Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the potential anti-human-immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTI) 1-tert-butoxy­carbonyl-2-phenyl­pyrrolidine-2-carboxylic acid, C16H21NO4, (I), and 2-ammonio­methyl-1-benzyl-5-oxo-2-phenyl­pyrrolidine chloride, C18H21N2O+·Cl-, (II), have been investigated by X-ray diffraction. The investigations confirm a butterfly-like conformation for both compounds. In (I), the pyrrolidine ring has a marked half-chair conformation, while it has a weakly pronounced envelope conformation in (II). Intermolecular hydrogen bonds, viz. O-H...O in (I), and N-H...O and N-H...Cl in (II), build infinite chains in both structures. Rotational disorder of the three methyl groups is observed in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104007930/tr1074sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007930/tr1074Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007930/tr1074IIsup3.hkl
Contains datablock II

CCDC references: 243594; 243595

Comment top

The title compounds belong to a family of non-nucleoside reverse transcriptase inhibitors (NNRTIs), with potential properties as inhibitors of HIV-1 RT. The characteristic structural feature of these compounds is their butterfly-like conformation, with a hydrophilic `body' and two hydrophobic `wing' moieties, as depicted in the scheme (De Clercq, 1996). Both (I) and (II) were synthesized as racemic mixtures. Views of the molecules of (I) and (II) with their atomic numbering schemes are depicted in Figs. 1 and 2, respectively. Details of the hydrogen-bonding interactions are given in Tables 1 and 2. \sch

It has been observed that the anti-HIV-1 activity of compounds with butterfly-like structures depends on the orientational relationship between the wings and the body of the structure. These relationships may be described by the dihedral angles between the aryl groups (`wing' planes W1 and W2 in the scheme) and the pyrrolidine ring (part of the `body', plane B in the scheme) (Karapetyan et al., 2002; Tamazyan et al., 2002).

In contrast with other compounds in this class, the almost flat `wing' (W2) is replaced by a bulky and non-planar tert-butoxycarbonyl group in (I). For this reason, two of the above-described dihedral angles, W1/W2 and B/W2, are no longer defined. The B/W1 dihedral angle is 79.48 (9)°. The pyrrolidine ring has the same half-chair conformation as in 1-(2-chlorobenzoyl)-2-phenylpyrrolidine-2-carboxamide (Tamazyan et al., 2002), but its biological activity is substantially lower.

Molecules of the same chirality in (I) form infinite chains along [010] via O14—H14···O7i and O7···H14ii—O14ii hydrogen bonds (Fig. 3; symmetry codes as defined in Fig. 3). The crystal packing of (I) creates two hydrophobic planes parallel to the ab and ac planes. This packing evidently allows for the detected rotational disorder around the C9—O8 bond for the trimethyl group of the tert-butoxycarbonyl moiety.

In the crystals of (II), two neighbouring molecules related by an inversion centre are connected into dimers via double hydrogen bonding, N14—H14A···O15i and N14i—H14Ai···O15 (Fig.4; symmetry codes as defined in Fig. 4). Simultaneously, these dimers are connected into infinite chains via hydrogen bonding between two ammonio H atoms and two Cl ions.

The dihedral angles W1/W2, B/W1 and B/W2 are 55.20 (6), 88.09 (6) and 60.70 (5)°, respectively, in (II). The structure of (II) may be derived from the structure of 1-benzyl-5-oxo-2-phenylpyrrolidine-2-carboxamide (Karapetyan et al., 2002) by simply replacing the carboxamide group in the body by an aminomethyl group. This replacement does not have a great effect on the conformation of the pyrrolidine ring, as both compounds still retain an envelope conformation. However, the dihedral angles and the hydrogen-bonding properties between neighbouring molecules change drastically. Nonetheless, these changes have only a minor effect on the biological activity of the compound.

Experimental top

Both title compounds were synthesized as described by Martirosyan et al. (2000). Recrystallization from ethanol afforded colourless crystals suitable for X-ray analysis.

Refinement top

Data sets were collected corresponding to a full sphere of reciprocal space. In (I), the trimethyl group (atoms C10, C11 and C12) shows rotational disorder. H atoms in (I) were refined at idealized positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å Please check added text), with isotropic displacement parameters of 1.5 (CH3, OH) and 1.2 (CH, CH2) times Ueq of the parent atom. In (II), the positional and isotropic diplacement parameters of all H atoms were refined independently.

Computing details top

For both compounds, data collection: CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: CAD-4 Manual; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2000); software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of (II), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The connection of molecules of (I) into an infinite chain via hydrogen bonding [symmetry codes: (i) x, 1 + y, z; (ii) x, y − 1, z].
[Figure 4] Fig. 4. The connection of dimers of molecules of (II) into an infinite chain [symmetry codes: (i) 2 − x, 2 − y, 1 − z; (ii) 2 − x, 2 − yz; (iii) x, y, z − 1; (iv) x + 1, y, z; (v) 1 − x, 2 − y, −z; (vi) 1 − x, 2 − y, −1 − z; (vii) x + 1, y, z − 1; (viii) 1 − x, 2 − y, 1 − z; (ix) x + 1, y, z + 1].
(I) 1-tert-butoxycarbonyl-2-phenylpyrrolidine-2-carboxylic acid top
Crystal data top
C16H21NO4F(000) = 624
Mr = 291.34Dx = 1.236 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C-2ycCell parameters from 25 reflections
a = 19.309 (4) Åθ = 10.0–17.2°
b = 6.4210 (13) ŵ = 0.09 mm1
c = 13.735 (3) ÅT = 293 K
β = 113.20 (3)°Prism, colourless
V = 1565.2 (7) Å30.3 × 0.24 × 0.18 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
Graphite monochromatorh = 2626
θ/2θ scansk = 89
8331 measured reflectionsl = 1919
2273 independent reflections3 standard reflections every 60 min
1635 reflections with I > 2σ(I) intensity decay: no decay, variation < 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.13P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2273 reflectionsΔρmax = 0.13 e Å3
220 parametersΔρmin = 0.12 e Å3
17 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (8)
Crystal data top
C16H21NO4V = 1565.2 (7) Å3
Mr = 291.34Z = 4
Monoclinic, CcMo Kα radiation
a = 19.309 (4) ŵ = 0.09 mm1
b = 6.4210 (13) ÅT = 293 K
c = 13.735 (3) Å0.3 × 0.24 × 0.18 mm
β = 113.20 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.036
8331 measured reflections3 standard reflections every 60 min
2273 independent reflections intensity decay: no decay, variation < 1.0%
1635 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04117 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2273 reflectionsΔρmin = 0.12 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

16.4635 (0.0154) x − 3.1265 (0.0071) y − 7.0063 (0.0152) z = 9.1171 (0.0205)

* 0.1741 (0.0014) C1 * −0.0645 (0.0014) N2 * −0.0737 (0.0015) C3 * 0.1897 (0.0017) C4 * −0.2256 (0.0016) C5

Rms deviation of fitted atoms = 0.1592

3.9275 (0.0177) x − 2.3844 (0.0059) y + 10.3363 (0.0099) z = 10.8903 (0.0168)

Angle to previous plane (with approximate e.s.d.) = 79.48 (0.09)

* 0.0008 (0.0014) C16 * 0.0012 (0.0015) C17 * −0.0024 (0.0017) C18 * 0.0015 (0.0018) C19 * 0.0005 (0.0018) C20 * −0.0016 (0.0016) C21

Rms deviation of fitted atoms = 0.0015

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.99477 (11)0.4888 (3)0.79329 (15)0.0397 (4)
N20.94542 (9)0.3128 (3)0.78992 (13)0.0395 (3)
C30.96748 (13)0.2043 (3)0.89149 (16)0.0492 (5)
H3A0.97920.05940.88480.059*
H3B0.92760.21060.91760.059*
C41.03636 (15)0.3196 (5)0.96428 (18)0.0639 (7)
H4A1.08200.24930.96880.077*
H4B1.03660.33081.03490.077*
C51.03030 (14)0.5324 (4)0.91435 (17)0.0543 (5)
H5A1.07960.59620.93500.065*
H5B0.99830.62350.93490.065*
C60.88397 (10)0.2527 (3)0.70638 (15)0.0386 (4)
O70.84372 (7)0.1085 (2)0.71039 (12)0.0500 (4)
O80.87270 (8)0.3682 (2)0.62149 (10)0.0460 (3)
C90.81211 (12)0.3243 (4)0.51839 (18)0.0525 (6)
C10A0.7327 (3)0.3062 (17)0.5103 (6)0.067 (2)0.432 (8)
H10A0.71870.43190.53590.101*0.432 (8)
H10B0.72880.19040.55210.101*0.432 (8)
H10C0.69950.28470.43760.101*0.432 (8)
C11A0.8403 (4)0.1299 (9)0.4803 (5)0.0547 (18)0.432 (8)
H11A0.88420.16480.46700.082*0.432 (8)
H11B0.80150.07940.41620.082*0.432 (8)
H11C0.85300.02390.53380.082*0.432 (8)
C12A0.8124 (7)0.4982 (13)0.4444 (8)0.075 (3)0.432 (8)
H12A0.79630.62520.46580.113*0.432 (8)
H12B0.77870.46410.37340.113*0.432 (8)
H12C0.86250.51580.44690.113*0.432 (8)
C10B0.7426 (3)0.379 (2)0.5381 (7)0.143 (5)0.568 (8)
H10D0.74720.51780.56550.215*0.568 (8)
H10E0.73740.28290.58850.215*0.568 (8)
H10F0.69900.36970.47280.215*0.568 (8)
C11B0.8134 (7)0.0988 (11)0.4852 (8)0.143 (5)0.568 (8)
H11D0.77220.02460.49170.215*0.568 (8)
H11E0.86010.03540.53010.215*0.568 (8)
H11F0.80860.09400.41300.215*0.568 (8)
C12B0.8271 (5)0.4893 (13)0.4505 (5)0.068 (2)0.568 (8)
H12D0.81250.62300.46730.102*0.568 (8)
H12E0.79850.45860.37710.102*0.568 (8)
H12F0.87980.49090.46410.102*0.568 (8)
C130.94951 (11)0.6821 (3)0.73730 (16)0.0431 (5)
O140.89222 (9)0.7196 (2)0.76473 (13)0.0559 (4)
H140.87530.83610.74430.084*
O150.96694 (9)0.7932 (3)0.68045 (14)0.0581 (4)
C161.05564 (11)0.4345 (3)0.75280 (14)0.0424 (4)
C171.11241 (12)0.5778 (4)0.76433 (17)0.0540 (6)
H171.11200.70710.79460.065*
C181.16967 (13)0.5291 (5)0.7310 (2)0.0654 (7)
H181.20720.62600.73860.079*
C191.17091 (14)0.3391 (6)0.6871 (2)0.0710 (8)
H191.20950.30660.66520.085*
C211.05759 (13)0.2436 (4)0.70779 (17)0.0511 (5)
H211.02010.14590.69920.061*
C201.11565 (15)0.1967 (5)0.6751 (2)0.0660 (7)
H201.11670.06760.64500.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (10)0.0361 (9)0.0374 (9)0.0086 (8)0.0123 (8)0.0031 (8)
N20.0437 (8)0.0353 (8)0.0406 (7)0.0059 (7)0.0178 (6)0.0022 (7)
C30.0592 (12)0.0435 (11)0.0480 (10)0.0048 (10)0.0245 (9)0.0094 (9)
C40.0605 (13)0.0811 (18)0.0430 (11)0.0011 (13)0.0130 (10)0.0081 (12)
C50.0614 (12)0.0581 (13)0.0398 (10)0.0107 (11)0.0160 (9)0.0072 (10)
C60.0371 (8)0.0326 (9)0.0516 (10)0.0037 (8)0.0234 (8)0.0010 (8)
O70.0400 (7)0.0396 (8)0.0725 (9)0.0048 (6)0.0244 (7)0.0055 (7)
O80.0470 (7)0.0441 (7)0.0417 (7)0.0133 (6)0.0119 (6)0.0021 (6)
C90.0438 (11)0.0543 (13)0.0486 (11)0.0075 (10)0.0067 (9)0.0007 (10)
C10A0.034 (3)0.105 (6)0.059 (4)0.015 (3)0.014 (3)0.012 (4)
C11A0.080 (4)0.043 (3)0.043 (3)0.000 (3)0.026 (3)0.013 (2)
C12A0.072 (5)0.052 (5)0.085 (6)0.011 (4)0.012 (4)0.003 (4)
C10B0.041 (3)0.254 (14)0.110 (6)0.014 (5)0.002 (3)0.086 (8)
C11B0.190 (11)0.077 (5)0.089 (5)0.041 (6)0.023 (6)0.023 (4)
C12B0.062 (3)0.103 (6)0.038 (3)0.001 (3)0.017 (2)0.015 (3)
C130.0453 (10)0.0350 (9)0.0477 (10)0.0082 (8)0.0170 (8)0.0048 (9)
O140.0644 (9)0.0397 (8)0.0744 (10)0.0040 (7)0.0389 (8)0.0060 (7)
O150.0624 (9)0.0466 (9)0.0714 (9)0.0006 (7)0.0328 (8)0.0149 (8)
C160.0379 (9)0.0471 (10)0.0372 (9)0.0026 (8)0.0096 (8)0.0059 (9)
C170.0428 (11)0.0606 (14)0.0520 (12)0.0098 (10)0.0115 (10)0.0050 (11)
C180.0410 (11)0.091 (2)0.0607 (14)0.0090 (12)0.0160 (10)0.0172 (14)
C190.0471 (12)0.106 (2)0.0651 (14)0.0132 (15)0.0282 (11)0.0180 (16)
C210.0504 (11)0.0520 (12)0.0519 (11)0.0015 (10)0.0212 (9)0.0006 (10)
C200.0622 (14)0.0760 (17)0.0634 (15)0.0113 (13)0.0285 (12)0.0010 (13)
Geometric parameters (Å, º) top
C1—N21.467 (2)C11A—H11C0.9600
C1—C161.526 (3)C12A—H12A0.9600
C1—C131.538 (3)C12A—H12B0.9600
C1—C51.554 (3)C12A—H12C0.9600
N2—C61.342 (2)C10B—H10D0.9600
N2—C31.465 (3)C10B—H10E0.9600
C3—C41.507 (3)C10B—H10F0.9600
C3—H3A0.9700C11B—H11D0.9600
C3—H3B0.9700C11B—H11E0.9600
C4—C51.513 (4)C11B—H11F0.9600
C4—H4A0.9700C12B—H12D0.9600
C4—H4B0.9700C12B—H12E0.9600
C5—H5A0.9700C12B—H12F0.9600
C5—H5B0.9700C13—O151.200 (3)
C6—O71.224 (2)C13—O141.324 (3)
C6—O81.326 (2)O14—H140.8200
O8—C91.466 (3)C16—C211.380 (3)
C9—C10A1.498 (6)C16—C171.392 (3)
C9—C10B1.511 (7)C17—C181.389 (4)
C9—C12A1.512 (7)C17—H170.9300
C9—C12B1.512 (6)C18—C191.365 (5)
C9—C11B1.521 (7)C18—H180.9300
C9—C11A1.534 (6)C19—C201.365 (4)
C10A—H10A0.9600C19—H190.9300
C10A—H10B0.9600C21—C201.395 (4)
C10A—H10C0.9600C21—H210.9300
C11A—H11A0.9600C20—H200.9300
C11A—H11B0.9600
N2—C1—C16113.36 (16)H11A—C11A—H11B109.5
N2—C1—C13111.82 (16)C9—C11A—H11C109.5
C16—C1—C13111.71 (16)H11A—C11A—H11C109.5
N2—C1—C5100.37 (16)H11B—C11A—H11C109.5
C16—C1—C5110.64 (17)C9—C12A—H12A109.5
C13—C1—C5108.29 (17)C9—C12A—H12B109.5
C6—N2—C3120.31 (17)H12A—C12A—H12B109.5
C6—N2—C1126.38 (16)C9—C12A—H12C109.5
C3—N2—C1113.27 (16)H12A—C12A—H12C109.5
N2—C3—C4104.32 (18)H12B—C12A—H12C109.5
N2—C3—H3A110.9C9—C10B—H10D109.5
C4—C3—H3A110.9C9—C10B—H10E109.5
N2—C3—H3B110.9H10D—C10B—H10E109.5
C4—C3—H3B110.9C9—C10B—H10F109.5
H3A—C3—H3B108.9H10D—C10B—H10F109.5
C3—C4—C5104.66 (18)H10E—C10B—H10F109.5
C3—C4—H4A110.8C9—C11B—H11D109.5
C5—C4—H4A110.8C9—C11B—H11E109.5
C3—C4—H4B110.8H11D—C11B—H11E109.5
C5—C4—H4B110.8C9—C11B—H11F109.5
H4A—C4—H4B108.9H11D—C11B—H11F109.5
C4—C5—C1104.18 (18)H11E—C11B—H11F109.5
C4—C5—H5A110.9C9—C12B—H12D109.5
C1—C5—H5A110.9C9—C12B—H12E109.5
C4—C5—H5B110.9H12D—C12B—H12E109.5
C1—C5—H5B110.9C9—C12B—H12F109.5
H5A—C5—H5B108.9H12D—C12B—H12F109.5
O7—C6—O8125.15 (17)H12E—C12B—H12F109.5
O7—C6—N2122.85 (18)O15—C13—O14123.86 (19)
O8—C6—N2111.99 (16)O15—C13—C1123.74 (19)
C6—O8—C9122.30 (16)O14—C13—C1112.24 (17)
O8—C9—C10A119.4 (4)C13—O14—H14109.5
O8—C9—C10B102.1 (4)C21—C16—C17118.6 (2)
O8—C9—C12A107.1 (4)C21—C16—C1121.82 (18)
C10A—C9—C12A106.4 (6)C17—C16—C1119.53 (19)
O8—C9—C12B100.8 (3)C18—C17—C16120.5 (3)
C10B—C9—C12B110.4 (6)C18—C17—H17119.8
O8—C9—C11B111.8 (4)C16—C17—H17119.8
C10B—C9—C11B113.2 (7)C19—C18—C17120.1 (2)
C12B—C9—C11B116.9 (6)C19—C18—H18119.9
O8—C9—C11A103.3 (3)C17—C18—H18119.9
C10A—C9—C11A113.7 (5)C18—C19—C20120.2 (2)
C12A—C9—C11A106.0 (6)C18—C19—H19119.9
C9—C10A—H10A109.5C20—C19—H19119.9
C9—C10A—H10B109.5C16—C21—C20120.2 (2)
H10A—C10A—H10B109.5C16—C21—H21119.9
C9—C10A—H10C109.5C20—C21—H21119.9
H10A—C10A—H10C109.5C19—C20—C21120.4 (3)
H10B—C10A—H10C109.5C19—C20—H20119.8
C9—C11A—H11A109.5C21—C20—H20119.8
C9—C11A—H11B109.5
C16—C1—N2—C685.0 (2)C6—O8—C9—C11B51.9 (7)
C13—C1—N2—C642.3 (3)C6—O8—C9—C11A73.3 (4)
C5—C1—N2—C6156.97 (19)N2—C1—C13—O15138.3 (2)
C16—C1—N2—C397.2 (2)C16—C1—C13—O1510.1 (3)
C13—C1—N2—C3135.47 (17)C5—C1—C13—O15112.0 (2)
C5—C1—N2—C320.8 (2)N2—C1—C13—O1446.0 (2)
C6—N2—C3—C4178.40 (19)C16—C1—C13—O14174.26 (15)
C1—N2—C3—C40.4 (2)C5—C1—C13—O1463.7 (2)
N2—C3—C4—C522.5 (3)N2—C1—C16—C216.3 (3)
C3—C4—C5—C135.6 (3)C13—C1—C16—C21121.1 (2)
N2—C1—C5—C433.8 (2)C5—C1—C16—C21118.1 (2)
C16—C1—C5—C486.2 (2)N2—C1—C16—C17171.58 (16)
C13—C1—C5—C4151.10 (19)C13—C1—C16—C1761.0 (2)
C3—N2—C6—O70.4 (3)C5—C1—C16—C1759.7 (2)
C1—N2—C6—O7177.22 (19)C21—C16—C17—C180.1 (3)
C3—N2—C6—O8179.98 (18)C1—C16—C17—C18178.0 (2)
C1—N2—C6—O82.3 (3)C16—C17—C18—C190.4 (3)
O7—C6—O8—C94.7 (3)C17—C18—C19—C200.4 (4)
N2—C6—O8—C9175.81 (18)C17—C16—C21—C200.2 (3)
C6—O8—C9—C10A54.1 (6)C1—C16—C21—C20177.7 (2)
C6—O8—C9—C10B69.4 (6)C18—C19—C20—C210.1 (4)
C6—O8—C9—C12A175.0 (5)C16—C21—C20—C190.2 (4)
C6—O8—C9—C12B176.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O7i0.821.852.668 (2)175
Symmetry code: (i) x, y+1, z.
(II) 2-ammoniomethyl-1-benzyl-5-oxo-2-phenylpyrrolidine chloride top
Crystal data top
C18H21N2O+·ClZ = 2
Mr = 316.82F(000) = 336
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8302 (18) ÅCell parameters from 25 reflections
b = 10.077 (2) Åθ = 12.5–17.8°
c = 10.094 (2) ŵ = 0.24 mm1
α = 99.74 (3)°T = 293 K
β = 92.53 (3)°Sphere, colourless
γ = 111.39 (3)°0.23 mm (radius)
V = 818.7 (4) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 1212
θ/2θ scansk = 1414
9597 measured reflectionsl = 1414
4767 independent reflections3 standard reflections every 60 min
3895 reflections with I > 2σ(I) intensity decay: no decay, variation < 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1106P]
where P = (Fo2 + 2Fc2)/3
4767 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H21N2O+·Clγ = 111.39 (3)°
Mr = 316.82V = 818.7 (4) Å3
Triclinic, P1Z = 2
a = 8.8302 (18) ÅMo Kα radiation
b = 10.077 (2) ŵ = 0.24 mm1
c = 10.094 (2) ÅT = 293 K
α = 99.74 (3)°0.23 mm (radius)
β = 92.53 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
9597 measured reflections3 standard reflections every 60 min
4767 independent reflections intensity decay: no decay, variation < 1.0%
3895 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.03Δρmax = 0.26 e Å3
4767 reflectionsΔρmin = 0.16 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 3.9131 (0.0057) x + 5.5447 (0.0066) y + 7.1991 (0.0063) z = 3.0604 (0.0034)

* −0.0042 (0.0009) C16 * 0.0006 (0.0011) C17 * 0.0025 (0.0012) C18 * −0.0020 (0.0013) C19 * −0.0016 (0.0012) C20 * 0.0047 (0.0011) C21

Rms deviation of fitted atoms = 0.0030

− 5.5031 (0.0049) x + 9.6185 (0.0053) y − 1.6835 (0.0057) z = 4.2826 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 55.20 (0.06)

* −0.0055 (0.0008) C7 * 0.0072 (0.0009) C8 * −0.0027 (0.0010) C9 * −0.0036 (0.0010) C10 * 0.0053 (0.0010) C11 * −0.0008 (0.0009) C12

Rms deviation of fitted atoms = 0.0047

3.0322 (0.0060) x + 7.0377 (0.0061) y − 5.0482 (0.0054) z = 6.0450 (0.0045)

Angle to previous plane (with approximate e.s.d.) = 60.70 (0.05)

* 0.0424 (0.0007) C1 * −0.0240 (0.0006) N2 * −0.0069 (0.0008) C3 * 0.0349 (0.0009) C4 * −0.0465 (0.0008) C5

Rms deviation of fitted atoms = 0.0341

− 3.9131 (0.0057) x + 5.5447 (0.0066) y + 7.1991 (0.0063) z = 3.0604 (0.0034)

Angle to previous plane (with approximate e.s.d.) = 88.09 (0.06)

* −0.0042 (0.0009) C16 * 0.0006 (0.0011) C17 * 0.0025 (0.0012) C18 * −0.0020 (0.0013) C19 * −0.0016 (0.0012) C20 * 0.0047 (0.0011) C21

Rms deviation of fitted atoms = 0.0030

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14123 (4)0.85572 (4)0.03042 (3)0.04903 (10)
C10.69819 (13)0.73955 (11)0.24450 (10)0.0330 (2)
N20.73860 (10)0.81544 (9)0.38775 (8)0.03181 (17)
C30.87058 (13)0.80799 (12)0.45323 (11)0.0362 (2)
C40.93727 (18)0.71681 (18)0.35789 (16)0.0549 (3)
H4B1.048 (3)0.780 (3)0.347 (2)0.100 (7)*
H4A0.945 (2)0.645 (2)0.397 (2)0.084 (6)*
C50.82233 (15)0.66214 (13)0.22876 (12)0.0414 (2)
H5B0.7636 (18)0.5563 (18)0.2169 (16)0.053 (4)*
H5A0.883 (2)0.6862 (18)0.1523 (17)0.059 (4)*
C60.65558 (15)0.90841 (12)0.44887 (12)0.0382 (2)
H6B0.736 (2)0.9997 (18)0.4965 (17)0.056 (4)*
H6A0.6008 (16)0.9299 (15)0.3783 (14)0.040 (3)*
C70.53920 (14)0.84941 (12)0.54986 (11)0.0374 (2)
C80.37941 (15)0.75191 (14)0.50758 (13)0.0450 (3)
H80.342 (2)0.7135 (18)0.4074 (18)0.061 (4)*
C90.27242 (18)0.70622 (16)0.60215 (16)0.0539 (3)
H90.170 (2)0.640 (2)0.5736 (19)0.070 (5)*
C100.3219 (2)0.75825 (18)0.73827 (16)0.0577 (4)
H100.249 (2)0.7268 (19)0.8051 (19)0.067 (5)*
C110.4789 (2)0.85651 (19)0.78105 (14)0.0576 (4)
H110.515 (2)0.895 (2)0.875 (2)0.076 (5)*
C120.58783 (17)0.90176 (16)0.68722 (12)0.0479 (3)
H120.698 (2)0.9713 (17)0.7182 (17)0.054 (4)*
C130.72724 (15)0.85107 (13)0.15286 (11)0.0385 (2)
H13B0.7096 (18)0.8047 (17)0.0624 (17)0.051 (4)*
H13A0.6545 (17)0.8999 (15)0.1607 (14)0.042 (3)*
N140.89545 (13)0.96403 (11)0.17746 (10)0.0411 (2)
H14C0.972 (2)0.9311 (19)0.1478 (17)0.060 (5)*
H14B0.895 (2)1.0285 (19)0.1280 (18)0.061 (5)*
H14A0.9261 (18)1.0069 (16)0.2624 (16)0.047 (4)*
O150.92545 (11)0.86771 (10)0.57096 (8)0.0477 (2)
C160.52005 (14)0.63198 (12)0.22045 (11)0.0380 (2)
C170.39834 (17)0.64927 (16)0.14166 (14)0.0529 (3)
H170.422 (2)0.7283 (19)0.0899 (17)0.060 (4)*
C180.23676 (19)0.5517 (2)0.12922 (18)0.0691 (4)
H180.158 (2)0.570 (2)0.076 (2)0.081 (6)*
C190.1960 (2)0.43702 (18)0.1948 (2)0.0722 (5)
H190.091 (3)0.371 (2)0.186 (2)0.091 (6)*
C200.3150 (2)0.41861 (16)0.2737 (2)0.0674 (4)
H200.290 (3)0.342 (2)0.320 (2)0.088 (6)*
C210.47608 (17)0.51574 (14)0.28732 (16)0.0512 (3)
H210.556 (2)0.5037 (18)0.3447 (17)0.057 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.05513 (18)0.05757 (19)0.03706 (15)0.02119 (14)0.01222 (12)0.01499 (12)
C10.0378 (5)0.0334 (5)0.0285 (4)0.0132 (4)0.0056 (4)0.0078 (4)
N20.0351 (4)0.0336 (4)0.0283 (4)0.0140 (3)0.0052 (3)0.0075 (3)
C30.0347 (5)0.0370 (5)0.0370 (5)0.0101 (4)0.0044 (4)0.0154 (4)
C40.0491 (7)0.0631 (8)0.0609 (8)0.0336 (7)0.0017 (6)0.0076 (7)
C50.0454 (6)0.0396 (6)0.0440 (6)0.0205 (5)0.0136 (5)0.0088 (5)
C60.0457 (6)0.0358 (5)0.0370 (5)0.0195 (4)0.0093 (4)0.0070 (4)
C70.0418 (5)0.0414 (5)0.0355 (5)0.0231 (4)0.0082 (4)0.0073 (4)
C80.0446 (6)0.0479 (6)0.0449 (6)0.0211 (5)0.0080 (5)0.0066 (5)
C90.0458 (7)0.0536 (7)0.0672 (9)0.0215 (6)0.0189 (6)0.0155 (6)
C100.0653 (9)0.0679 (9)0.0591 (8)0.0385 (7)0.0314 (7)0.0263 (7)
C110.0716 (9)0.0790 (10)0.0362 (6)0.0430 (8)0.0146 (6)0.0133 (6)
C120.0499 (7)0.0610 (7)0.0367 (6)0.0272 (6)0.0060 (5)0.0052 (5)
C130.0451 (6)0.0400 (5)0.0302 (5)0.0134 (5)0.0048 (4)0.0121 (4)
N140.0491 (6)0.0404 (5)0.0316 (5)0.0112 (4)0.0092 (4)0.0130 (4)
O150.0468 (5)0.0536 (5)0.0355 (4)0.0098 (4)0.0027 (3)0.0127 (4)
C160.0399 (5)0.0342 (5)0.0360 (5)0.0110 (4)0.0045 (4)0.0032 (4)
C170.0486 (7)0.0563 (7)0.0454 (7)0.0115 (6)0.0060 (5)0.0098 (6)
C180.0470 (8)0.0774 (11)0.0644 (9)0.0101 (7)0.0124 (7)0.0007 (8)
C190.0458 (8)0.0524 (8)0.0918 (12)0.0025 (6)0.0025 (8)0.0069 (8)
C200.0624 (9)0.0376 (7)0.0969 (13)0.0096 (6)0.0256 (9)0.0165 (7)
C210.0482 (7)0.0395 (6)0.0690 (9)0.0164 (5)0.0139 (6)0.0178 (6)
Geometric parameters (Å, º) top
C1—N21.4779 (14)C10—C111.375 (2)
C1—C161.5302 (16)C10—H100.965 (19)
C1—C131.5319 (15)C11—C121.392 (2)
C1—C51.5596 (16)C11—H110.95 (2)
N2—C31.3466 (14)C12—H120.969 (16)
N2—C61.4632 (14)C13—N141.4839 (16)
C3—O151.2262 (14)C13—H13B0.931 (16)
C3—C41.5042 (18)C13—H13A0.939 (15)
C4—C51.505 (2)N14—H14C0.896 (18)
C4—H4B0.98 (2)N14—H14B0.885 (18)
C4—H4A0.90 (2)N14—H14A0.874 (16)
C5—H5B0.984 (16)C16—C171.3877 (18)
C5—H5A0.973 (17)C16—C211.3918 (17)
C6—C71.5168 (16)C17—C181.392 (2)
C6—H6B0.962 (17)C17—H170.990 (17)
C6—H6A0.941 (14)C18—C191.371 (3)
C7—C121.3855 (17)C18—H180.95 (2)
C7—C81.3899 (18)C19—C201.376 (3)
C8—C91.3881 (19)C19—H190.92 (2)
C8—H81.013 (18)C20—C211.386 (2)
C9—C101.375 (2)C20—H200.93 (2)
C9—H90.901 (18)C21—H210.950 (16)
N2—C1—C16109.65 (9)C9—C10—C11119.62 (13)
N2—C1—C13109.65 (9)C9—C10—H10121.5 (11)
C16—C1—C13110.89 (9)C11—C10—H10118.9 (11)
N2—C1—C5102.41 (9)C10—C11—C12120.23 (14)
C16—C1—C5112.54 (9)C10—C11—H11120.7 (12)
C13—C1—C5111.35 (9)C12—C11—H11119.0 (12)
C3—N2—C6121.94 (10)C7—C12—C11120.53 (14)
C3—N2—C1115.18 (9)C7—C12—H12119.8 (10)
C6—N2—C1122.37 (9)C11—C12—H12119.7 (10)
O15—C3—N2124.49 (11)N14—C13—C1113.43 (10)
O15—C3—C4126.83 (11)N14—C13—H13B107.5 (9)
N2—C3—C4108.68 (10)C1—C13—H13B110.2 (10)
C3—C4—C5106.41 (10)N14—C13—H13A107.0 (9)
C3—C4—H4B106.9 (14)C1—C13—H13A113.2 (9)
C5—C4—H4B113.5 (14)H13B—C13—H13A105.0 (13)
C3—C4—H4A108.8 (14)C13—N14—H14C113.7 (11)
C5—C4—H4A113.3 (14)C13—N14—H14B105.8 (11)
H4B—C4—H4A107.7 (19)H14C—N14—H14B105.5 (15)
C4—C5—C1106.72 (10)C13—N14—H14A113.5 (10)
C4—C5—H5B109.3 (9)H14C—N14—H14A108.1 (14)
C1—C5—H5B109.8 (9)H14B—N14—H14A109.9 (14)
C4—C5—H5A110.2 (10)C17—C16—C21118.35 (12)
C1—C5—H5A110.0 (10)C17—C16—C1123.25 (11)
H5B—C5—H5A110.7 (13)C21—C16—C1118.29 (11)
N2—C6—C7116.17 (9)C16—C17—C18120.59 (15)
N2—C6—H6B109.2 (10)C16—C17—H17122.2 (10)
C7—C6—H6B106.3 (10)C18—C17—H17117.2 (10)
N2—C6—H6A107.8 (8)C19—C18—C17120.24 (16)
C7—C6—H6A110.5 (8)C19—C18—H18122.5 (12)
H6B—C6—H6A106.4 (13)C17—C18—H18117.2 (12)
C12—C7—C8118.79 (12)C18—C19—C20119.92 (15)
C12—C7—C6119.70 (11)C18—C19—H19121.2 (14)
C8—C7—C6121.31 (11)C20—C19—H19118.9 (14)
C9—C8—C7120.17 (13)C19—C20—C21120.21 (16)
C9—C8—H8120.1 (10)C19—C20—H20121.6 (13)
C7—C8—H8119.7 (10)C21—C20—H20118.2 (13)
C10—C9—C8120.65 (14)C20—C21—C16120.69 (15)
C10—C9—H9120.0 (12)C20—C21—H21119.3 (10)
C8—C9—H9119.3 (12)C16—C21—H21120.0 (10)
C16—C1—N2—C3125.64 (9)C8—C9—C10—C110.0 (2)
C13—C1—N2—C3112.39 (10)C9—C10—C11—C120.8 (2)
C5—C1—N2—C35.94 (11)C8—C7—C12—C110.53 (18)
C16—C1—N2—C662.39 (12)C6—C7—C12—C11175.49 (12)
C13—C1—N2—C659.58 (12)C10—C11—C12—C70.5 (2)
C5—C1—N2—C6177.91 (9)N2—C1—C13—N1455.21 (13)
C6—N2—C3—O155.74 (16)C16—C1—C13—N14176.45 (9)
C1—N2—C3—O15177.74 (10)C5—C1—C13—N1457.41 (13)
C6—N2—C3—C4173.77 (11)N2—C1—C16—C17111.94 (13)
C1—N2—C3—C41.76 (13)C13—C1—C16—C179.29 (15)
O15—C3—C4—C5177.04 (11)C5—C1—C16—C17134.77 (12)
N2—C3—C4—C53.47 (15)N2—C1—C16—C2164.16 (13)
C3—C4—C5—C16.93 (15)C13—C1—C16—C21174.61 (11)
N2—C1—C5—C47.59 (12)C5—C1—C16—C2149.13 (14)
C16—C1—C5—C4125.25 (12)C21—C16—C17—C180.6 (2)
C13—C1—C5—C4109.52 (12)C1—C16—C17—C18176.65 (13)
C3—N2—C6—C779.67 (13)C16—C17—C18—C190.1 (3)
C1—N2—C6—C7108.90 (12)C17—C18—C19—C200.3 (3)
N2—C6—C7—C12102.59 (13)C18—C19—C20—C210.1 (3)
N2—C6—C7—C882.58 (14)C19—C20—C21—C160.7 (2)
C12—C7—C8—C91.29 (18)C17—C16—C21—C201.0 (2)
C6—C7—C8—C9176.16 (11)C1—C16—C21—C20177.24 (13)
C7—C8—C9—C101.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O15i0.87 (2)2.01 (2)2.839 (2)159 (1)
N14—H14B···Cl1ii0.88 (2)2.21 (2)3.077 (1)167 (1)
N14—H14C···Cl1iii0.90 (2)2.21 (2)3.093 (1)167 (1)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H21NO4C18H21N2O+·Cl
Mr291.34316.82
Crystal system, space groupMonoclinic, CcTriclinic, P1
Temperature (K)293293
a, b, c (Å)19.309 (4), 6.4210 (13), 13.735 (3)8.8302 (18), 10.077 (2), 10.094 (2)
α, β, γ (°)90, 113.20 (3), 9099.74 (3), 92.53 (3), 111.39 (3)
V3)1565.2 (7)818.7 (4)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.090.24
Crystal size (mm)0.3 × 0.24 × 0.180.23 (radius)
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8331, 2273, 1635 9597, 4767, 3895
Rint0.0360.017
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.04 0.037, 0.107, 1.03
No. of reflections22734767
No. of parameters220283
No. of restraints170
H-atom treatmentH-atom parameters constrainedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.13, 0.120.26, 0.16

Computer programs: CAD-4 Manual (Enraf-Nonius, 1988), CAD-4 Manual, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 2000), SHELXTL-NT.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O7i0.821.852.668 (2)175
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O15i0.87 (2)2.01 (2)2.839 (2)159 (1)
N14—H14B···Cl1ii0.88 (2)2.21 (2)3.077 (1)167 (1)
N14—H14C···Cl1iii0.90 (2)2.21 (2)3.093 (1)167 (1)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds