Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [Cu(ClO4)2(C4H12N2)2], (I), is reported at 100, 250 and 400 K. The CuII cation in this complex is coordinated in a distorted octa­hedral mode characteristic of Jahn-Teller systems. The coordination of the perchlorate ligands via longer, and presumably weaker, axial Cu-O distances varies significantly as a function of temperature. One of the Cu-O distances increases between 100 and 250 K, and one of the Cu-O-Cl angles expands between 250 and 400 K. At all temperatures, the complex forms a two-dimensional N-H...O hydrogen-bond net­work in the (001) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112033318/sk3443sup1.cif
Contains datablocks global, Ia, Ib, Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112033318/sk3443Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112033318/sk3443Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112033318/sk3443Icsup4.hkl
Contains datablock Ic

CCDC references: 908121; 908122; 908123

Comment top

The perchlorate group (ClO4-) represents a rather weakly coordinating anion (Pascal & Favier, 1998). A search of the Cambridge Structural Database (CSD; Version 5.33 of November 2011, including updates until May 2012; Allen, 2002) resulted in 10249 error-free entries without disorder which contain both one or more perchlorate anions and at least one metal atom; 1205 entries (11.8%) showed at least one perchlorate bonded to the metal. In an attempt to identify suitable cations for the coordination of weak ligands (Şerb et al., 2007; Schnitzler et al., 2010), we envisaged CuII as a good candidate. This cation is notoriously Jahn–Teller distorted (Atkins et al., 2009) and we presumed that the more distant vertices in the coordination polyhedron might be more readily accessible to weakly coordinating groups. A CSD search confirmed this simple idea: 581 entries, corresponding to a higher fraction of 18.1%, featured a coordinated perchlorate, out of a total of 3213 error-free and undisordered entries with at least one CuII and one perchlorate in the structure. 204 structures showed (almost exclusively trans) geometries with two coordinated perchlorate groups.

In this contribution, we report the influence of temperature on the crystal structure of a compound in that category. For the title compound, (I), lattice parameters and space group at ambient temperature, but no atomic coordinates, had previously been determined by Näsänen et al. (1966) (CSD refcode ZZZHVW) based on Weissenberg photographs. Complex (I) features four N-donor atoms in the equatorial plane of an elongated pseudo-octahedron (see scheme) and shows two longer and presumably weaker bonds between the CuII centre and the symmetrically independent perchlorate anions. In the present work, intensity data were collected at 100, 250 and 400 K, denoted data sets (Ia), (Ib) and (Ic), respectively, and the resulting displacement ellipsoid plots are provided in Figs. 1–3.

The intramolecular distances and angles at 100 K are unexceptional. Packing in this solid is dominated by classical intermolecular N—H···O hydrogen bonding, with N···O > 3 Å; a two-dimensional network in the ab plane is formed. The hydrogen-bond geometry has been compiled in Tables 1 [for (Ia)] and 2 [for (Ib)].

The main focus of this contribution is the effect of temperature on perchlorate coordination. In this context, two observations merit discussion. Firstly, comparison of the structures at 100 and 250 K, i.e. (Ia) and (Ib), shows only one significant difference, namely an increase in the Cu1—O1 distance (Table 3). In view of the more elevated standard uncertainties in (Ic), the results obtained at the highest temperature should not be overinterpreted. Secondly, the weak perchlorate coordination is also reflected in the Cl1···Cl2 distances at different temperatures (Table 4); (Ia) and (Ib) consistently show two different Cu—O—Cl angles, whereas both angles are large in the case of (Ic), resulting in a significantly longer Cl1···Cl2 separation. Both these observations lead to the conclusion that the increase in temperature is sufficient to trigger a significant change in the coordination of the weak perchlorate ligand.

Related literature top

For related literature, see: Akitsu & Einaga (2004); Allen (2002); Atkins et al. (2009); Näsänen et al. (1966); Pascal & Favier (1998); Schnitzler et al. (2010); Spek (2009); Şerb et al. (2007).

Experimental top

Compound (I) was prepared according to the procedure of Akitsu & Einaga (2004) by adding N,N'-dimethylethylenediamine (0.176 g, 2.00 mmol) dropwise to a methanol solution (20 ml) of Cu(ClO4)2.6H2O (0.375 g, 1.01 mmol) at room temperature (yield 87.7%). Violet plates suitable for single-crystal X-ray diffraction were obtained after 2 d by diffusion between solutions of both reactants in methanol at room temperature. Elemental analysis, calculated (%): C 21.90, H 5.51, N 12.77; found: C 21.95, H 5.63, N 12.73.

Refinement top

H atoms attached to N atoms in (Ia) and (Ib) were refined isotropically, with Uiso(H) = 1.2Ueq(N) and with N—H restrained to similarity. H atoms attached to N atoms in (Ic) and all other H atoms were introduced in their idealized positions and treated as riding, with methyl C—H = 0.98 Å for (Ia), 0.97 Å for (Ib) and 0.96 Å for (Ic), and with Uiso(H) = 1.5Ueq(C); methylene C—H = 0.99 Å for (Ia), 0.98 Å for (Ib) and 0.97 Å for (Ic), and with Uiso(H) = 1.2Ueq(C); N—H = 0.91 Å for (Ic) and Uiso(H) = 1.2Ueq(N).

Data set (Ic) was collected at 400 K. At this temperature, the displacement parameters indicate the pronounced mobility of all ligands in the complex. Obvious disorder was encountered in one of the perchlorate anions and in an ethylendiamine ligand. Split positions were refined for the atoms of the chelating ligand associated with N1 and N2 and for those of the perchlorate ligand associated with Cl1. Site occupancies for the alternative orientations were refined, and the sum of these occupancies was constrained to unity. All atom sites with fractional occupancies were assigned isotropic displacement parameters. These displacement parameters, and the distances and angles in the alternative conformations, were restrained to similarity, resulting in a total of 69 restraints. In (Ic), the occurrence of intensities with I(obs) >> I(calc) indicated nonmerohedral twinning (180° rotation about a*); PLATON (Spek, 2009) was used to generate an expanded set of intensity data in which a small fraction (225 out of 3479 reflections) was assigned as overlapped with contributions from a second smaller domain with a volume fraction of 0.348 (10).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (Ia), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (Ib), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of (Ic), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Atoms of the chelating ligand associated with N1 and N2 and of the perchlorate ligand associated with Cl1 refer to the major disorder component. For clarity, the corresponding minority component has not been shown.
[Figure 4] Fig. 4. The hydrogen-bond network in the ab plane in (Ia).
(Ia) bis(N,N'-dimethylethylenediamine- κ2N,N')bis(perchlorato-κO)copper(II) top
Crystal data top
[Cu(ClO4)2(C4H12N2)2]F(000) = 908
Mr = 438.75Dx = 1.717 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1517 reflections
a = 8.5395 (17) Åθ = 2.8–20.6°
b = 13.543 (3) ŵ = 1.65 mm1
c = 14.743 (4) ÅT = 100 K
β = 95.358 (3)°Plate, violet
V = 1697.6 (6) Å30.19 × 0.11 × 0.03 mm
Z = 4
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
3488 independent reflections
Radiation source: Incoatec microsource3137 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.055
ω scansθmax = 26.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.745, Tmax = 0.952k = 1616
9912 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3488 reflectionsΔρmax = 0.45 e Å3
224 parametersΔρmin = 0.38 e Å3
8 restraintsAbsolute structure: Flack (1983), with 1739 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (14)
Crystal data top
[Cu(ClO4)2(C4H12N2)2]V = 1697.6 (6) Å3
Mr = 438.75Z = 4
Monoclinic, CcMo Kα radiation
a = 8.5395 (17) ŵ = 1.65 mm1
b = 13.543 (3) ÅT = 100 K
c = 14.743 (4) Å0.19 × 0.11 × 0.03 mm
β = 95.358 (3)°
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
3488 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3137 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.952Rint = 0.055
9912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.45 e Å3
S = 0.99Δρmin = 0.38 e Å3
3488 reflectionsAbsolute structure: Flack (1983), with 1739 Friedel pairs
224 parametersAbsolute structure parameter: 0.004 (14)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72281 (5)0.13390 (3)0.08201 (4)0.01293 (12)
Cl10.71786 (11)0.11944 (7)0.01687 (7)0.0163 (2)
Cl20.73233 (11)0.39566 (7)0.19654 (7)0.0161 (2)
O10.7488 (4)0.0189 (2)0.0068 (2)0.0277 (7)
O20.7117 (3)0.1792 (2)0.06348 (19)0.0235 (7)
O30.8394 (4)0.1541 (3)0.0827 (2)0.0362 (9)
O40.5694 (4)0.1229 (2)0.0561 (2)0.0236 (8)
O80.7107 (4)0.4664 (2)0.1238 (2)0.0290 (7)
O50.7179 (4)0.2978 (2)0.1591 (2)0.0257 (7)
O60.6155 (4)0.4109 (2)0.2582 (2)0.0300 (8)
O70.8861 (3)0.4056 (2)0.2433 (2)0.0286 (8)
C10.7319 (5)0.2764 (3)0.0591 (3)0.0213 (10)
H1A0.77670.29990.11470.026*
H1B0.70800.33450.02200.026*
C20.5847 (5)0.2180 (3)0.0842 (3)0.0189 (9)
H2A0.50230.26140.11440.023*
H2B0.60620.16450.12710.023*
C30.9388 (6)0.1502 (3)0.0664 (3)0.0230 (11)
H3A0.99560.19420.10460.035*
H3B0.86730.10800.10520.035*
H3C1.01410.10880.02930.035*
C40.4021 (5)0.1034 (3)0.0222 (3)0.0201 (10)
H4A0.44450.04500.05070.030*
H4B0.32060.13370.06460.030*
H4C0.35620.08370.03350.030*
C50.7079 (4)0.0179 (3)0.2421 (3)0.0152 (9)
H5A0.73480.04770.21820.018*
H5B0.66040.00810.30020.018*
C60.8537 (5)0.0804 (3)0.2577 (3)0.0180 (9)
H6A0.82810.14440.28530.022*
H6B0.93340.04640.29970.022*
C70.4940 (6)0.1369 (3)0.2221 (3)0.0193 (11)
H7A0.55950.18280.26050.029*
H7B0.42770.09880.26020.029*
H7C0.42720.17410.17650.029*
C81.0500 (5)0.1650 (3)0.1790 (3)0.0203 (10)
H8A1.12290.14450.23090.030*
H8B1.01250.23210.18940.030*
H8C1.10430.16390.12330.030*
N10.8464 (4)0.2101 (3)0.0056 (2)0.0157 (8)
H10.903 (4)0.253 (2)0.020 (3)0.019*
N20.5298 (4)0.1753 (3)0.0005 (2)0.0164 (8)
H20.494 (5)0.222 (2)0.026 (3)0.020*
N30.5959 (4)0.0690 (3)0.1758 (2)0.0139 (7)
H30.541 (4)0.026 (2)0.152 (3)0.017*
N40.9153 (4)0.0968 (3)0.1690 (3)0.0158 (7)
H40.950 (5)0.044 (2)0.152 (3)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0105 (2)0.0124 (2)0.0161 (2)0.0002 (2)0.00230 (17)0.0009 (2)
Cl10.0161 (5)0.0128 (5)0.0203 (5)0.0000 (4)0.0027 (4)0.0020 (4)
Cl20.0172 (5)0.0119 (5)0.0198 (5)0.0001 (4)0.0047 (4)0.0010 (4)
O10.0347 (19)0.0159 (16)0.0346 (19)0.0072 (14)0.0145 (15)0.0021 (14)
O20.0324 (18)0.0182 (16)0.0203 (16)0.0012 (14)0.0049 (14)0.0067 (13)
O30.029 (2)0.048 (2)0.029 (2)0.0213 (17)0.0099 (16)0.0048 (17)
O40.0210 (17)0.0189 (17)0.033 (2)0.0066 (13)0.0117 (15)0.0049 (14)
O80.038 (2)0.0176 (17)0.0326 (18)0.0041 (14)0.0075 (15)0.0097 (14)
O50.0308 (18)0.0119 (16)0.0346 (19)0.0006 (13)0.0039 (15)0.0082 (13)
O60.0287 (18)0.034 (2)0.0297 (18)0.0105 (15)0.0178 (15)0.0001 (15)
O70.0179 (17)0.0353 (19)0.0314 (18)0.0059 (14)0.0032 (14)0.0030 (15)
C10.027 (3)0.017 (2)0.020 (2)0.0044 (19)0.0030 (19)0.0054 (18)
C20.016 (2)0.024 (2)0.016 (2)0.0033 (18)0.0004 (17)0.0035 (18)
C30.023 (3)0.021 (3)0.026 (3)0.005 (2)0.009 (2)0.004 (2)
C40.016 (2)0.015 (2)0.028 (3)0.0009 (19)0.0023 (19)0.003 (2)
C50.017 (2)0.011 (2)0.018 (2)0.0001 (16)0.0007 (17)0.0036 (16)
C60.016 (2)0.023 (2)0.015 (2)0.0011 (18)0.0034 (17)0.0036 (18)
C70.019 (2)0.021 (3)0.018 (2)0.0004 (19)0.0056 (19)0.0029 (19)
C80.011 (2)0.023 (2)0.027 (3)0.000 (2)0.0013 (18)0.004 (2)
N10.0118 (18)0.0153 (19)0.020 (2)0.0026 (14)0.0031 (14)0.0012 (15)
N20.0150 (19)0.017 (2)0.018 (2)0.0013 (16)0.0044 (15)0.0011 (16)
N30.0143 (18)0.0128 (19)0.0143 (18)0.0040 (14)0.0004 (14)0.0021 (14)
N40.0121 (18)0.0122 (19)0.023 (2)0.0004 (15)0.0005 (14)0.0016 (16)
Geometric parameters (Å, º) top
Cu1—N22.026 (4)C4—N21.477 (5)
Cu1—N12.026 (3)C4—H4A0.9800
Cu1—N32.035 (3)C4—H4B0.9800
Cu1—N42.051 (4)C4—H4C0.9800
Cl1—O21.432 (3)C5—N31.475 (5)
Cl1—O31.432 (3)C5—C61.506 (5)
Cl1—O11.436 (3)C5—H5A0.9900
Cl1—O41.442 (3)C5—H5B0.9900
Cl2—O61.426 (3)C6—N41.471 (5)
Cl2—O71.431 (3)C6—H6A0.9900
Cl2—O51.436 (3)C6—H6B0.9900
Cl2—O81.437 (3)C7—N31.477 (5)
C1—N11.497 (5)C7—H7A0.9800
C1—C21.502 (5)C7—H7B0.9800
C1—H1A0.9900C7—H7C0.9800
C1—H1B0.9900C8—N41.472 (5)
C2—N21.491 (5)C8—H8A0.9800
C2—H2A0.9900C8—H8B0.9800
C2—H2B0.9900C8—H8C0.9800
C3—N11.488 (5)N1—H10.82 (2)
C3—H3A0.9800N2—H20.82 (2)
C3—H3B0.9800N3—H30.81 (2)
C3—H3C0.9800N4—H40.82 (2)
N2—Cu1—N185.67 (14)N3—C5—H5B110.0
N2—Cu1—N393.84 (14)C6—C5—H5B110.0
N1—Cu1—N3174.90 (15)H5A—C5—H5B108.4
N2—Cu1—N4177.27 (15)N4—C6—C5107.9 (3)
N1—Cu1—N495.09 (14)N4—C6—H6A110.1
N3—Cu1—N485.17 (14)C5—C6—H6A110.1
O2—Cl1—O3110.1 (2)N4—C6—H6B110.1
O2—Cl1—O1109.16 (19)C5—C6—H6B110.1
O3—Cl1—O1109.7 (2)H6A—C6—H6B108.4
O2—Cl1—O4110.33 (18)N3—C7—H7A109.5
O3—Cl1—O4109.0 (2)N3—C7—H7B109.5
O1—Cl1—O4108.48 (18)H7A—C7—H7B109.5
O6—Cl2—O7110.1 (2)N3—C7—H7C109.5
O6—Cl2—O5109.8 (2)H7A—C7—H7C109.5
O7—Cl2—O5108.29 (19)H7B—C7—H7C109.5
O6—Cl2—O8109.30 (19)N4—C8—H8A109.5
O7—Cl2—O8110.19 (19)N4—C8—H8B109.5
O5—Cl2—O8109.13 (19)H8A—C8—H8B109.5
N1—C1—C2107.8 (3)N4—C8—H8C109.5
N1—C1—H1A110.1H8A—C8—H8C109.5
C2—C1—H1A110.1H8B—C8—H8C109.5
N1—C1—H1B110.1C3—N1—C1111.6 (3)
C2—C1—H1B110.2C3—N1—Cu1116.3 (3)
H1A—C1—H1B108.5C1—N1—Cu1106.7 (2)
N2—C2—C1108.6 (3)C3—N1—H1110 (3)
N2—C2—H2A110.0C1—N1—H198 (3)
C1—C2—H2A110.0Cu1—N1—H1113 (3)
N2—C2—H2B110.0C4—N2—C2110.4 (3)
C1—C2—H2B110.0C4—N2—Cu1119.7 (3)
H2A—C2—H2B108.4C2—N2—Cu1107.6 (2)
N1—C3—H3A109.5C4—N2—H2108 (3)
N1—C3—H3B109.5C2—N2—H2105 (3)
H3A—C3—H3B109.5Cu1—N2—H2105 (3)
N1—C3—H3C109.5C5—N3—C7111.0 (3)
H3A—C3—H3C109.5C5—N3—Cu1107.4 (2)
H3B—C3—H3C109.5C7—N3—Cu1114.8 (3)
N2—C4—H4A109.5C5—N3—H3106 (3)
N2—C4—H4B109.5C7—N3—H3108 (3)
H4A—C4—H4B109.5Cu1—N3—H3109 (3)
N2—C4—H4C109.5C8—N4—C6110.3 (3)
H4A—C4—H4C109.5C8—N4—Cu1118.8 (3)
H4B—C4—H4C109.5C6—N4—Cu1105.1 (3)
N3—C5—C6108.3 (3)C8—N4—H4106 (3)
N3—C5—H5A110.0C6—N4—H4108 (3)
C6—C5—H5A110.0Cu1—N4—H4108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (3)2.23 (3)3.041 (5)167 (4)
N2—H2···O3ii0.81 (3)2.34 (4)3.133 (5)168 (4)
N3—H3···O40.81 (3)2.49 (3)3.138 (5)139 (3)
N3—H3···O7iii0.81 (3)2.56 (3)3.071 (5)123 (4)
N4—H4···O8iv0.82 (3)2.53 (4)3.200 (5)139 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z.
(Ib) bis(N,N'-dimethylethylenediamine- κ2N,N')bis(perchlorato-κO)copper(II)] top
Crystal data top
[Cu(ClO4)2(C4H12N2)2]F(000) = 908
Mr = 438.75Dx = 1.667 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1054 reflections
a = 8.5966 (14) Åθ = 2.7–17.4°
b = 13.655 (2) ŵ = 1.60 mm1
c = 14.966 (3) ÅT = 250 K
β = 95.533 (4)°Plate, violet
V = 1748.5 (5) Å30.19 × 0.11 × 0.03 mm
Z = 4
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area detector
diffractometer
3607 independent reflections
Radiation source: Incoatec microsource2853 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.064
ω scansθmax = 26.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.751, Tmax = 0.954k = 1717
10331 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3607 reflectionsΔρmax = 0.42 e Å3
224 parametersΔρmin = 0.29 e Å3
8 restraintsAbsolute structure: Flack (1983), with 1793 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (19)
Crystal data top
[Cu(ClO4)2(C4H12N2)2]V = 1748.5 (5) Å3
Mr = 438.75Z = 4
Monoclinic, CcMo Kα radiation
a = 8.5966 (14) ŵ = 1.60 mm1
b = 13.655 (2) ÅT = 250 K
c = 14.966 (3) Å0.19 × 0.11 × 0.03 mm
β = 95.533 (4)°
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area detector
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2853 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.954Rint = 0.064
10331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.42 e Å3
S = 0.99Δρmin = 0.29 e Å3
3607 reflectionsAbsolute structure: Flack (1983), with 1793 Friedel pairs
224 parametersAbsolute structure parameter: 0.011 (19)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72412 (6)0.13488 (4)0.08342 (5)0.02801 (16)
Cl10.71462 (16)0.12157 (10)0.01464 (10)0.0394 (4)
Cl20.73034 (16)0.39598 (10)0.19336 (10)0.0377 (3)
O10.7487 (7)0.0230 (3)0.0005 (4)0.0762 (16)
O20.7076 (7)0.1750 (4)0.0647 (3)0.0814 (17)
O30.8227 (8)0.1630 (6)0.0791 (4)0.108 (2)
O40.5666 (6)0.1229 (3)0.0540 (4)0.0718 (17)
O80.7133 (7)0.4660 (4)0.1243 (3)0.0737 (15)
O50.7223 (6)0.3009 (3)0.1558 (4)0.0640 (14)
O60.6136 (7)0.4085 (4)0.2523 (4)0.0785 (17)
O70.8808 (6)0.4068 (4)0.2406 (4)0.0801 (17)
C10.7362 (8)0.2708 (5)0.0596 (5)0.0545 (18)
H1A0.78070.29140.11450.065*
H1B0.71450.32950.02520.065*
C20.5885 (7)0.2145 (5)0.0829 (4)0.0541 (18)
H2A0.50880.25740.11350.065*
H2B0.60780.16030.12340.065*
C30.9426 (10)0.1445 (5)0.0605 (6)0.058 (2)
H3A1.00320.18610.09670.087*
H3B0.87350.10340.09950.087*
H3C1.01260.10360.02190.087*
C40.4081 (7)0.1037 (5)0.0205 (5)0.0504 (18)
H4A0.45010.04700.04900.076*
H4B0.32560.13270.06080.076*
H4C0.36610.08370.03460.076*
C50.7070 (6)0.0194 (4)0.2408 (4)0.0346 (13)
H5A0.73180.04520.21740.042*
H5B0.65970.01020.29720.042*
C60.8533 (7)0.0797 (4)0.2568 (4)0.0388 (14)
H6A0.83040.14160.28600.047*
H6B0.93190.04420.29610.047*
C70.4982 (8)0.1395 (5)0.2210 (5)0.0431 (18)
H7A0.56390.18600.25600.065*
H7B0.43670.10270.26050.065*
H7C0.42890.17430.17690.065*
C81.0489 (7)0.1642 (5)0.1813 (4)0.0424 (15)
H8A1.12080.14140.23080.064*
H8B1.01510.23020.19360.064*
H8C1.10090.16410.12650.064*
N10.8491 (5)0.2061 (3)0.0050 (3)0.0348 (11)
H10.904 (6)0.248 (3)0.022 (4)0.042*
N20.5331 (5)0.1759 (4)0.0003 (3)0.0343 (11)
H20.491 (6)0.224 (3)0.022 (4)0.041*
N30.5967 (5)0.0717 (4)0.1749 (3)0.0308 (10)
H30.549 (6)0.027 (3)0.147 (3)0.037*
N40.9126 (5)0.0991 (3)0.1704 (4)0.0331 (11)
H40.937 (7)0.045 (3)0.152 (4)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0227 (3)0.0272 (3)0.0343 (3)0.0004 (3)0.0042 (2)0.0023 (3)
Cl10.0433 (8)0.0280 (8)0.0473 (9)0.0005 (6)0.0060 (7)0.0045 (6)
Cl20.0411 (8)0.0272 (7)0.0462 (9)0.0004 (6)0.0118 (6)0.0021 (7)
O10.087 (4)0.032 (3)0.116 (4)0.016 (3)0.040 (3)0.012 (3)
O20.121 (5)0.064 (3)0.061 (3)0.014 (3)0.017 (3)0.023 (3)
O30.105 (5)0.130 (5)0.083 (5)0.070 (4)0.023 (4)0.001 (4)
O40.056 (3)0.060 (3)0.105 (5)0.020 (2)0.034 (3)0.007 (3)
O80.096 (4)0.050 (3)0.077 (4)0.011 (3)0.017 (3)0.025 (2)
O50.076 (3)0.029 (3)0.089 (4)0.003 (2)0.021 (3)0.024 (2)
O60.085 (4)0.079 (4)0.080 (4)0.017 (3)0.052 (3)0.002 (3)
O70.053 (3)0.093 (4)0.091 (4)0.016 (3)0.012 (3)0.010 (3)
C10.062 (5)0.049 (4)0.053 (4)0.002 (3)0.009 (4)0.016 (3)
C20.047 (4)0.072 (5)0.042 (4)0.006 (3)0.001 (3)0.017 (3)
C30.061 (5)0.054 (5)0.065 (6)0.026 (3)0.031 (4)0.017 (4)
C40.032 (4)0.053 (4)0.063 (5)0.003 (3)0.012 (3)0.001 (4)
C50.036 (3)0.032 (3)0.036 (3)0.001 (2)0.003 (2)0.008 (2)
C60.036 (3)0.041 (3)0.039 (3)0.007 (3)0.001 (3)0.002 (3)
C70.033 (4)0.054 (5)0.045 (4)0.002 (3)0.017 (3)0.003 (3)
C80.023 (3)0.048 (4)0.056 (4)0.005 (3)0.001 (3)0.003 (3)
N10.035 (3)0.031 (3)0.039 (3)0.007 (2)0.003 (2)0.000 (2)
N20.024 (3)0.037 (3)0.041 (3)0.007 (2)0.003 (2)0.004 (2)
N30.027 (2)0.033 (3)0.032 (3)0.003 (2)0.003 (2)0.001 (2)
N40.029 (3)0.024 (3)0.046 (3)0.002 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—N32.026 (5)C4—N21.469 (8)
Cu1—N12.030 (5)C4—H4A0.9700
Cu1—N42.037 (5)C4—H4B0.9700
Cu1—N22.040 (5)C4—H4C0.9700
Cl1—O21.390 (5)C5—N31.485 (7)
Cl1—O31.393 (6)C5—C61.504 (8)
Cl1—O11.401 (5)C5—H5A0.9800
Cl1—O41.453 (5)C5—H5B0.9800
Cl2—O81.405 (5)C6—N41.459 (8)
Cl2—O61.409 (5)C6—H6A0.9800
Cl2—O51.414 (4)C6—H6B0.9800
Cl2—O71.420 (5)C7—N31.471 (7)
C1—N11.496 (8)C7—H7A0.9700
C1—C21.498 (8)C7—H7B0.9700
C1—H1A0.9800C7—H7C0.9700
C1—H1B0.9800C8—N41.468 (7)
C2—N21.474 (7)C8—H8A0.9700
C2—H2A0.9800C8—H8B0.9700
C2—H2B0.9800C8—H8C0.9700
C3—N11.474 (8)N1—H10.82 (3)
C3—H3A0.9700N2—H20.83 (3)
C3—H3B0.9700N3—H30.82 (3)
C3—H3C0.9700N4—H40.82 (3)
N3—Cu1—N1176.6 (2)N3—C5—H5B110.1
N3—Cu1—N485.12 (19)C6—C5—H5B110.1
N1—Cu1—N495.33 (19)H5A—C5—H5B108.4
N3—Cu1—N294.16 (18)N4—C6—C5108.4 (5)
N1—Cu1—N285.2 (2)N4—C6—H6A110.0
N4—Cu1—N2177.3 (2)C5—C6—H6A110.0
O2—Cl1—O3110.5 (4)N4—C6—H6B110.0
O2—Cl1—O1111.0 (4)C5—C6—H6B110.0
O3—Cl1—O1111.5 (4)H6A—C6—H6B108.4
O2—Cl1—O4111.9 (3)N3—C7—H7A109.5
O3—Cl1—O4105.4 (4)N3—C7—H7B109.5
O1—Cl1—O4106.4 (3)H7A—C7—H7B109.5
O8—Cl2—O6110.3 (3)N3—C7—H7C109.5
O8—Cl2—O5109.5 (3)H7A—C7—H7C109.5
O6—Cl2—O5110.5 (3)H7B—C7—H7C109.5
O8—Cl2—O7108.7 (4)N4—C8—H8A109.5
O6—Cl2—O7110.2 (4)N4—C8—H8B109.5
O5—Cl2—O7107.5 (3)H8A—C8—H8B109.5
N1—C1—C2108.3 (5)N4—C8—H8C109.5
N1—C1—H1A110.0H8A—C8—H8C109.5
C2—C1—H1A110.0H8B—C8—H8C109.5
N1—C1—H1B110.0C3—N1—C1112.9 (6)
C2—C1—H1B110.0C3—N1—Cu1116.5 (4)
H1A—C1—H1B108.4C1—N1—Cu1106.4 (4)
N2—C2—C1108.8 (5)C3—N1—H1110 (4)
N2—C2—H2A109.9C1—N1—H1100 (4)
C1—C2—H2A109.9Cu1—N1—H1110 (4)
N2—C2—H2B109.9C4—N2—C2110.5 (5)
C1—C2—H2B109.9C4—N2—Cu1118.3 (4)
H2A—C2—H2B108.3C2—N2—Cu1107.9 (3)
N1—C3—H3A109.5C4—N2—H2106 (4)
N1—C3—H3B109.5C2—N2—H2104 (4)
H3A—C3—H3B109.5Cu1—N2—H2109 (4)
N1—C3—H3C109.5C7—N3—C5110.5 (5)
H3A—C3—H3C109.5C7—N3—Cu1115.0 (4)
H3B—C3—H3C109.5C5—N3—Cu1107.6 (3)
N2—C4—H4A109.5C7—N3—H3115 (4)
N2—C4—H4B109.5C5—N3—H3103 (4)
H4A—C4—H4B109.5Cu1—N3—H3105 (4)
N2—C4—H4C109.5C6—N4—C8110.8 (5)
H4A—C4—H4C109.5C6—N4—Cu1106.6 (3)
H4B—C4—H4C109.5C8—N4—Cu1120.2 (4)
N3—C5—C6108.2 (4)C6—N4—H4105 (4)
N3—C5—H5A110.1C8—N4—H4111 (4)
C6—C5—H5A110.1Cu1—N4—H4102 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (5)2.27 (5)3.068 (6)163 (5)
N2—H2···O3ii0.83 (5)2.33 (5)3.149 (9)167 (5)
N3—H3···O40.83 (4)2.49 (4)3.211 (7)147 (5)
N3—H3···O7iii0.83 (4)2.67 (5)3.136 (7)117 (4)
N4—H4···O8iv0.82 (5)2.68 (6)3.287 (7)132 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z.
(Ic) bis(N,N'-dimethylethylenediamine- κ2N,N')bis(perchlorato-κO)copper(II)] top
Crystal data top
[Cu(ClO4)2(C4H12N2)2]F(000) = 908
Mr = 438.75Dx = 1.582 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1270 reflections
a = 8.731 (3) Åθ = 2.7–26.4°
b = 13.824 (5) ŵ = 1.52 mm1
c = 15.314 (6) ÅT = 400 K
β = 94.866 (9)°Plate, violet
V = 1841.7 (12) Å30.32 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
3479 independent reflections
Radiation source: Incoatec microsource2156 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.088
ω scansθmax = 26.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.643, Tmax = 0.942k = 1717
9966 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.103P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3479 reflectionsΔρmax = 0.86 e Å3
210 parametersΔρmin = 0.37 e Å3
69 restraintsAbsolute structure: Flack (1983), with 1702 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
[Cu(ClO4)2(C4H12N2)2]V = 1841.7 (12) Å3
Mr = 438.75Z = 4
Monoclinic, CcMo Kα radiation
a = 8.731 (3) ŵ = 1.52 mm1
b = 13.824 (5) ÅT = 400 K
c = 15.314 (6) Å0.32 × 0.10 × 0.04 mm
β = 94.866 (9)°
Data collection top
Bruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
3479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2156 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.942Rint = 0.088
9966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.207Δρmax = 0.86 e Å3
S = 1.01Δρmin = 0.37 e Å3
3479 reflectionsAbsolute structure: Flack (1983), with 1702 Friedel pairs
210 parametersAbsolute structure parameter: 0.03 (4)
69 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.27856 (15)0.86485 (7)0.91397 (10)0.0537 (3)
Cl20.2710 (4)0.6054 (2)0.8137 (2)0.0847 (9)
Cl10.2880 (4)1.12682 (17)0.9907 (2)0.0804 (9)
O10.2748 (18)1.0309 (6)0.9767 (10)0.156 (5)
O20.169 (2)1.1507 (15)1.0420 (15)0.160 (11)*0.53 (2)
O30.281 (3)1.1825 (13)0.9207 (11)0.151 (9)*0.53 (2)
O40.420 (2)1.1425 (14)1.0435 (15)0.153 (11)*0.53 (2)
O2A0.300 (3)1.1788 (18)1.0646 (12)0.130 (10)*0.47 (2)
O3A0.170 (3)1.153 (2)0.9316 (15)0.140 (11)*0.47 (2)
O4A0.425 (2)1.1311 (19)0.9494 (16)0.142 (12)*0.47 (2)
O80.281 (2)0.5330 (9)0.8722 (10)0.185 (7)
O50.2761 (17)0.6960 (7)0.8475 (10)0.151 (5)
O60.392 (3)0.5926 (14)0.7598 (16)0.263 (13)
O70.129 (2)0.5913 (14)0.7690 (16)0.223 (9)
C10.248 (3)0.796 (3)1.0876 (14)0.116 (14)*0.33 (2)
H1A0.19860.75841.13060.139*0.33 (2)
H1B0.27730.85871.11240.139*0.33 (2)
C20.387 (3)0.743 (2)1.0557 (18)0.088 (12)*0.33 (2)
H2A0.35550.68571.02160.106*0.33 (2)
H2B0.45890.72321.10450.106*0.33 (2)
N10.1450 (12)0.8066 (7)1.0024 (7)0.076 (3)0.33 (2)
H10.10390.74890.98380.091*0.33 (2)
N20.4592 (13)0.8200 (8)0.9979 (6)0.084 (3)0.33 (2)
H20.52310.78720.96440.101*0.33 (2)
C30.017 (4)0.883 (2)1.021 (3)0.058 (9)*0.33 (2)
H3A0.01350.87321.07930.087*0.33 (2)
H3B0.07070.87390.97940.087*0.33 (2)
H3C0.05660.94691.01580.087*0.33 (2)
C40.559 (5)0.890 (3)1.050 (3)0.090 (15)*0.33 (2)
H4A0.52010.89891.10680.135*0.33 (2)
H4B0.55780.95141.02050.135*0.33 (2)
H4C0.66190.86611.05790.135*0.33 (2)
C1A0.250 (2)0.7376 (14)1.0584 (12)0.094 (7)*0.67 (2)
H1A10.27750.68181.02470.113*0.67 (2)
H1A20.20080.71571.10950.113*0.67 (2)
C2A0.391 (2)0.8010 (16)1.0848 (10)0.092 (6)*0.67 (2)
H2A10.36080.86101.11150.110*0.67 (2)
H2A20.46340.76721.12550.110*0.67 (2)
N1A0.1450 (12)0.8066 (7)1.0024 (7)0.076 (3)0.67 (2)
H1A30.07520.76850.97110.091*0.67 (2)
N2A0.4592 (13)0.8200 (8)0.9979 (6)0.084 (3)0.67 (2)
H2A30.49740.76380.97770.101*0.67 (2)
C3A0.052 (4)0.8726 (17)1.059 (2)0.104 (9)*0.67 (2)
H3A10.03300.83691.07870.157*0.67 (2)
H3A20.01290.92681.02420.157*0.67 (2)
H3A30.11620.89551.10810.157*0.67 (2)
C4A0.589 (3)0.8930 (14)1.0138 (17)0.078 (6)*0.67 (2)
H4A10.54690.95631.02100.117*0.67 (2)
H4A20.65040.89320.96460.117*0.67 (2)
H4A30.65240.87551.06570.117*0.67 (2)
C50.303 (2)0.9723 (11)0.7604 (9)0.104 (5)
H5A0.28631.03670.78290.125*
H5B0.35000.97930.70570.125*
C60.1591 (19)0.9267 (14)0.7433 (10)0.112 (5)
H6A0.17060.86740.71070.135*
H6B0.08870.96890.70880.135*
C70.515 (2)0.8524 (11)0.7847 (12)0.102 (6)
H7A0.46480.82440.73260.153*
H7B0.54410.80210.82610.153*
H7C0.60520.88670.77030.153*
C80.0309 (18)0.8395 (10)0.8104 (11)0.097 (5)
H8A0.11470.87350.77950.145*
H8B0.06280.81530.86480.145*
H8C0.00060.78640.77540.145*
N30.4095 (10)0.9199 (7)0.8234 (6)0.070 (2)
H30.46990.96590.85150.084*
N40.0988 (11)0.9052 (8)0.8281 (6)0.072 (2)
H40.06090.96150.84840.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0537 (6)0.0472 (5)0.0606 (6)0.0022 (6)0.0065 (4)0.0047 (6)
Cl20.093 (2)0.0521 (14)0.109 (2)0.0032 (14)0.0073 (19)0.0086 (15)
Cl10.108 (2)0.0455 (13)0.088 (2)0.0017 (15)0.0090 (17)0.0036 (14)
O10.198 (13)0.064 (6)0.207 (13)0.028 (8)0.030 (12)0.036 (7)
O80.281 (19)0.075 (7)0.204 (15)0.014 (9)0.052 (15)0.042 (7)
O50.165 (11)0.058 (5)0.233 (15)0.010 (6)0.037 (11)0.058 (7)
O60.35 (3)0.168 (14)0.30 (3)0.079 (17)0.23 (2)0.021 (16)
O70.182 (17)0.180 (15)0.29 (2)0.059 (13)0.057 (16)0.023 (16)
N10.076 (6)0.072 (6)0.081 (6)0.023 (5)0.009 (5)0.012 (5)
N20.093 (8)0.083 (7)0.076 (7)0.030 (6)0.006 (6)0.008 (6)
N1A0.076 (6)0.072 (6)0.081 (6)0.023 (5)0.009 (5)0.012 (5)
N2A0.093 (8)0.083 (7)0.076 (7)0.030 (6)0.006 (6)0.008 (6)
C50.136 (13)0.102 (10)0.073 (8)0.021 (9)0.005 (8)0.045 (7)
C60.108 (12)0.152 (15)0.077 (9)0.021 (11)0.006 (8)0.032 (10)
C70.105 (13)0.114 (12)0.095 (12)0.008 (9)0.045 (10)0.004 (8)
C80.070 (9)0.092 (9)0.122 (12)0.020 (8)0.032 (8)0.012 (8)
N30.071 (6)0.066 (5)0.074 (6)0.022 (5)0.012 (5)0.010 (5)
N40.073 (7)0.072 (6)0.070 (6)0.017 (5)0.000 (5)0.004 (5)
Geometric parameters (Å, º) top
Cu1—N32.020 (9)C4—H4B0.9600
Cu1—N12.028 (9)C4—H4C0.9600
Cu1—N42.038 (9)C1A—C2A1.54 (2)
Cu1—N22.045 (10)C1A—H1A10.9700
Cl2—O81.340 (13)C1A—H1A20.9700
Cl2—O51.354 (9)C2A—H2A10.9700
Cl2—O71.376 (18)C2A—H2A20.9700
Cl2—O61.407 (16)C3A—H3A10.9600
Cl1—O31.316 (14)C3A—H3A20.9600
Cl1—O2A1.337 (14)C3A—H3A30.9600
Cl1—O11.346 (8)C4A—H4A10.9600
Cl1—O3A1.360 (15)C4A—H4A20.9600
Cl1—O41.368 (14)C4A—H4A30.9600
Cl1—O21.396 (14)C5—C61.41 (2)
Cl1—O4A1.400 (15)C5—N31.474 (16)
C1—N11.53 (2)C5—H5A0.9700
C1—C21.54 (3)C5—H5B0.9700
C1—H1A0.9700C6—N41.472 (17)
C1—H1B0.9700C6—H6A0.9700
C2—N21.56 (2)C6—H6B0.9700
C2—H2A0.9700C7—N31.471 (18)
C2—H2B0.9700C7—H7A0.9600
N1—C31.58 (3)C7—H7B0.9600
N1—H10.9100C7—H7C0.9600
N2—C41.49 (2)C8—N41.459 (18)
N2—H20.9100C8—H8A0.9600
C3—H3A0.9600C8—H8B0.9600
C3—H3B0.9600C8—H8C0.9600
C3—H3C0.9600N3—H30.9100
C4—H4A0.9600N4—H40.9100
N3—Cu1—N1178.4 (4)C2—N2—Cu1103.8 (11)
N3—Cu1—N484.5 (4)C4—N2—H2105.9
N1—Cu1—N494.9 (4)C2—N2—H2105.9
N3—Cu1—N295.4 (4)Cu1—N2—H2105.9
N1—Cu1—N285.2 (4)C2A—C1A—H1A1111.2
N4—Cu1—N2178.1 (5)C2A—C1A—H1A2111.2
O8—Cl2—O5115.9 (10)H1A1—C1A—H1A2109.2
O8—Cl2—O7103.2 (13)C1A—C2A—H2A1111.1
O5—Cl2—O7108.7 (11)C1A—C2A—H2A2111.1
O8—Cl2—O6106.9 (12)H2A1—C2A—H2A2109.0
O5—Cl2—O6109.8 (12)H3A1—C3A—H3A2109.5
O7—Cl2—O6112.2 (17)H3A1—C3A—H3A3109.5
O3—Cl1—O2A111.7 (15)H3A2—C3A—H3A3109.5
O3—Cl1—O1116.6 (10)H4A1—C4A—H4A2109.5
O2A—Cl1—O1131.5 (14)H4A1—C4A—H4A3109.5
O3—Cl1—O3A47.1 (16)H4A2—C4A—H4A3109.5
O2A—Cl1—O3A114.8 (12)C6—C5—N3113.9 (11)
O1—Cl1—O3A96.1 (14)C6—C5—H5A108.8
O3—Cl1—O4111.7 (11)N3—C5—H5A108.8
O2A—Cl1—O454.2 (12)C6—C5—H5B108.8
O1—Cl1—O4107.8 (9)N3—C5—H5B108.8
O3A—Cl1—O4154.5 (14)H5A—C5—H5B107.7
O3—Cl1—O2109.4 (10)C5—C6—N4107.8 (12)
O2A—Cl1—O253.4 (13)C5—C6—H6A110.1
O1—Cl1—O2105.3 (9)N4—C6—H6A110.1
O3A—Cl1—O275.8 (15)C5—C6—H6B110.1
O4—Cl1—O2105.1 (10)N4—C6—H6B110.1
O3—Cl1—O4A66.0 (16)H6A—C6—H6B108.5
O2A—Cl1—O4A110.7 (11)N3—C7—H7A109.5
O1—Cl1—O4A92.0 (12)N3—C7—H7B109.5
O3A—Cl1—O4A108.3 (11)H7A—C7—H7B109.5
O4—Cl1—O4A63.4 (14)N3—C7—H7C109.5
O2—Cl1—O4A161.9 (13)H7A—C7—H7C109.5
N1—C1—C2101.5 (15)H7B—C7—H7C109.5
N1—C1—H1A111.5N4—C8—H8A109.5
C2—C1—H1A111.5N4—C8—H8B109.5
N1—C1—H1B111.5H8A—C8—H8B109.5
C2—C1—H1B111.5N4—C8—H8C109.5
H1A—C1—H1B109.3H8A—C8—H8C109.5
C1—C2—N2102.5 (15)H8B—C8—H8C109.5
C1—C2—H2A111.3C7—N3—C5115.6 (13)
N2—C2—H2A111.3C7—N3—Cu1116.6 (9)
C1—C2—H2B111.3C5—N3—Cu1105.7 (8)
N2—C2—H2B111.3C7—N3—H3106.0
H2A—C2—H2B109.2C5—N3—H3106.0
C1—N1—C3107 (2)Cu1—N3—H3106.0
C1—N1—Cu1106.1 (12)C8—N4—C6107.0 (12)
C3—N1—Cu1108.3 (15)C8—N4—Cu1119.5 (9)
C1—N1—H1111.9C6—N4—Cu1108.1 (8)
C3—N1—H1111.9C8—N4—H4107.2
Cu1—N1—H1111.9C6—N4—H4107.2
C4—N2—C2113 (2)Cu1—N4—H4107.2
C4—N2—Cu1122 (2)

Experimental details

(Ia)(Ib)(Ic)
Crystal data
Chemical formula[Cu(ClO4)2(C4H12N2)2][Cu(ClO4)2(C4H12N2)2][Cu(ClO4)2(C4H12N2)2]
Mr438.75438.75438.75
Crystal system, space groupMonoclinic, CcMonoclinic, CcMonoclinic, Cc
Temperature (K)100250400
a, b, c (Å)8.5395 (17), 13.543 (3), 14.743 (4)8.5966 (14), 13.655 (2), 14.966 (3)8.731 (3), 13.824 (5), 15.314 (6)
β (°) 95.358 (3) 95.533 (4) 94.866 (9)
V3)1697.6 (6)1748.5 (5)1841.7 (12)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.651.601.52
Crystal size (mm)0.19 × 0.11 × 0.030.19 × 0.11 × 0.030.32 × 0.10 × 0.04
Data collection
DiffractometerBruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
Bruker D8 goniometer with a SMART APEX CCD area detector
diffractometer
Bruker D8 goniometer with a SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.745, 0.9520.751, 0.9540.643, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
9912, 3488, 3137 10331, 3607, 2853 9966, 3479, 2156
Rint0.0550.0640.088
(sin θ/λ)max1)0.6270.6280.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.075, 0.99 0.047, 0.103, 0.99 0.075, 0.207, 1.01
No. of reflections348836073479
No. of parameters224224210
No. of restraints8869
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.380.42, 0.290.86, 0.37
Absolute structureFlack (1983), with 1739 Friedel pairsFlack (1983), with 1793 Friedel pairsFlack (1983), with 1702 Friedel pairs
Absolute structure parameter0.004 (14)0.011 (19)0.03 (4)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (3)2.23 (3)3.041 (5)167 (4)
N2—H2···O3ii0.81 (3)2.34 (4)3.133 (5)168 (4)
N3—H3···O40.81 (3)2.49 (3)3.138 (5)139 (3)
N3—H3···O7iii0.81 (3)2.56 (3)3.071 (5)123 (4)
N4—H4···O8iv0.82 (3)2.53 (4)3.200 (5)139 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (5)2.27 (5)3.068 (6)163 (5)
N2—H2···O3ii0.83 (5)2.33 (5)3.149 (9)167 (5)
N3—H3···O40.83 (4)2.49 (4)3.211 (7)147 (5)
N3—H3···O7iii0.83 (4)2.67 (5)3.136 (7)117 (4)
N4—H4···O8iv0.82 (5)2.68 (6)3.287 (7)132 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z.
Selected geometric parameters (Å, °) top
(Ia)(Ib)(Ic)
Cu1—N12.026 (3)2.031 (4)2.027 (11)
Cu1—N22.026 (4)2.041 (5)2.045 (11)
Cu1—N32.035 (3)2.027 (5)2.020 (9)
Cu1—N42.051 (4)2.038 (5)2.038 (10)
Cu1—O12.470 (3)2.514 (5)2.490 (10)
Cu1—O52.496 (3)2.513 (5)2.546 (11)
(Ia)(Ib)(Ic)
N1—Cu1—N285.66 (14)85.21 (18)85.2 (4)
N2—Cu1—N393.85 (13)94.19 (18)95.4 (4)
N1—Cu1—N3174.88 (15)176.57 (19)178.4 (4)
N2—Cu1—N4177.28 (16)177.3 (2)178.1 (4)
N1—Cu1—N495.09 (15)95.34 (19)94.9 (4)
O1—Cu1—O5173.07 (10)173.27 (18)178.6 (5)
Comparison of perchlorate coordination (Å, °) top
ComplexCl1···Cl2Cu1—O1—Cl1Cu1—O5—Cl2
(Ia)7.459 (2)129.63 (18)172.3 (2)
(Ib)7.553 (2)135.6 (4)176.0 (3)
(Ic)7.698 (5)164.9 (10)178.2 (9)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds