91.91 (3)
C6—H6B0.9800N7—C171.145 (2)
C6—H6C0.9800C17—C181.458 (2)
C7—H7A0.9800C18—H18A0.9800
C7—H7B0.9800C18—H18B0.9800
C7—H7C0.9800C18—H18C0.9800
C8—H8A0.9800
N2—Ni1—O2169.20 (5)N3—C8—H8A109.5
N2—Ni1—N182.55 (6)N3—C8—H8B109.5
O2—Ni1—N1101.43 (5)H8A—C8—H8B109.5
N2—Ni1—N385.17 (6)N3—C8—H8C109.5
O2—Ni1—N389.64 (5)H8A—C8—H8C109.5
N1—Ni1—N3166.31 (5)H8B—C8—H8C109.5
N5—Ni2—O1168.98 (5)N4—C9—C10111.86 (13)
N5—Ni2—N482.93 (5)N4—C9—C13122.31 (13)
O1—Ni2—N4101.81 (5)C10—C9—C13125.82 (12)
N5—Ni2—N686.59 (6)N5—C10—C9113.18 (12)
O1—Ni2—N688.85 (5)N5—C10—C14124.49 (13)
N4—Ni2—N6169.34 (5)C9—C10—C14122.32 (14)
C1—N1—O1115.72 (12)N5—C11—C12105.87 (12)
C1—N1—Ni1115.23 (10)N5—C11—H11A110.6
O1—N1—Ni1128.94 (9)C12—C11—H11A110.6
C2—N2—C3125.28 (12)N5—C11—H11B110.6
C2—N2—Ni1116.90 (10)C12—C11—H11B110.6
C3—N2—Ni1117.65 (10)H11A—C11—H11B108.7
C8—N3—C7108.64 (12)N6—C12—C11109.50 (13)
C8—N3—C4108.60 (11)N6—C12—H12A109.8
C7—N3—C4110.96 (11)C11—C12—H12A109.8
C8—N3—Ni1115.91 (9)N6—C12—H12B109.8
C7—N3—Ni1107.11 (9)C11—C12—H12B109.8
C4—N3—Ni1105.60 (10)H12A—C12—H12B108.2
C9—N4—O2115.85 (12)C9—C13—H13A109.5
C9—N4—Ni2114.80 (10)C9—C13—H13B109.5
O2—N4—Ni2129.20 (9)H13A—C13—H13B109.5
C10—N5—C11125.75 (12)C9—C13—H13C109.5
C10—N5—Ni2116.89 (10)H13A—C13—H13C109.5
C11—N5—Ni2116.78 (10)H13B—C13—H13C109.5
C15—N6—C16109.11 (13)C10—C14—H14A109.5
C15—N6—C12110.81 (12)C10—C14—H14B109.5
C16—N6—C12107.25 (12)H14A—C14—H14B109.5
C15—N6—Ni2109.48 (10)C10—C14—H14C109.5
C16—N6—Ni2112.89 (10)H14A—C14—H14C109.5
C12—N6—Ni2107.29 (10)H14B—C14—H14C109.5
N1—O1—Ni2124.34 (9)N6—C15—H15A109.5
N4—O2—Ni1123.97 (9)N6—C15—H15B109.5
N1—C1—C2111.87 (13)H15A—C15—H15B109.5
N1—C1—C5123.34 (13)N6—C15—H15C109.5
C2—C1—C5124.79 (12)H15A—C15—H15C109.5
N2—C2—C1113.15 (12)H15B—C15—H15C109.5
N2—C2—C6124.57 (14)N6—C16—H16A109.5
C1—C2—C6122.28 (14)N6—C16—H16B109.5
N2—C3—C4105.14 (11)H16A—C16—H16B109.5
N2—C3—H3A110.7N6—C16—H16C109.5
C4—C3—H3A110.7H16A—C16—H16C109.5
N2—C3—H3B110.7H16B—C16—H16C109.5
C4—C3—H3B110.7O6—Cl1—O4109.57 (10)
H3A—C3—H3B108.8O6—Cl1—O5109.06 (10)
N3—C4—C3108.97 (12)O4—Cl1—O5109.02 (9)
N3—C4—H4A109.9O6—Cl1—O3109.61 (9)
C3—C4—H4A109.9O4—Cl1—O3109.80 (9)
N3—C4—H4B109.9O5—Cl1—O3109.76 (9)
C3—C4—H4B109.9O10—Cl2—O9106.9 (2)
H4A—C4—H4B108.3O10—Cl2—O7111.85 (16)
C1—C5—H5A109.5O9—Cl2—O7109.08 (11)
C1—C5—H5B109.5O10—Cl2—O8109.72 (13)
H5A—C5—H5B109.5O9—Cl2—O8109.79 (11)
C1—C5—H5C109.5O7—Cl2—O8109.50 (11)
H5A—C5—H5C109.5O10'—Cl2'—O7114.0 (11)
H5B—C5—H5C109.5O10'—Cl2'—O8120.7 (13)
C2—C6—H6A109.5O7—Cl2'—O8114.8 (7)
C2—C6—H6B109.5O10'—Cl2'—O9122.5 (11)
H6A—C6—H6B109.5O7—Cl2'—O990.3 (11)
C2—C6—H6C109.5O8—Cl2'—O988.7 (11)
H6A—C6—H6C109.5N7—C17—C18178.1 (2)
H6B—C6—H6C109.5C17—C18—H18A109.5
N3—C7—H7A109.5C17—C18—H18B109.5
N3—C7—H7B109.5H18A—C18—H18B109.5
H7A—C7—H7B109.5C17—C18—H18C109.5
N3—C7—H7C109.5H18A—C18—H18C109.5
H7A—C7—H7C109.5H18B—C18—H18C109.5
H7B—C7—H7C109.5
(II) bis{µ-3-[2-(dimethylamino)ethylimino]-1-phenylpropan-2-one oximato}dinickel(II) bis(perchlorate) top
Crystal data top
[Ni2(C13H18N3O)2](ClO4)2F(000) = 808
Mr = 780.93Dx = 1.682 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8729 reflections
a = 12.5432 (5) Åθ = 3.0–46.9°
b = 8.9714 (4) ŵ = 1.46 mm1
c = 13.7277 (5) ÅT = 100 K
β = 93.745 (2)°Parallelepiped, red
V = 1541.48 (11) Å30.45 × 0.44 × 0.32 mm
Z = 2
Data collection top
Bruker D8-APEXII CCD diffratometer
diffractometer
14182 independent reflections
Radiation source: fine-focus sealed tube, Siemens KFFMO2K-9012434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 47.3°, θmin = 2.1°
ϕ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
k = 1818
Tmin = 0.54, Tmax = 0.63l = 2328
124421 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.342P]
where P = (Fo2 + 2Fc2)/3
14182 reflections(Δ/σ)max = 0.006
211 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Ni2(C13H18N3O)2](ClO4)2V = 1541.48 (11) Å3
Mr = 780.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5432 (5) ŵ = 1.46 mm1
b = 8.9714 (4) ÅT = 100 K
c = 13.7277 (5) Å0.45 × 0.44 × 0.32 mm
β = 93.745 (2)°
Data collection top
Bruker D8-APEXII CCD diffratometer
diffractometer
14182 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
12434 reflections with I > 2σ(I)
Tmin = 0.54, Tmax = 0.63Rint = 0.027
124421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
14182 reflectionsΔρmin = 0.81 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.358320 (4)0.043197 (7)1.006326 (4)0.00809 (1)
N10.42907 (3)0.05552 (5)0.90814 (3)0.01025 (5)
N20.23885 (3)0.00347 (5)0.92501 (3)0.00943 (5)
N30.26006 (3)0.13805 (4)1.09096 (3)0.00914 (5)
O10.53194 (3)0.08673 (5)0.90320 (3)0.01458 (6)
C10.36720 (3)0.09945 (5)0.83270 (3)0.01062 (6)
C20.25455 (3)0.06414 (5)0.84395 (3)0.00973 (6)
C30.13600 (3)0.05421 (5)0.95711 (4)0.01033 (6)
H3A0.08890.08890.90090.012*
H3B0.09950.02690.99070.012*
C40.16402 (4)0.18163 (5)1.02666 (4)0.01119 (6)
H4A0.10310.20301.06690.013*
H4B0.17960.27260.98940.013*
C50.40862 (4)0.17912 (7)0.74828 (4)0.01506 (8)
H5A0.45010.26610.77160.023*
H5B0.34860.21190.70410.023*
H5C0.45450.11200.71330.023*
C60.16923 (3)0.10385 (5)0.76893 (3)0.01051 (6)
C70.08698 (4)0.20112 (6)0.79101 (4)0.01384 (7)
H70.08490.24170.85480.017*
C80.00821 (4)0.23796 (7)0.71875 (5)0.01796 (9)
H80.04720.30510.73310.022*
C90.01015 (5)0.17700 (8)0.62577 (5)0.01941 (10)
H90.04440.20120.57710.023*
C100.09229 (5)0.08030 (8)0.60400 (4)0.01837 (9)
H100.09350.03860.54050.022*
C110.17252 (4)0.04461 (6)0.67508 (4)0.01449 (7)
H110.22920.01970.65980.017*
C120.30081 (4)0.27151 (6)1.14514 (4)0.01414 (7)
H12A0.35990.24261.19150.021*
H12B0.32610.34481.09900.021*
H12C0.24330.31531.18070.021*
C130.23181 (4)0.02382 (6)1.16328 (4)0.01378 (7)
H13A0.17620.06331.20310.021*
H13B0.20520.06591.12890.021*
H13C0.29530.00131.20550.021*
Cl10.142557 (9)0.386799 (13)0.063931 (9)0.01254 (2)
O20.14788 (6)0.45258 (6)0.03107 (4)0.02955 (13)
O30.24755 (4)0.33887 (7)0.10036 (6)0.03133 (13)
O40.10295 (4)0.49481 (5)0.13006 (4)0.01838 (7)
O50.07149 (4)0.25969 (5)0.05740 (4)0.01922 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00667 (2)0.01042 (2)0.00710 (2)0.00130 (1)0.00007 (1)0.00224 (2)
N10.00727 (11)0.01415 (13)0.00926 (13)0.00142 (10)0.00005 (9)0.00345 (11)
N20.00776 (11)0.01212 (13)0.00837 (12)0.00109 (9)0.00022 (9)0.00170 (10)
N30.00908 (11)0.00984 (11)0.00847 (12)0.00163 (9)0.00022 (9)0.00123 (10)
O10.00702 (11)0.02406 (17)0.01244 (14)0.00319 (11)0.00107 (10)0.00865 (13)
C10.00817 (13)0.01456 (15)0.00905 (15)0.00060 (11)0.00001 (11)0.00356 (12)
C20.00831 (12)0.01262 (14)0.00820 (14)0.00015 (10)0.00001 (10)0.00166 (11)
C30.00814 (13)0.01330 (15)0.00954 (15)0.00159 (11)0.00043 (11)0.00097 (12)
C40.01055 (14)0.01200 (14)0.01085 (16)0.00348 (11)0.00072 (11)0.00120 (12)
C50.01142 (15)0.0218 (2)0.01189 (17)0.00131 (14)0.00058 (13)0.00757 (15)
C60.00862 (13)0.01405 (15)0.00872 (14)0.00014 (11)0.00046 (11)0.00187 (12)
C70.01150 (15)0.01692 (17)0.01299 (17)0.00253 (13)0.00010 (13)0.00111 (14)
C80.01228 (16)0.0221 (2)0.0192 (2)0.00379 (15)0.00147 (15)0.00537 (18)
C90.01351 (17)0.0278 (3)0.0161 (2)0.00163 (17)0.00523 (15)0.00718 (19)
C100.01669 (19)0.0277 (2)0.01019 (17)0.00312 (18)0.00283 (14)0.00120 (17)
C110.01326 (16)0.0204 (2)0.00973 (16)0.00041 (14)0.00012 (13)0.00033 (14)
C120.01342 (16)0.01257 (15)0.01622 (19)0.00167 (12)0.00059 (14)0.00579 (14)
C130.01533 (17)0.01586 (17)0.01016 (16)0.00004 (13)0.00083 (13)0.00209 (13)
Cl10.01217 (4)0.01125 (4)0.01426 (4)0.00274 (3)0.00139 (3)0.00083 (3)
O20.0512 (4)0.0241 (2)0.01441 (19)0.0085 (2)0.0106 (2)0.00060 (16)
O30.01296 (16)0.0264 (2)0.0536 (4)0.00139 (16)0.0055 (2)0.0024 (2)
O40.02199 (18)0.01657 (15)0.01697 (17)0.00413 (13)0.00437 (14)0.00542 (13)
O50.01664 (15)0.01212 (13)0.0288 (2)0.00528 (12)0.00102 (15)0.00293 (14)
Geometric parameters (Å, º) top
Ni1—O1i1.8348 (4)C5—H5C0.9800
Ni1—N21.8439 (4)C6—C111.3968 (7)
Ni1—N11.8827 (4)C6—C71.3995 (7)
Ni1—N31.9442 (4)C7—C81.3934 (8)
N1—C11.3135 (6)C7—H70.9500
N1—O11.3264 (5)C8—C91.3902 (10)
N2—C21.2936 (6)C8—H80.9500
N2—C31.4629 (6)C9—C101.3942 (10)
N3—C121.4827 (6)C9—H90.9500
N3—C131.4857 (6)C10—C111.3925 (8)
N3—C41.4982 (6)C10—H100.9500
O1—Ni1i1.8348 (4)C11—H110.9500
C1—C21.4661 (6)C12—H12A0.9800
C1—C51.4841 (7)C12—H12B0.9800
C2—C61.4795 (6)C12—H12C0.9800
C3—C41.5160 (7)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C4—H4A0.9900Cl1—O21.4370 (6)
C4—H4B0.9900Cl1—O41.4384 (5)
C5—H5A0.9800Cl1—O31.4433 (6)
C5—H5B0.9800Cl1—O51.4466 (4)
O1i—Ni1—N2174.274 (17)C1—C5—H5C109.5
O1i—Ni1—N1102.525 (17)H5A—C5—H5C109.5
N2—Ni1—N182.999 (17)H5B—C5—H5C109.5
O1i—Ni1—N388.804 (17)C11—C6—C7120.24 (5)
N2—Ni1—N385.674 (17)C11—C6—C2119.13 (4)
N1—Ni1—N3168.671 (17)C7—C6—C2120.62 (4)
C1—N1—O1115.02 (4)C8—C7—C6119.49 (5)
C1—N1—Ni1115.08 (3)C8—C7—H7120.3
O1—N1—Ni1129.90 (3)C6—C7—H7120.3
C2—N2—C3126.28 (4)C9—C8—C7120.41 (5)
C2—N2—Ni1116.62 (3)C9—C8—H8119.8
C3—N2—Ni1117.09 (3)C7—C8—H8119.8
C12—N3—C13108.14 (4)C8—C9—C10119.94 (5)
C12—N3—C4108.80 (4)C8—C9—H9120.0
C13—N3—C4110.85 (4)C10—C9—H9120.0
C12—N3—Ni1116.23 (3)C11—C10—C9120.21 (6)
C13—N3—Ni1106.59 (3)C11—C10—H10119.9
C4—N3—Ni1106.19 (3)C9—C10—H10119.9
N1—O1—Ni1i127.57 (3)C10—C11—C6119.69 (5)
N1—C1—C2112.08 (4)C10—C11—H11120.2
N1—C1—C5122.78 (4)C6—C11—H11120.2
C2—C1—C5125.12 (4)N3—C12—H12A109.5
N2—C2—C1113.19 (4)N3—C12—H12B109.5
N2—C2—C6124.60 (4)H12A—C12—H12B109.5
C1—C2—C6122.20 (4)N3—C12—H12C109.5
N2—C3—C4104.57 (4)H12A—C12—H12C109.5
N2—C3—H3A110.8H12B—C12—H12C109.5
C4—C3—H3A110.8N3—C13—H13A109.5
N2—C3—H3B110.8N3—C13—H13B109.5
C4—C3—H3B110.8H13A—C13—H13B109.5
H3A—C3—H3B108.9N3—C13—H13C109.5
N3—C4—C3108.58 (4)H13A—C13—H13C109.5
N3—C4—H4A110.0H13B—C13—H13C109.5
C3—C4—H4A110.0O2—Cl1—O4109.55 (3)
N3—C4—H4B110.0O2—Cl1—O3109.96 (5)
C3—C4—H4B110.0O4—Cl1—O3109.08 (4)
H4A—C4—H4B108.4O2—Cl1—O5109.42 (4)
C1—C5—H5A109.5O4—Cl1—O5109.47 (3)
C1—C5—H5B109.5O3—Cl1—O5109.34 (3)
H5A—C5—H5B109.5
Symmetry code: (i) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni2(C8H16N3O)2](ClO4)2·C2H3N[Ni2(C13H18N3O)2](ClO4)2
Mr697.85780.93
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)13.1320 (3), 12.2045 (3), 17.2959 (5)12.5432 (5), 8.9714 (4), 13.7277 (5)
β (°) 91.6220 (14) 93.745 (2)
V3)2770.89 (12)1541.48 (11)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.621.46
Crystal size (mm)0.23 × 0.22 × 0.140.45 × 0.44 × 0.32
Data collection
DiffractometerBruker D8-APEXII CCD
diffractometer
Bruker D8-APEXII CCD diffratometer
diffractometer
Absorption correctionMulti-scan
(TWINABS; Blessing, 1995; Sheldrick, 2004)
Multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2004)
Tmin, Tmax0.708, 0.8060.54, 0.63
No. of measured, independent and
observed [I > 2σ(I)] reflections
290302, 14483, 12536 124421, 14182, 12434
Rint0.0750.027
(sin θ/λ)max1)0.7351.033
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.06 0.023, 0.063, 1.03
No. of reflections1448314182
No. of parameters375211
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.480.71, 0.81

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Sheldrick, 2003), XS (Sheldrick, 2001), XL (Sheldrick, 2001), XP (Sheldrick, 1998), XCIF (Sheldrick, 2001) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
Ni1—N21.8519 (12)Ni2—N51.8420 (12)
Ni1—O21.8660 (10)Ni2—O11.8471 (10)
Ni1—N11.8888 (13)Ni2—N41.8866 (13)
Ni1—N31.9598 (13)Ni2—N61.9531 (14)
N2—Ni1—O2169.20 (5)N5—Ni2—O1168.98 (5)
N2—Ni1—N182.55 (6)N5—Ni2—N482.93 (5)
O2—Ni1—N1101.43 (5)O1—Ni2—N4101.81 (5)
N2—Ni1—N385.17 (6)N5—Ni2—N686.59 (6)
O2—Ni1—N389.64 (5)O1—Ni2—N688.85 (5)
N1—Ni1—N3166.31 (5)N4—Ni2—N6169.34 (5)
Selected geometric parameters (Å, º) for (II) top
Ni1—O1i1.8348 (4)Ni1—N11.8827 (4)
Ni1—N21.8439 (4)Ni1—N31.9442 (4)
O1i—Ni1—N2174.274 (17)O1i—Ni1—N388.804 (17)
O1i—Ni1—N1102.525 (17)N2—Ni1—N385.674 (17)
N2—Ni1—N182.999 (17)N1—Ni1—N3168.671 (17)
Symmetry code: (i) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds