Download citation
Download citation
link to html
The title compounds, 2-carbamoylguanidinium hydrogen fluoro­phospho­nate, C2H7N4O+·HFO3P-, (I), 2-carbamoyl­guan­i­dinium-hydrogen fluoro­phospho­nate-hydrogen phosphite (1/0.76/0.24), C2H7N4O+·0.76HFO3P-·0.24H2O3P-, (II), and 2-carbamoylguanidinium-hydrogen fluoro­phospho­nate-hydrogen phosphite (1/0.115/0.885), C2H7N4O+·0.115HFO3P-·0.885H2O3P-, (III), are isostructural with guanylurea hy­drogen phosphite, C2H7N4O+·H2O3P- [Fridrichová, Nemec, Císarová & Nemec (2010). CrystEngComm, 12, 2054-2056]. They constitute structures where the hydrogen phosphite anion has been fully or partially replaced by hydrogen fluoro­phospho­nate. The title structures are the fourth example of isostructural compounds which differ by the presence of hydrogen fluoro­phospho­nate and hydrogen phosphite or fluoro­phospho­nate and phosphite anions. Moreover, the present study reports structures with these mixed anions for the first time. In the reported mixed salts, the P and O atoms of either anion overlap almost exactly, as can be judged by comparison of their equivalent isotropic displacement parameters, while the P-F and P-H directions are almost parallel. There are strong O-H...O hydrogen bonds between the anions, as well as strong N-H...O hydrogen bonds between the 2-carbamoylguanidinium cations in the title structures. Altogether they form a three-dimensional hydrogen-bond pattern. Inter­estingly, rare N-H...F inter­actions are also present in the title structures. Another exceptional feature concerns the P-O(H) distances, which are about as long as the P-F distance. The dependence of P-F distances on the longest P-O distances in FO3P2- or HFO3P- is presented. The greater content of hydrogen phosphite in the mixed crystals causes a larger deformation of the cations from planarity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111054114/sk3422sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054114/sk3422Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054114/sk3422IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054114/sk3422IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111054114/sk3422IVsup5.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S0108270111054114/sk3422Isup6.cdx
Supplementary material

cdx

Chemdraw file https://doi.org/10.1107/S0108270111054114/sk3422IIsup7.cdx
Supplementary material

cdx

Chemdraw file https://doi.org/10.1107/S0108270111054114/sk3422IIIsup8.cdx
Supplementary material

CCDC references: 867023; 867024; 867025; 867026

Comment top

Recently, an interesting structure of guanylurea hydrogen phosphite has been synthesized [C2H7N4O+.H2O3P- (GUHP); Fridrichová, Němec, Císařová & Němec, 2010]. [The structure is stored under the refcode CUYZEC in the Cambridge Structural Database (CSD; Version 5.32, April 2011 update; Allen, 2002).] The compound is a promising phase-matchable material for the second harmonic generation of light. It has an excellent resistance against optical damage and high nonlinear optical coefficients (Fridrichová, Němec, Císařová & Chvostová, 2010). The latter property enabled observations of spontaneous noncollinear second harmonic generation (Kroupa & Fridrichová, 2011) due to scattering on crystal inhomogeneities which are presumably related to the presence of inversion twins in the structure of GUHP (Fridrichová, Němec, Císařová & Němec, 2010; Flack, 1983).

Since the constitution of the hydrogen phosphite anion is similar to that of the hydrogen fluorophosphonate, it has been suggested that an analogous structure could be prepared by substitution of the hydrogen phosphite anion by the hydrogen fluorophosphonate. The suggestion for the preparation of 2-carbamoylguanidinium hydrogen fluorophosphonate is even more intriguing because of the differences in the electronegativities between F and H atoms (Gilli & Gilli, 2009) which would affect the polar properties of the constituent molecules with an effect on their optical properties.

There are only three other examples of isostructurality between the structures containing (hydrogen) fluorophosphonate and the (hydrogen) phosphite molecules. Two of them refer to those with organic cations: the pair of ethylenediammonium fluorophosphonate (CSD refocufe JEHFUY01; Fábry, Dušek, Krupková et al., 2006) and ethylenediammonium hydridotrioxophosphate (KEWZAN; Honle et al., 1990), and the pair of anilinium hydrogen monofluorophosphate (YUYKUY; Khaoulani Idrissi et al., 1995) and anilinium hydrogen phosphite (WOCSAI; Paixão et al., 2000). Among inorganic compounds the only known isostructural structures are Zn2(H2O)4(PO3F)2.H2O (Durand et al., 1983) and Zn2(H2O)4(HPO3)2.H2O (Ortiz-Avila et al., 1989). Both structures were found in the Inorganic Crystal Structure Database (2011) with the collection codes 35644 and 65825, respectively. Indeed, it turned out that the structure of 2-carbamoylguanidinium hydrogen fluorophosphonate, (I) (Fig. 1), is isostructural with 2-carbamoylguanidinium hydrogen phosphite.

The following experiments in the preparation of mixed crystals containing both hydrogen fluorophosphonate and hydrogen phosphite yielded crystals with the composition C2H7N4O+.xHFO3P-.1-xH2O3P, where x refined to x = 0.76 (2), (II) (Fig. 2), and x = 0.115 (7), (III) (Fig. 3). {We will also mention (IV), with a composition similar to (III), i.e. with x = 0.184 (7), though the aim was to prepare a structure with x = 0.5. The indicators of the refinement are comparable to the other title structures. The R factor on the observed diffractions only [I > 3σ(I)] resulted in 0.0225 for (IV).}

The hydrogen-bond patterns are similar in all the title structures and correspond quite well to that found in the pure GUHP (Fridrichová, Němec, Císařová & Němec, 2010). In all these structures, quite a strong O—H···O hydrogen bond (Desiraju & Steiner, 1999) interconnects the anion molecules into chains which propagate along the [110] and [110] directions (Fig. 4). The increasing proportion of hydrogen fluorophosphonate results in a shortening of O1—H1···O2i [symmetry code: (i) x - 1/2, y - 1/2, z] hydrogen bonds, with O1···O2i distances of 2.554 (5), 2.5776 (19), 2.560 (5) and 2.590 (2) Å for (I), (II), (III) and GUHP, respectively. [Compound (IV) is rather in accordance with this tendency, the O1···O2 distance being 2.579 (2) Å.] All remaining anion atoms are acceptors of another two N—H···O hydrogen bonds stemming from the amine groups.

In the title structures, all the amine H atoms are involved in hydrogen bonds. N—H···O hydrogen bonds interconnect the 2-carbamoylguanidinium cations into ribbons parallel to (011) and (011) (Fig. 5).

The title structures are rather exceptional because the F atoms are involved in interactions that can be even considered as weak bent hydrogen bonds as in the case of (I) (Table 1, Fig. 6). Usually fluorine avoids involvement in hydrogen bonds in the fluorophosphonates (Krupková et al., 2002; see also Dunitz & Taylor, 1997).

Figs. 7–9 show the difference electron-density maps passing through the atoms P1, O2 and F1 in (I), (II) and (III), respectively. (In the case of the mixed crystals these maps were calculated from the refined structural model from which the hydrido hydrogen had been excluded.) In difference [contrast] to (I) there is a build-up of the electron density between the P—F bond in (II) and (III). This build-up of the electron density can be attributed to the contribution of the hydride H atoms.

These features are related to the following peculiarities. In (I), the P1—F1 [1.564 (3) Å] length is about the same as the longest P1—O1 distance of the hydrogenated oxygen [1.560 (4) Å]; in other known structures the P—F distances are regularly longer than the respective longest P—O distances (Table 2 and Fig. 8). Fig. 8 also shows that the P—F distance is sensitive to the O—H distance in the hydroxyl regarding the hydrogen fluorophosphonate, i.e. to the degree of hydrogenation of such an oxygen.

In the structures (II) and (III), the bond lengths P1—F1 have been biased by the presence of the hydrido hydrogen (see Figs. 2 and 3) and therefore the P—F lengths were restrained to the refined value in (I), i.e. to 1.560 (1) Å.

The bond P1—Hp1 seems to be oriented almost in the same direction as that of P1—F1. Table 3 reports the components of the displacement parameters as well as the equivalent isotropic displacement parameters for (I), (II), (III), (IV) and GUHP. [The structure (IV) has a similar composition as (III).] It can be clearly seen that the values of the equivalent isotropic displacement parameters of the corresponding atoms are quite similar except for F1 of (III). No splitting of the electron density of the atoms given in Table 3 was observed, in particular no splitting of the electron density took place in the region of F1 and Hp1 in (III) and (IV) which have a similar composition. It should be added that the ratios of the components of the anisotropic displacement parameters in (III) (Table 3) are similar to those in (IV). Therefore it seems that there is some quirk in (III) regarding the F1 atom. From the similar values of the equivalent isotropic displacement parameters in the series of structures in Table 3 it can be inferred that the P1 and the anionic O atoms are situated practically at the same positions in the mixed crystals. It is interesting that the proportions of the values of the components U22 and U33 of P1, O1, O2 and F1 seem to be interchanged for (I) and GUHP and that the displacement parameters of the anion in the mixed crystals (II), (III) and (IV) are rather similar to those in GUHP. On the other hand, the displacement parameters of the cations' non-H atoms are even more similar (Table 3).

As to the cation, the disorder would presumably also affect the planarity in the title compounds. The χ2 index regarding the plane fitted through all the non-hydrogen cation's atoms tends to decrease from the hydrogen phosphite-rich end towards the hydrogen fluorophosphonate-rich end of the series: 6515.041 (GUHP), 8048.089 (III), 6270.070 (IV), 1403.672 (II), 1139.577 (I). Also this trend, together with the data in Table 3, show that the disorder minutely affects the positions in the mixed crystals of the title structures, otherwise one would rather expect an increase of these values in the mixed crystals together with an increase of the Ueq of the cations' atoms.

The Flack parameter resulted in an unusual value 0.36 (9) in the recalculated refinement of GUHP (Flack, 1983) that confirmed the result by Fridrichová, Němec, Císařová & Němec (2010). [This significant inversion twinning was found in more samples and is related to spontanenous noncollinear second harmonic generation in GUHP; Kroupa & Fridrichová (2011).] In the title structures, it resulted in 0.11 (5), 1.02 (5), 0.037 (2) and 0.91 (2) for (I), (II), (III) and (IV), respectively. This means that only in (I), i.e. in the pure fluorophosphonate, is the Flack parameter somewhat larger. [For the sake of easy comparison of the positional parameters in all the title structures, we have reported the non-inverted structures for (II) and (IV), i.e. those with the Flack parameter 1.]

Measurements of the second harmonic generation of light for the title structures are planned. Preliminary measurements have shown that GUHP is more efficient in the second harmonic generation of light than the nonhygroscopic mixed title structures, i.e. the structures with a preponderance of hydrogen phosphite. Since the structures are quite similar it is reasonable to seek the reason in the dipole moments of the anions. The calculation by the program GAUSSIAN 09 W (Frisch et al., 2009) by the method B3LYP/6–311 G(d,p) with optimization of the geometry of either anion situated in vacuum yielded µ = 3.0454 and 3.1437 D for hydrogen phosphite and hydrogen fluorophosphonate anions, respectively. The orientation of the dipole moments is about the same in both structures.

Related literature top

For related literature, see: Allen (2002); Desiraju & Steiner (1999); Dunitz & Taylor (1997); Durand et al. (1983); Fábry, Dušek, Krupková et al. (2006); Flack (1983); Fridrichová, Němec, Císařová & Němec (2010); Fridrichová, Němec, Císařová & Chvostová (2010); Frisch et al. (2009); Gilli & Gilli (2009); Honle et al. (1990); Khaoulani Idrissi et al. (1995); Inorganic Crystal Structure Database (2011); Kroupa & Fridrichová (2011); Krupková et al. (2002); Ostrogovich (1911); Paixão et al. (2000); Schülke & Kayser (1991); Scoponi et al. (1991).

Experimental top

The title structures were prepared by neutralization of stoichiometric amounts of solutions of 2-carbamoylguanidinium hydroxide and H2PO3F or the corresponding mixtures of these solutions with the prepared 2-carbamoylguanidinium hydrogen phosphite.

2-Carbamoylguanidinium hydroxide was prepared from guanylurea hydrochloride hemihydrate by the exchange reaction on anex. 2-Carbamoylguanidinium chloride hemihydrate was first described at the beginning of the 20th century (Ostrogovich, 1911) and characterized by Scoponi et al. (1991). For the preparation of the title structures it was prepared by acid hydrolysis of cyanoguanidine according to Scheme 2. A diluted water solution (100 ml of water to every 0.1 mol of cyanoguanidine) of equimolar ratios of cyanoguanidine (99%, Sigma–Aldrich) and hydrochloric acid (p.a., Lachema) was gradually heated. After about 45 min, when the reaction mixture started boiling, the colourless mixture suddenly became greyish and cloudy for a while and then an exothermal process occurred, accompanied by very intense boiling of the reaction mixture. At this moment, the heating was immediately interrupted and the reaction mixture was placed on a cold magnetic stirrer while it was still boiling due to the exothermal reaction and the mixture was stirred for another 15 min.

The liquid, which in the meantime had turned coulourless again, was heated at the boiling point for 2 h, then the excessive water was evaporated under vacuum and a white crystalline product was filtered off. It was purified by recrystallization from water and characterized by powder XRD and found to be identical to the structure JODZOR (Scoponi et al., 1991). The IR spectrum was recorded, too, in order to exclude the possibility of contamination of the product by cyanoguanidine. The IR spectrum was in accordance with that reported by Scoponi et al. (1991), whereas the intense doublet of the CN- group typical for cyanoguanidine was absent.

The solution of H2PO3F was prepared from the solution of (NH4)2PO3F.H2O that passed through the column of catex. (NH4)2PO3F.H2O was prepared by the method described by Schülke & Kayser (1991) and the raw material of (NH4)2PO3F.H2O prepared by this method was recrystallized in order to get rid of contamination of (NH4)H2PO4. The volume of the eluted solution of H2PO3F was about 50 ml in all cases. The solutions were put into the evacuated desiccator over P4O10. The crystals appeared in about 7–10 d. The crystals of (I) and (II) deteriorated quickly on [exposure to] air, possibly because of the mother liquor that was on the surface of the crystals while (III) with the composition rich in hydrogen phosphite was stable in air. The crystals (I) and (II) were put into the special glass capillaries.

For (I), 1.18 g (NH4)2PO3F.H2O and 0.936 g of 2-carbamoylguanidinium hydroxide were used. For (II), 1.18 g of (NH4)2PO3F.H2O and 0.936 g of 2-carbamoylguanidinium hydroxide were used, with 0.98 g of guanylurea hydrogen phosphite (GUHP). The composition of the initial solution corresponded to the molar ratio of (I) and GUHP equalled to 1.465:1 while the refined value in the obtained crystal resulted in 3.16:1. For (III), 0.59 g (NH4)2PO3F.H2O and 0.468 g of 2-carbamoylguanidinium hydroxide were used, with 2.152 g of guanylurea hydrogen phosphite (GUHP). The composition of the initial solution corresponded to a 1:3 molar ratio of (I) and GUHP, while the refined value in the obtained crystal was 1:7.69.

Refinement top

All H atoms were discernible in difference electron-density maps of (I). In (I), (II) and (III), the isotropic amine H-atom displacement parameters have been constrained to 1.2Ueq of the respective carrier N atoms, while the Uiso(H) value for the hydrogen fluorophosphonate H atom was 1.5Ueq of the carrier O atom. The positional parameters were restrained [O1—H1 = 0.820 (1) Å]; the N—H distance restraints of the primary and the secondary amines were 0.860 (1) and 0.890 (1) Å. The H1n1—N1—H2n1, H1n3—N3—H2n3 and H1n4—N4—H2n4 angles were constrained to 120.00 (1)°. (This is substantiated by the the primary amine C—N distances in the title structures. They are pertinent to fairly planar primary amine groups as was found by inspection of the CSD). 607, 602 and 566 Friedel pairs have been used in the refinements of (I), (II) and (III), respectively. The x and z fractional coordinates of P1 have been fixed during the refinement of all the title structures. From the similarity of the lattice parameters to (I) as well as those of GUHP it could be inferred isostructurality of the mixed crystals (II) and (III). Therefore the model of (I), adapted for the simultaneous presence of the hydrogen fluorophosphonate and the hydrogen phosphite has been used for the refinement of (II) and (III) as well as (IV). The occupational parameters of the hydrido hydrogen Hp1 and F1 have been constrained so their sum equalled to 1. The P1—F1 distances have been restrained to 1.564 (1) Å as it resulted in (I). The necessity for this restraint was called for by the electron densities around F1 and the hydrido hydrogen that has been smeared (Figs. 7b and 7c, cf. Fig. 7a). From 48 hits regarding the hydrogen phosphite anion that had been found in the CSD, the mean P—H value was restrained to 1.295 (1) Å. This value corresponds excellently to the refined value of P—H distance in GUHP (Fridrichová, Němec, Císařová & Němec, 2010) where it resulted at 1.30 (2) Å by recalculation by the present authors under similar conditions as in (I). The isotropic displacement parameter Uiso(Hp1) = 1.2Ueq(P1).

In the case of (II), this feature of the electron density caused that the refinement of F and the hydride hydrogen correlated and in order to overcome this obstacle the hydrido hydrogen was assumed to be situated exactly at the connection line P1—F. The distance P1—Hp1 was set equal to 0.828 times the P1—F distance, while P1—F was restrained to 1.564 (1) Å in accordance with the distance observed in (I) (cf. Fig. 6).

Moreover, in the case of (II), the diffractions for which |Io - Ic| >10σ(I) have been omitted. It resulted in the omission of the following diffractions: 42,13, 60,12, 51,11, 42,11, 20,10, 40,10, 42,10, 519, 008, 208, 408, 318, 467, 377, 006, 466, 465, 375, 004, 464, 374, 373, 002, 221, 514, 606, 626 and 608.

The structure of (IV) has been refined under the same conditions as that of (III) using 628 Friedel pairs in the refinement.

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010). Program(s) used to solve structure: SIR97 (Altomare et al., 1997) for (I), (II), (III); 'SIR97 (Altomare et al., 1997)' for (IV). Program(s) used to refine structure: JANA2006 (Petříček et al., 2006) for (I), (II), (III); JANA2006 (Petříček et. al., 2006) for (IV). Molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010) for (I), (II); PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010). for (III); PLATON (Spek, 2002) and DIAMOND (Brandenburg, 2010) for (IV). Software used to prepare material for publication: JANA2006 (Petříček et al., 2006) for (I), (II), (III); JANA2006 (Petříček et. al., 2006) for (IV).

Figures top
[Figure 1] Fig. 1. View of (I), with displacement ellipsoids depicted at the 50% probability level.
[Figure 2] Fig. 2. View of (II), with displacement ellipsoids depicted at the 50% probability level.
[Figure 3] Fig. 3. View of (III), with displacement ellipsoids depicted at the 50% probability level.
[Figure 4] Fig. 4. View of the unit cell of (I) along the c axis. The strong O—H···O hydrogen bonds are in the [110] and [110] directions. [Symmetry code: (i) x - 1/2, y + 1/2, z.]
[Figure 5] Fig. 5. View of the unit cell of (I) along the b axis, showing the hydrogen-bond pattern. Note the ribbons parallel to (011) and (011).
[Figure 6] Fig. 6. Section of (I) along the b axis, showing the hydrogen-bond pattern, including a weak hydrogen-bond interaction with the F atom.
[Figure 7] Fig. 7. The difference electron-density map passing through the O2 (blue in the electronic version of the paper), P1 (khaki) and F1 (green) atoms in (I), (II) and (III). The contours are in intervals of 0.05 e Å-3. The negative electron density is shown by dashed contours. The map was drawn using JANA2006 (Petříček et al., 2006). (a) For (I), the maximal electron densities in the vicinities of P1 and F1 are about 0.222 and 0.095 e Å-3. The minimal electron densities between P1—F1 and outside F1 are -0.150 and -0.108 e Å-3, respectively. (b) For (II), the maximal electron density is 0.387 e Å-3 in the region between P1 and F1. (c) For (III), the maximal electron density is 0.216 e Å-3 in the region between P1 and F1.
[Figure 8] Fig. 8. Plot of P—F versus the longest P—O bond lengths in the molecules of hydrogen fluorophosphonate and fluorophosphonate. The data correspond to those in Table 2. The plot was constructed by Origin (OriginLab, 2000). Note the position of the structures with an H atom situated at about the centre of the hydrogen bond, i.e. away from the donating O atom (these structures are denoted by a triangle). (I) is loacted at the extreme position.
(I) 2-carbamoylguanidinium hydrogen fluorophosphonate top
Crystal data top
C2H7N4O+·HFO3PF(000) = 416
Mr = 202.09Dx = 1.785 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.5418 Å
Hall symbol: C -2ycCell parameters from 3878 reflections
a = 6.6567 (3) Åθ = 2.7–66.5°
b = 6.9950 (3) ŵ = 3.44 mm1
c = 16.2875 (7) ÅT = 120 K
β = 97.467 (4)°Plate, colourless
V = 751.97 (6) Å30.38 × 0.13 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1268 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1222 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.080
Detector resolution: 10.3784 pixels mm-1θmax = 66.5°, θmin = 5.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.605, Tmax = 0.852l = 1919
4342 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 2.31Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
1268 reflections(Δ/σ)max = 0.017
132 parametersΔρmax = 0.68 e Å3
11 restraintsΔρmin = 0.54 e Å3
10 constraintsAbsolute structure: Flack (1983), 607 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (5)
Crystal data top
C2H7N4O+·HFO3PV = 751.97 (6) Å3
Mr = 202.09Z = 4
Monoclinic, CcCu Kα radiation
a = 6.6567 (3) ŵ = 3.44 mm1
b = 6.9950 (3) ÅT = 120 K
c = 16.2875 (7) Å0.38 × 0.13 × 0.05 mm
β = 97.467 (4)°
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1268 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1222 reflections with I > 3σ(I)
Tmin = 0.605, Tmax = 0.852Rint = 0.080
4342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117Δρmax = 0.68 e Å3
S = 2.31Δρmin = 0.54 e Å3
1268 reflectionsAbsolute structure: Flack (1983), 607 Friedel pairs
132 parametersAbsolute structure parameter: 0.11 (5)
11 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.407260.81204 (14)0.238780.0176 (3)
O10.3097 (6)0.9584 (5)0.1731 (2)0.0252 (11)
H10.239 (9)1.034 (8)0.195 (4)0.0377*
O20.6028 (6)0.7439 (5)0.2124 (2)0.0239 (11)
O30.4031 (6)0.8764 (5)0.3244 (2)0.0229 (11)
F10.2514 (5)0.6443 (4)0.22428 (19)0.0294 (10)
C10.4378 (8)0.4473 (7)0.4229 (3)0.0199 (15)
N10.4602 (8)0.3629 (6)0.3518 (3)0.0246 (14)
H1n10.569 (4)0.353 (9)0.329 (3)0.0295*
H2n10.346 (3)0.328 (9)0.325 (3)0.0295*
O40.5808 (7)0.5051 (6)0.4720 (3)0.0306 (13)
N20.2373 (7)0.4703 (6)0.4377 (3)0.0198 (12)
H1n20.136 (6)0.447 (9)0.398 (3)0.0237*
C20.1815 (8)0.5271 (7)0.5105 (3)0.0188 (15)
N30.3108 (7)0.5818 (6)0.5729 (3)0.0231 (13)
H1n30.4382 (17)0.588 (9)0.569 (3)0.0277*
H2n30.268 (6)0.601 (9)0.6199 (15)0.0277*
N40.0151 (7)0.5283 (6)0.5162 (3)0.0242 (14)
H1n40.045 (7)0.555 (9)0.5647 (14)0.029*
H2n40.107 (5)0.485 (9)0.479 (2)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0193 (7)0.0127 (5)0.0210 (5)0.0009 (5)0.0033 (4)0.0003 (5)
O10.034 (2)0.0177 (16)0.0242 (17)0.0116 (15)0.0067 (15)0.0006 (13)
O20.024 (2)0.0149 (15)0.0345 (19)0.0050 (14)0.0079 (15)0.0020 (14)
O30.016 (2)0.0240 (18)0.0290 (18)0.0031 (14)0.0042 (15)0.0021 (14)
F10.032 (2)0.0214 (14)0.0343 (16)0.0090 (13)0.0042 (14)0.0054 (12)
C10.012 (3)0.022 (2)0.025 (2)0.002 (2)0.001 (2)0.0058 (18)
N10.022 (3)0.026 (2)0.027 (2)0.003 (2)0.0066 (19)0.0010 (18)
O40.022 (2)0.042 (2)0.027 (2)0.0036 (18)0.0021 (16)0.0073 (17)
N20.014 (2)0.022 (2)0.021 (2)0.0012 (17)0.0049 (16)0.0017 (15)
C20.016 (3)0.014 (2)0.026 (2)0.0015 (19)0.000 (2)0.0057 (19)
N30.020 (2)0.028 (2)0.0206 (19)0.0015 (19)0.0016 (17)0.0011 (18)
N40.020 (3)0.030 (2)0.023 (2)0.0031 (18)0.0031 (18)0.0023 (17)
Geometric parameters (Å, º) top
P1—O11.560 (4)N1—H2n10.86 (3)
P1—O21.501 (4)N2—H1n20.89 (4)
P1—O31.469 (4)N2—C21.348 (7)
P1—F11.564 (3)C2—N31.301 (7)
O1—H10.82 (6)C2—N41.325 (7)
C1—N11.326 (7)N3—H1n30.860 (16)
C1—O41.230 (6)N3—H2n30.86 (3)
C1—N21.396 (7)N4—H1n40.86 (3)
N1—H1n10.86 (3)N4—H2n40.86 (4)
O1—P1—O2108.1 (2)C1—N2—H1n2120 (3)
O1—P1—O3113.1 (2)C1—N2—C2124.4 (4)
O1—P1—F1100.36 (18)H1n2—N2—C2115 (3)
O2—P1—O3119.6 (2)N2—C2—N3123.0 (5)
O2—P1—F1107.56 (19)N2—C2—N4116.9 (4)
O3—P1—F1106.23 (19)N3—C2—N4120.2 (5)
P1—O1—H1110 (4)C2—N3—H1n3121 (3)
N1—C1—O4123.3 (5)C2—N3—H2n3119 (3)
N1—C1—N2114.9 (4)H1n3—N3—H2n3120 (4)
O4—C1—N2121.8 (5)C2—N4—H1n4115 (3)
C1—N1—H1n1128 (3)C2—N4—H2n4124 (3)
C1—N1—H2n1112 (3)H1n4—N4—H2n4120 (4)
H1n1—N1—H2n1120 (4)
N1—C1—N2—C2170.1 (5)C1—N2—C2—N4175.2 (5)
C1—N2—C2—N35.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (6)1.77 (6)2.554 (5)160 (6)
N1—H1N1···O3ii0.86 (3)2.24 (3)3.040 (7)155 (4)
N1—H2N1···O2iii0.86 (3)2.36 (4)3.179 (6)160 (4)
N2—H1N2···O3iii0.89 (4)1.90 (5)2.778 (6)172 (6)
N3—H1N3···O40.86 (2)2.03 (4)2.643 (7)128 (4)
N3—H2N3···F1iv0.86 (3)2.43 (5)2.998 (6)124 (5)
N3—H2N3···O2v0.86 (3)2.26 (4)3.063 (6)156 (5)
N4—H1N4···O1v0.86 (4)2.12 (3)2.945 (6)160 (5)
N4—H2N4···O4vi0.86 (4)2.07 (3)2.698 (7)129 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x1, y, z.
(II) 2-carbamoylguanidinium–hydrogen fluorophosphonate–hydrogen phosphite (1/0.76/0.24) top
Crystal data top
C2H7N4O+·0.76HFO3P·0.24H2O3PF(000) = 408
Mr = 197.8Dx = 1.756 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.5418 Å
Hall symbol: C -2ycCell parameters from 3462 reflections
a = 6.6648 (2) Åθ = 2.7–66.2°
b = 6.9435 (2) ŵ = 3.40 mm1
c = 16.2924 (4) ÅT = 120 K
β = 97.185 (3)°Prism, colourless
V = 748.04 (4) Å30.41 × 0.28 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1257 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1237 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.070
Detector resolution: 10.3784 pixels mm-1θmax = 66.3°, θmin = 5.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.362, Tmax = 0.484l = 1919
3985 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/(σ2(I) + 0.0004I2)
S = 2.96(Δ/σ)max = 0.009
1257 reflectionsΔρmax = 0.49 e Å3
134 parametersΔρmin = 0.28 e Å3
13 restraintsExtinction correction: B–C type 1 Lorentzian isotropic [Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147]
14 constraintsExtinction coefficient: 750 (150)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 602 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 1.02 (5)
Crystal data top
C2H7N4O+·0.76HFO3P·0.24H2O3PV = 748.04 (4) Å3
Mr = 197.8Z = 4
Monoclinic, CcCu Kα radiation
a = 6.6648 (2) ŵ = 3.40 mm1
b = 6.9435 (2) ÅT = 120 K
c = 16.2924 (4) Å0.41 × 0.28 × 0.21 mm
β = 97.185 (3)°
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1257 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1237 reflections with I > 3σ(I)
Tmin = 0.362, Tmax = 0.484Rint = 0.070
3985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.49 e Å3
S = 2.96Δρmin = 0.28 e Å3
1257 reflectionsAbsolute structure: Flack (1983), 602 Friedel pairs
134 parametersAbsolute structure parameter: 1.02 (5)
13 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.407260.80976 (13)0.238780.0178 (3)
O10.3085 (6)0.9569 (6)0.1732 (2)0.0291 (11)
H10.245 (9)1.050 (7)0.187 (4)0.0437*
O20.6029 (6)0.7457 (5)0.2134 (2)0.0237 (10)
O30.4010 (5)0.8765 (5)0.32503 (19)0.0215 (10)
F10.2490 (5)0.6433 (4)0.2244 (2)0.0294 (14)0.760 (16)
C10.4342 (7)0.4490 (6)0.4224 (3)0.0191 (13)
N10.4581 (6)0.3639 (6)0.3511 (2)0.0218 (12)
H1n10.577 (2)0.345 (8)0.338 (3)0.0261*
H2n10.354 (4)0.320 (8)0.320 (3)0.0261*
O40.5752 (6)0.5058 (5)0.4714 (2)0.0266 (11)
N20.2330 (6)0.4682 (5)0.4370 (2)0.0192 (11)
H1n20.126 (5)0.433 (8)0.402 (3)0.023*
C20.1731 (7)0.5245 (6)0.5101 (3)0.0183 (14)
N30.3058 (7)0.5796 (6)0.5732 (3)0.0230 (12)
H1n30.4321 (19)0.576 (8)0.567 (3)0.0276*
H2n30.267 (6)0.636 (8)0.616 (2)0.0276*
N40.0204 (6)0.5277 (6)0.5156 (3)0.0220 (12)
H1n40.066 (6)0.549 (8)0.5619 (13)0.0264*
H2n40.103 (5)0.506 (8)0.4718 (15)0.0264*
Hp10.2762 (4)0.6719 (4)0.22686 (19)0.0214*0.240 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0186 (6)0.0196 (5)0.0154 (5)0.0012 (5)0.0027 (4)0.0019 (5)
O10.035 (2)0.0338 (19)0.0201 (16)0.0168 (15)0.0090 (14)0.0011 (14)
O20.028 (2)0.0203 (15)0.0229 (15)0.0044 (14)0.0047 (13)0.0025 (14)
O30.0182 (17)0.0288 (17)0.0174 (15)0.0023 (13)0.0023 (12)0.0049 (13)
F10.034 (3)0.025 (2)0.029 (2)0.0051 (16)0.0035 (17)0.0042 (15)
C10.022 (3)0.016 (2)0.020 (2)0.0017 (18)0.0029 (19)0.0039 (16)
N10.018 (2)0.027 (2)0.022 (2)0.0044 (18)0.0068 (16)0.0039 (16)
O40.0170 (18)0.041 (2)0.0220 (17)0.0035 (15)0.0035 (14)0.0048 (15)
N20.019 (2)0.0202 (19)0.0173 (17)0.0001 (15)0.0024 (15)0.0011 (14)
C20.022 (3)0.014 (2)0.018 (2)0.0006 (18)0.0008 (18)0.0043 (17)
N30.024 (2)0.029 (2)0.0151 (16)0.0008 (17)0.0005 (15)0.0022 (17)
N40.016 (2)0.031 (2)0.0197 (18)0.0011 (17)0.0036 (15)0.0004 (16)
Geometric parameters (Å, º) top
P1—O11.562 (4)H1n1—H2n11.52 (4)
P1—O21.485 (4)N2—H1n20.89 (4)
P1—O31.486 (3)N2—C21.356 (6)
P1—F11.563 (3)C2—N31.328 (6)
P1—Hp11.294 (3)C2—N41.303 (7)
O1—H10.82 (6)N3—H1n30.86 (2)
C1—N11.330 (6)N3—H2n30.86 (5)
C1—O41.220 (6)H1n3—H2n31.49 (7)
C1—N21.399 (7)N4—H1n40.86 (4)
N1—H1n10.86 (3)N4—H2n40.86 (4)
N1—H2n10.86 (4)H1n4—H2n41.49 (4)
O1—P1—O2108.38 (19)H1n1—N1—H2n1124 (5)
O1—P1—O3112.51 (19)C1—N2—H1n2124 (3)
O1—P1—F199.37 (18)C1—N2—C2124.8 (4)
O1—P1—Hp199.37 (18)H1n2—N2—C2111 (3)
O2—P1—O3119.07 (18)N2—C2—N3121.5 (5)
O2—P1—F1109.71 (18)N2—C2—N4117.9 (4)
O2—P1—Hp1109.71 (18)N3—C2—N4120.6 (4)
O3—P1—F1105.95 (19)C2—N3—H1n3119 (4)
O3—P1—Hp1105.95 (19)C2—N3—H2n3121 (4)
P1—O1—H1121 (5)H1n3—N3—H2n3120 (5)
N1—C1—O4123.3 (5)C2—N4—H1n4121 (2)
N1—C1—N2114.5 (4)C2—N4—H2n4119 (2)
O4—C1—N2122.2 (4)H1n4—N4—H2n4120 (3)
C1—N1—H1n1119 (4)P1—Hp1—F1180.0 (5)
C1—N1—H2n1117 (3)
N1—C1—N2—C2170.0 (4)C1—N2—C2—N4177.1 (4)
C1—N2—C2—N34.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (5)1.74 (5)2.560 (5)178 (8)
N1—H1N1···O3ii0.86 (2)2.21 (2)3.036 (5)163 (4)
N1—H2N1···O2iii0.86 (4)2.31 (4)3.160 (5)167 (4)
N2—H1N2···O3iii0.89 (4)1.87 (4)2.760 (5)176 (7)
N3—H1N3···O40.86 (2)1.99 (4)2.642 (6)132 (4)
N3—H2N3···F1iv0.86 (4)2.64 (5)2.973 (6)104 (3)
N3—H2N3···O2v0.87 (4)2.20 (4)3.048 (6)167 (4)
N4—H1N4···O1v0.86 (3)2.09 (3)2.939 (6)169 (5)
N4—H2N4···O4vi0.86 (3)2.14 (3)2.706 (6)123 (3)
N4—H2N4···O3iii0.86 (3)2.56 (3)3.257 (6)139 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x1, y, z.
(III) 2-carbamoylguanidinium–hydrogen fluorophosphonate–hydrogen phosphite (1/0.115/0.885) top
Crystal data top
C2H7N4O+·0.115HFO3P·0.885H2O3PF(000) = 388
Mr = 186.2Dx = 1.687 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.5418 Å
Hall symbol: C -2ycCell parameters from 3612 reflections
a = 6.67841 (16) Åθ = 5.5–66.9°
b = 6.78864 (13) ŵ = 3.29 mm1
c = 16.2696 (4) ÅT = 120 K
β = 96.588 (2)°Prism, colourless
V = 732.75 (3) Å30.41 × 0.24 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1216 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1200 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 66.9°, θmin = 5.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.452, Tmax = 0.604l = 1819
4272 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.27(Δ/σ)max = 0.007
1216 reflectionsΔρmax = 0.10 e Å3
137 parametersΔρmin = 0.13 e Å3
13 restraintsExtinction correction: B–C type 1 Lorentzian isotropic [Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147]
11 constraintsExtinction coefficient: 1700 (80)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 566 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.037 (19)
Crystal data top
C2H7N4O+·0.115HFO3P·0.885H2O3PV = 732.75 (3) Å3
Mr = 186.2Z = 4
Monoclinic, CcCu Kα radiation
a = 6.67841 (16) ŵ = 3.29 mm1
b = 6.78864 (13) ÅT = 120 K
c = 16.2696 (4) Å0.41 × 0.24 × 0.15 mm
β = 96.588 (2)°
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1216 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1200 reflections with I > 3σ(I)
Tmin = 0.452, Tmax = 0.604Rint = 0.024
4272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047Δρmax = 0.10 e Å3
S = 1.27Δρmin = 0.13 e Å3
1216 reflectionsAbsolute structure: Flack (1983), 566 Friedel pairs
137 parametersAbsolute structure parameter: 0.037 (19)
13 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.407260.79757 (6)0.238780.01538 (13)
O10.3023 (2)0.9455 (2)0.17260 (9)0.0281 (5)
H10.238 (4)1.038 (3)0.1886 (18)0.0422*
O20.6135 (2)0.7538 (2)0.21495 (8)0.0206 (4)
O30.3928 (2)0.86866 (19)0.32474 (8)0.0182 (4)
F10.232 (4)0.646 (4)0.218 (2)0.068 (12)0.115 (7)
C10.4258 (3)0.4456 (3)0.42177 (11)0.0157 (5)
N10.4526 (3)0.3626 (2)0.34970 (10)0.0191 (5)
H1n10.5757 (8)0.350 (3)0.3399 (11)0.0229*
H2n10.3563 (17)0.323 (3)0.3138 (9)0.0229*
O40.5641 (2)0.5054 (2)0.47172 (9)0.0220 (4)
N20.2242 (3)0.4610 (2)0.43653 (10)0.0162 (5)
H1n20.125 (2)0.421 (3)0.3992 (10)0.0195*
C20.1622 (3)0.5202 (3)0.50916 (11)0.0153 (6)
N30.2899 (3)0.5731 (2)0.57284 (10)0.0188 (5)
H1n30.4163 (7)0.568 (3)0.5672 (11)0.0226*
H2n30.251 (2)0.625 (3)0.6165 (8)0.0226*
N40.0339 (3)0.5214 (2)0.51339 (11)0.0196 (5)
H1n40.076 (2)0.548 (3)0.5601 (6)0.0235*
H2n40.1184 (19)0.490 (3)0.4715 (7)0.0235*
Hp10.283 (9)0.652 (7)0.225 (4)0.0185*0.885 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0150 (2)0.0185 (2)0.0129 (2)0.00211 (19)0.00253 (16)0.00059 (17)
O10.0329 (9)0.0343 (8)0.0179 (7)0.0198 (6)0.0062 (6)0.0037 (6)
O20.0202 (8)0.0228 (6)0.0196 (7)0.0056 (6)0.0060 (6)0.0021 (6)
O30.0163 (7)0.0242 (6)0.0144 (6)0.0017 (5)0.0027 (5)0.0036 (5)
F10.11 (3)0.052 (10)0.045 (12)0.018 (14)0.023 (16)0.030 (8)
C10.0136 (10)0.0162 (8)0.0179 (9)0.0013 (7)0.0035 (8)0.0029 (7)
N10.0146 (9)0.0245 (8)0.0184 (8)0.0015 (7)0.0034 (7)0.0026 (6)
O40.0130 (7)0.0314 (7)0.0219 (7)0.0013 (6)0.0028 (6)0.0051 (6)
N20.0137 (9)0.0206 (7)0.0142 (8)0.0010 (6)0.0006 (6)0.0024 (6)
C20.0169 (11)0.0138 (9)0.0157 (9)0.0015 (7)0.0043 (8)0.0033 (7)
N30.0149 (8)0.0271 (8)0.0146 (7)0.0000 (6)0.0024 (6)0.0024 (6)
N40.0143 (9)0.0279 (8)0.0171 (8)0.0011 (6)0.0038 (6)0.0006 (6)
Geometric parameters (Å, º) top
P1—O11.5766 (14)H1n1—H2n11.490 (13)
P1—O21.5029 (14)N2—H1n20.890 (15)
P1—O31.4930 (14)N2—C21.357 (2)
P1—F11.56 (3)C2—N31.314 (2)
P1—Hp11.29 (5)C2—N41.320 (3)
O1—H10.82 (2)N3—H1n30.860 (6)
C1—N11.331 (2)N3—H2n30.860 (16)
C1—O41.227 (2)H1n3—H2n31.49 (2)
C1—N21.398 (3)N4—H1n40.860 (12)
N1—H1n10.860 (8)N4—H2n40.860 (12)
N1—H2n10.860 (13)H1n4—H2n41.490 (16)
O1—P1—O2107.37 (8)C1—N1—H2n1124.3 (10)
O1—P1—O3111.25 (8)H1n1—N1—H2n1120.0 (15)
O1—P1—F190.7 (11)C1—N2—H1n2121.1 (11)
O1—P1—Hp198 (3)C1—N2—C2124.58 (16)
O2—P1—O3117.72 (7)H1n2—N2—C2114.1 (11)
O2—P1—F1120.0 (11)N2—C2—N3122.14 (18)
O2—P1—Hp1113 (3)N2—C2—N4116.81 (16)
O3—P1—F1106.5 (13)N3—C2—N4121.04 (18)
O3—P1—Hp1107 (3)C2—N3—H1n3117.4 (12)
F1—P1—Hp19 (3)C2—N3—H2n3122.1 (10)
P1—O1—H1118.6 (19)H1n3—N3—H2n3120.0 (16)
N1—C1—O4123.79 (19)C2—N4—H1n4118.5 (10)
N1—C1—N2114.35 (16)C2—N4—H2n4121.4 (9)
O4—C1—N2121.87 (17)H1n4—N4—H2n4120.0 (13)
C1—N1—H1n1115.7 (12)P1—Hp1—F1136 (11)
N1—C1—N2—C2172.43 (16)C1—N2—C2—N4178.20 (16)
C1—N2—C2—N31.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (2)1.76 (2)2.5776 (19)173 (3)
N1—H1N1···O3ii0.86 (1)2.16 (1)3.014 (2)170 (2)
N1—H2N1···O2iii0.86 (1)2.20 (1)3.056 (2)174 (2)
N2—H1N2···O3iii0.89 (2)1.89 (2)2.771 (2)172 (2)
N3—H1N3···O40.86 (1)1.98 (2)2.639 (2)133 (2)
N3—H2N3···F1iv0.86 (2)2.49 (4)2.86 (3)107 (2)
N3—H2N3···O2v0.86 (2)2.10 (1)2.956 (2)172 (1)
N4—H1N4···O1v0.86 (1)2.09 (1)2.934 (2)169 (2)
N4—H2N4···O4vi0.86 (1)2.12 (1)2.695 (2)123 (1)
N4—H2N4···O3iii0.86 (1)2.54 (1)3.223 (2)138 (1)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x1, y, z.
(IV) 2-carbamoylguanidinium–hydrogen fluorophosphonate–hydrogen phosphite (1/0.184/0.816) top
Crystal data top
C2H7N4O+·0.184HFO3P·0.816H2O3PF(000) = 390
Mr = 187.40Dx = 1.693 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.5418 Å
Hall symbol: C -2ycCell parameters from 4274 reflections
a = 6.67722 (16) Åθ = 5.5–67.0°
b = 6.8083 (2) ŵ = 3.3 mm1
c = 16.2809 (4) ÅT = 120 K
β = 96.644 (2)°Plate, colourless
V = 735.17 (4) Å30.31 × 0.26 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1291 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1282 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.3784 pixels mm-1θmax = 66.9°, θmin = 5.5°
ω scansh = 77
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 87
Tmin = 0.420, Tmax = 0.654l = 1919
4989 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.056Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.79(Δ/σ)max = 0.028
1291 reflectionsΔρmax = 0.28 e Å3
137 parametersΔρmin = 0.20 e Å3
13 restraintsExtinction correction: B–C type 1 Lorentzian isotropic [Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147]
11 constraintsExtinction coefficient: 950 (90)
Primary atom site location: structure-invariant direct methodsAbsolute structure: 638 of Friedel pairs used in the refinement
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.91 (2)
Crystal data top
C2H7N4O+·0.184HFO3P·0.816H2O3PV = 735.17 (4) Å3
Mr = 187.40Z = 4
Monoclinic, CcCu Kα radiation
a = 6.67722 (16) ŵ = 3.3 mm1
b = 6.8083 (2) ÅT = 120 K
c = 16.2809 (4) Å0.31 × 0.26 × 0.13 mm
β = 96.644 (2)°
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
1291 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1282 reflections with I > 3σ(I)
Tmin = 0.420, Tmax = 0.654Rint = 0.032
4989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.056Δρmax = 0.28 e Å3
S = 1.79Δρmin = 0.20 e Å3
1291 reflectionsAbsolute structure: 638 of Friedel pairs used in the refinement
137 parametersAbsolute structure parameter: 0.91 (2)
13 restraints
Special details top

Refinement. The x and z fractional coordinates of P1 have been fixed during the refinement in order to fix the origin. From the similarity of the lattice parameters to 2-carbamoylguanidinium hydrogen fluorophosphonate (Fα'bry et al., 2012), (I), and 2-carbamoylguanidinium hydrogen phosphite (Fridrichová et al., 2010), GUHP, isostructurality of the mixed crystal (IV) with these strucutres could be inferred. Therefore an adapted model of (I) with simultaneous presence of the hydrogen fluorophosphonate and hydrogen phosphite has been used for the refinement. The occupational parameters of hydrido hydrogen Hp1 and F1 have been constrained so their sum equalled to 1. From 48 hits regarding the hydrogen phosphorite anion that had been found in the Cambridge Structural Database (Allen et al., 2002), the mean P1-Hp1 value was restrained as 1.295Å. (This value corresponds excellently to the refined value of P-H distance in GUHP, C2H7N4O)+ (H2O3P)- (Fridrichová et al., 2010) where resulted in 1.30 (2) Å by recalculation by the present authors under similar conditions as in (I).

The distance P1-F1 has been restrained to 1.564 (1) Å in accordance with the distance observed in (I).

The following restraints and constraints common to the refinement of (I) have been applied: O1-H1 = 0.820 (1) Å; the N-H distances of the primary and the secondary amines have been reastrained as 0.860 (1) and 0.890 (1) Å. The angles H1n1-N1-H2n1, H1n3-N3-H2n3 and H1n4-N4-H2n4 have been restrained to 120.00 (1) °. The isotropic primary and secondary amine hydrogens' displacement parameters have been constrained to 1.2 multiple of Ueq of the respective carrier nitrogens while the Uiso hydrogen of the hydrogen fluorophosphonate equalled to 1.5 multiple of Ueq of the pertinent carrier oxygen.

638 Friedel pairs have been used in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.407260.79967 (7)0.238780.01617 (14)
O10.3036 (3)0.9473 (3)0.17271 (9)0.0306 (5)
H10.243 (4)1.044 (3)0.187 (2)0.0459*
O20.6121 (2)0.7535 (2)0.21476 (9)0.0214 (4)
O30.3939 (2)0.8702 (2)0.32483 (9)0.0189 (4)
F10.238 (2)0.642 (2)0.2198 (11)0.039 (4)0.184 (7)
C10.4262 (3)0.4471 (3)0.42179 (12)0.0160 (6)
N10.4533 (3)0.3633 (3)0.34978 (10)0.0194 (5)
H1n10.5772 (8)0.350 (4)0.3412 (12)0.0233*
H2n10.3584 (18)0.323 (4)0.3135 (10)0.0233*
O40.5650 (2)0.5061 (2)0.47164 (9)0.0226 (5)
N20.2250 (3)0.4622 (3)0.43659 (10)0.0169 (5)
H1n20.125 (2)0.423 (3)0.3993 (11)0.0202*
C20.1640 (3)0.5214 (3)0.50922 (12)0.0152 (6)
N30.2922 (3)0.5743 (3)0.57281 (11)0.0195 (5)
H1n30.4183 (7)0.570 (4)0.5667 (12)0.0234*
H2n30.254 (3)0.626 (4)0.6165 (9)0.0234*
N40.0326 (3)0.5224 (3)0.51360 (11)0.0201 (5)
H1n40.072 (2)0.548 (4)0.5610 (6)0.0241*
H2n40.1196 (19)0.493 (4)0.4723 (7)0.0241*
Hp10.278 (9)0.659 (8)0.223 (5)0.0194*0.816 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0146 (2)0.0210 (3)0.0131 (2)0.0020 (2)0.00239 (15)0.0011 (2)
O10.0362 (9)0.0379 (10)0.0185 (7)0.0233 (7)0.0072 (6)0.0041 (7)
O20.0197 (8)0.0245 (7)0.0205 (7)0.0056 (6)0.0050 (6)0.0026 (6)
O30.0158 (7)0.0269 (8)0.0142 (6)0.0005 (6)0.0022 (5)0.0043 (5)
F10.052 (9)0.033 (6)0.033 (5)0.009 (4)0.013 (5)0.017 (4)
C10.0127 (9)0.0162 (10)0.0194 (9)0.0015 (8)0.0032 (7)0.0025 (8)
N10.0150 (9)0.0256 (9)0.0179 (9)0.0018 (7)0.0029 (6)0.0025 (7)
O40.0131 (7)0.0334 (9)0.0214 (8)0.0012 (6)0.0027 (6)0.0054 (6)
N20.0145 (8)0.0205 (9)0.0152 (8)0.0006 (6)0.0000 (6)0.0017 (6)
C20.0155 (10)0.0134 (10)0.0172 (10)0.0011 (7)0.0047 (8)0.0025 (8)
N30.0148 (8)0.0296 (10)0.0143 (7)0.0007 (7)0.0023 (6)0.0021 (7)
N40.0152 (9)0.0269 (10)0.0184 (8)0.0005 (7)0.0027 (6)0.0001 (7)
Geometric parameters (Å, º) top
P1—O11.5728 (16)N1—H2n10.860 (15)
P1—O21.4989 (15)N2—H1n20.890 (16)
P1—O31.4933 (14)N2—C21.356 (3)
P1—F11.562 (14)C2—N31.315 (2)
P1—Hp11.29 (6)C2—N41.323 (3)
O1—H10.82 (3)N3—H1n30.860 (7)
C1—N11.335 (3)N3—H2n30.860 (18)
C1—O41.227 (2)N4—H1n40.860 (12)
C1—N21.395 (3)N4—H2n40.860 (13)
N1—H1n10.860 (8)H1n4—H2n41.490 (17)
O1—P1—O2107.35 (9)C1—N1—H2n1125.2 (11)
O1—P1—O3111.52 (9)H1n1—N1—H2n1120.0 (17)
O1—P1—F193.1 (6)C1—N2—H1n2121.3 (12)
O1—P1—Hp196 (3)C1—N2—C2124.40 (16)
O2—P1—O3117.88 (8)H1n2—N2—C2114.1 (12)
O2—P1—F1117.6 (6)N2—C2—N3122.29 (19)
O2—P1—Hp1114 (3)N2—C2—N4116.68 (17)
O3—P1—F1106.7 (6)N3—C2—N4121.03 (19)
O3—P1—Hp1108 (3)C2—N3—H1n3117.1 (13)
P1—O1—H1120 (2)C2—N3—H2n3122.4 (11)
N1—C1—O4123.48 (19)H1n3—N3—H2n3120.0 (18)
N1—C1—N2114.48 (16)C2—N4—H1n4117.1 (10)
O4—C1—N2122.04 (18)C2—N4—H2n4122.8 (9)
C1—N1—H1n1114.8 (13)H1n4—N4—H2n4120.0 (14)
N1—C1—N2—C2172.18 (19)C1—N2—C2—N4178.25 (18)
C1—N2—C2—N31.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (6)1.76 (2)2.579 (2)178 (3)
N1—H1N1···O3ii0.86 (1)2.17 (1)3.016 (2)170 (2)
N1—H2N1···O2iii0.86 (2)2.21 (1)3.069 (2)174 (2)
N2—H1N2···O3iii0.89 (2)1.88 (2)2.768 (2)172 (2)
N3—H1N3···O40.86 (1)1.97 (2)2.635 (2)133 (2)
N3—H2N3···F1iv0.86 (2)2.49 (3)2.867 (17)107 (2)
N3—H2N3···O2v0.86 (2)2.12 (2)2.967 (2)171 (2)
N4—H1N4···O1v0.86 (1)2.09 (1)2.933 (3)168 (2)
N4—H2N4···O4vi0.86 (1)2.11 (1)2.697 (2)125 (1)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y+1, z+1/2; (v) x1/2, y+3/2, z+1/2; (vi) x1, y, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC2H7N4O+·HFO3PC2H7N4O+·0.76HFO3P·0.24H2O3PC2H7N4O+·0.115HFO3P·0.885H2O3PC2H7N4O+·0.184HFO3P·0.816H2O3P
Mr202.09197.8186.2187.40
Crystal system, space groupMonoclinic, CcMonoclinic, CcMonoclinic, CcMonoclinic, Cc
Temperature (K)120120120120
a, b, c (Å)6.6567 (3), 6.9950 (3), 16.2875 (7)6.6648 (2), 6.9435 (2), 16.2924 (4)6.67841 (16), 6.78864 (13), 16.2696 (4)6.67722 (16), 6.8083 (2), 16.2809 (4)
β (°) 97.467 (4) 97.185 (3) 96.588 (2) 96.644 (2)
V3)751.97 (6)748.04 (4)732.75 (3)735.17 (4)
Z4444
Radiation typeCu KαCu KαCu KαCu Kα
µ (mm1)3.443.403.293.3
Crystal size (mm)0.38 × 0.13 × 0.050.41 × 0.28 × 0.210.41 × 0.24 × 0.150.31 × 0.26 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini ultra
diffractometer
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.605, 0.8520.362, 0.4840.452, 0.6040.420, 0.654
No. of measured, independent and
observed [I > 3σ(I)] reflections
4342, 1268, 1222 3985, 1257, 1237 4272, 1216, 1200 4989, 1291, 1282
Rint0.0800.0700.0240.032
(sin θ/λ)max1)0.5950.5940.5960.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 2.31 0.050, 0.114, 2.96 0.019, 0.047, 1.27 0.023, 0.056, 1.79
No. of reflections1268125712161291
No. of parameters132134137137
No. of restraints11131313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.68, 0.540.49, 0.280.10, 0.130.28, 0.20
Absolute structureFlack (1983), 607 Friedel pairsFlack (1983), 602 Friedel pairsFlack (1983), 566 Friedel pairs638 of Friedel pairs used in the refinement
Absolute structure parameter0.11 (5)1.02 (5)0.037 (19)0.91 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), 'SIR97 (Altomare et al., 1997)', JANA2006 (Petříček et al., 2006), JANA2006 (Petříček et. al., 2006), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2010)., PLATON (Spek, 2002) and DIAMOND (Brandenburg, 2010).

Selected torsion angles (º) for (II) top
N1—C1—N2—C2170.0 (4)C1—N2—C2—N4177.1 (4)
C1—N2—C2—N34.8 (7)
Table 1. Comparison of the hydrogen-bond patterns (Å, °) in (I), (II), (III) and in the recalculated GUHP (Fridrichová, Němec, Císařová &amp; Němec, 2010) in order from the top to the bottom line. There are also given interactions N3—H2N3···Hp1 and N3—H2N3···F in (II) and (III). top
D—HH—AD···AD—H···A
O1—H1···O2i
(I)0.82 (6)1.77 (6)2.554 (5)160 (6)
(II)0.82 (5)1.74 (5)2.560 (5)178 (8)
(III)0.82 (2)1.76 (2)2.5776 (19)173 (3)
GUHP0.82 (3)1.79 (3)2.590 (2)164 (3)
N1—H1N1···O3ii
(I)0.86 (3)2.24 (3)3.040 (7)155 (4)
(II)0.856 (19)2.207 (16)3.036 (5)163 (4)
(III)0.860 (7)2.164 (6)3.014 (2)170.0 (18)
GUHP0.860 (7)2.181 (7)3.037 (2)174 (2)
N1—H2N1···O2iii
(I)0.86 (3)2.36 (4)3.179 (6)160 (4)
(II)0.86 (4)2.31 (4)3.160 (5)167 (4)
(III)0.861 (14)2.200 (14)3.056 (2)173.5 (17)
GUHP0.860 (15)2.221 (15)3.079 (2)177 (2)
N2—H1N2···O3iii
(I)0.89 (4)1.90 (5)2.778 (6)172 (6)
(II)0.89 (4)1.87 (4)2.760 (5)176 (7)
(III)0.888 (15)1.889 (15)2.771 (2)171.5 (17)
GUHP0.889 (15)1.898 (15)2.780 (2)171.9 (16)
N3—H1N3···O4
(I)0.860 (15)2.03 (4)2.643 (7)128 (4)
(II)0.861 (15)1.99 (4)2.642 (6)132 (4)
(III)0.860 (6)1.980 (15)2.639 (2)132.5 (15)
GUHP0.859 (6)1.995 (16)2.641 (3)131.2 (16)
N3—H2N3···F1iv
(I)0.86 (3)2.43 (5)2.998 (6)124 (5)
(II) [check?]0.860 (17)2.64 (5)3.34 (5)104 (3)
(III)0.860 (16)2.49 (4)2.86 (3)106.8 (18)
N3—H2N3···Hp1
(III)0.86 (2)2.59 (3)2.95 (3)106.5 (19)
N3—H2N3···O2v
(I)0.86 (3)2.26 (4)3.063 (6)156 (5)
(II)0.87 (4)2.20 (4)3.048 (6)167 (4)
(III)0.859 (15)2.103 (14)2.956 (2)171.8 (13)
GUHP0.858 (17)2.088 (18)2.941 (3)172.3 (17)
N4—H1N4···O1v
(I)0.86 (3)2.12 (4)2.945 (6)160 (5)
(II)0.86 (3)2.09 (3)2.939 (6)169 (5)
(III)0.859 (11)2.087 (11)2.934 (2)168.6 (19)
GUHP0.861 (13)2.098 (13)2.954 (3)173 (3)
N4—H2N4···O4vi
(I)0.86 (4)2.07 (3)2.698 (7)129 (3)
(II)0.86 (3)2.14 (3)2.706 (6)123 (3)
(III)0.860 (13)2.123 (13)2.695 (2)123.4 (11)
GUHP0.859 (14)2.172 (14)2.709 (2)120.3 (12)
N4—H2N4···O3iii
(II)0.86 (3)2.56 (3)3.257 (6)139 (3)
(III)0.860 (13)2.535 (13)3.223 (2)137.7 (11)
GUHP0.859 (14)2.509 (14)3.214 (3)140.0 (12)
Symmetry codes: (i) x-1/2, y+1/2, z; (ii) x+1/2, y-1/2, z; (iii) x-1/2, y-1/2, z; (iv) x, -y+1, z+1/2; (v) x-1/2, -y+3/2, z+1/2; (vi) x-1, y, z.
Table 2. Bond lengths (Å) of the P—F and the longest P—O bonds in fluorophosphonates and hydrogen fluorophosphonates top
CompoundP—OP—F
CaPO3F.2H2Oa1.515 (1)1.583 (1)
[Co(H2O)3](PO3F)b1.519 (2)1.567 (2)
[Cu(H2O)2](PO3F)c1.530 (7)1.570 (6)
CsHPO3Fd1.528 (2)1.578 (2)
Cs2PO3Fe (240 K)1.506 (4)1.608 (5)
Cs3(NH4)2(HPO3F)3(PO3F)d1.544 (6)1.580 (5)
1.545 (6)1.572 (5)
1.559 (6)1.575 (6)
1.551 (5)1.577 (5)
1.537 (8)1.559 (7)
1.547 (7)1.568 (5)
1.502 (4)1.573 (6)
(H3NC2H6NH3)(H3PO4)(HPO3F)f1.519 (1)1.559 (1)
KHPO3Fg1.555 (4)1.565 (3)
1.567 (4)1.584 (3)
1.557 (3)1.574 (3)
1.545 (4)1.567 (3)
K2PO3Fh1.486 (6)1.609 (6)
K3H(PO3F)2g1.543 (4)1.594 (5)
K3NaPO3Fi1.495 (1)1.630 (1)
LiKPO3F.H2Oj1.527 (7)1.594 (5)
LiNH4PO3Fk1.513 (4)1.592 (3)
β-Na2PO3Fl1.507 (9)1.619 (8)
1.499 (9)1.594 (8)
Na(HPO3F).2.5H2Om1.563 (2)1.565 (1)
Na2PO3F.10H2Om1.539 (1)1.608 (1)
(NH4)0.926K2.074H(PO3F)2n1.536 (1)1.595 (1)
(NH4)2PO3F.H2Oa1.509 (1)1.586 (1)
(NH4)2[Cu(H2O)2](PO3F)2o1.505 (4)1.577 (4)
(NH4)2PO3Fp1.512 (1)1.588 (1)
α-NH4HPO3Fq1.545 (2)1.558 (2)
1.550 (2)1.566 (2)
β-NH4HPO3Fq1.547 (1)1.563 (1)
1.545 (1)1.568 (1)
α-RbHPO3Fg1.556 (5)1.570 (4)
1.556 (5)1.586 (5)
Rb2PO3Fe (290 K)1.502 (3)1.610 (3)
SnPO3Fr1.51 (7)1.58 (3)
XESVEWs1.551 (2)1.650 (4)
XOMPAQt1.550 (1)1.564 (1)
XOMPEUt1.545 (1)1.566 (1)
XOMPIYt1.534 (2)1.566 (2)
XOMPOEt1.531 (3)1.544 (3)
XOMPUKt1.542 (2)1.554 (2)
XOMQARt1.509 (4)1.573 (3)
1.506 (4)1.567 (5)
YUYKUYu1.549 (3)1.554 (4)
YEHFUY01v1.519 (2)1.594 (2)
(I)w1.560 (4)1.564 (3)
(C2H7N4O1)3(HFO3P)(FO3P)H2Ox1.548 (2)1.5603 (14)
1.5118 (18)1.5735 (18)
(NH4)2(Ni(H2O)6(PO3F)2y1.510 (1)1.598 (1)
(HOC(NH(CH3))2)(HPO3F)z1.542 (2)1.553 (2)
Na5(N(CH3)4)(PO3F)3(H2O)18z1.518 (2)1.599 (2)
1.512 (2)1.579 (2)
1.518 (2)1.579 (2)
(C(NH2)3)2(PO3F)z1.505 (4)1.575 (4)
1.505 (4)1.567 (5)
(NH4)Na(PO3F)(H2O)aa1.509 (2)1.598 (2)
NH4Ag3(PO3F)2'ab1.523 (5)1.588 (5)
1.522 (5)1.592 (5)
1.515 (7)1.596 (5)
(C2H7N4O1)2(FO3P)2H2Oac1.5112 (17)1.5931 (15)
1.532 (6)1.584 (4)
Notes: (a) Perloff (1972); (b) Durand et al. (1987); (c) Zeibig et al. (1991); (d) Prescott et al. (2000); (e) Fábry, Dušek, Fejfarová et al. (2006) (f) Fábry et al. (2005); (g) Prescott et al. (2003); (h) Payen et al. (1979); (i) Durand et al. (1975); (j) Galigné et al. (1974); (k) Durand et al. (1978); (l) Durand et al. (1974); (m) Prescott et al. (1999); (n) Fábry et al. (2003); (o) Berraho et al. (1992); (p) Krupková et al. (2002); (q) Prescott et al. (2002a); (r) Berndt (1974); (s) Samuel et al. (2001); (t) Prescott et al. (2002b); (u) Khaoulani Idrissi et al. (1995); (v) Fábry, Dušek, Krupková et al. (2006); (w) this work (I); (x) Fábry et al. (2012a); (y) Berraho et al. (1992); (z) Prescott (2001); (aa) Fábry et al. (2007); (ab) Weil (2007); (ac) Fábry et al. (2012b).
Table 3. The components [U11, U22, U33, U12, U13 and U232)] of the anisotropic displacement parameters as well as the equivalent isotropic displacement parameters Ueq2) of the non-H atoms in (I), (II), (III), (IV) and GUHP which correspond to the 1st, 2nd–5th lines within each block corresponding to the pertinent atoms. All the experiments but GUHP were carried out at 120 K while the experiment for GUHP was carried out at 150 K. The presented values have been recalculated under the similar conditions on the original data. top
AtomU11U22U33U12U13U23Ueq
P10.0193 (7)0.0127 (5)0.0210 (5)0.0009 (5)0.0033 (4)-0.0003 (5)0.0176 (3)
P10.0186 (6)0.0196 (5)0.0154 (5)0.0012 (5)0.0027 (4)-0.0019 (5)0.0178 (3)
P10.0150 (2)0.0185 (2)0.0129 (2)0.0021 (2)0.00253 (16)-0.00059 (17)0.0153 (1)
P10.0146 (2)0.0210 (3)0.0131 (2)0.0020 (2)0.00239 (15)-0.0011 (2)0.0162 (1)
P10.0276 (2)0.0326 (2)0.0253 (2)0.00468 (18)0.00466 (16)-0.0016 (2)0.0284 (1)
O10.034 (2)0.0177 (16)0.0242 (17)0.0116 (15)0.0067 (15)0.0006 (13)0.025 (1)
O10.035 (2)0.0338 (19)0.0201 (16)0.0168 (15)0.0090 (14)0.0011 (14)0.029 (1)
O10.0329 (9)0.0343 (8)0.0179 (7)0.0198 (6)0.0062 (6)0.0037 (6)0.0281 (5)
O10.0362 (9)0.0380 (10)0.0185 (7)0.0233 (7)0.0072 (6)0.0041 (7)0.0306 (5)
O10.0690 (12)0.0599 (9)0.0325 (9)0.0396 (8)0.0124 (8)0.0066 (7)0.0534 (6)
O20.024 (2)0.0149 (15)0.0345 (19)0.0050 (14)0.0079 (15)0.0020 (14)0.024 (1)
O20.028 (2)0.0203 (15)0.0229 (15)0.0044 (14)0.0047 (13)0.0025 (14)0.024 (1)
O20.0202 (8)0.0228 (6)0.0196 (7)0.0056 (6)0.0060 (6)0.0021 (6)0.0206 (4)
O20.0197 (8)0.0245 (7)0.0205 (7)0.0056 (6)0.0050 (6)0.0026 (6)0.0214 (4)
O20.0338 (8)0.0432 (7)0.0446 (9)0.0137 (6)0.0132 (7)0.0037 (6)0.0399 (5)
O30.016 (2)0.0240 (18)0.0290 (18)0.0031 (14)0.0042 (15)0.0021 (14)0.023 (1)
O30.0182 (17)0.0288 (17)0.0174 (15)0.0023 (13)0.0023 (12)-0.0049 (13)0.021 (1)
O30.0163 (7)0.0242 (6)0.0144 (6)0.0017 (5)0.0027 (5)-0.0036 (5)0.0182 (4)
O30.0158 (7)0.0269 (8)0.0142 (6)0.0005 (6)0.0022 (5)-0.0043 (5)0.01892 (1)
O30.0342 (7)0.0504 (7)0.0261 (7)0.0048 (6)0.0042 (6)-0.0075 (6)0.0368 (4)
F10.032 (2)0.0214 (14)0.0343 (16)-0.0090 (13)0.0042 (14)-0.0054 (12)0.029 (1)
F10.034 (3)0.025 (2)0.029 (2)-0.0051 (16)0.0035 (17)-0.0042 (15)0.029 (1)
F10.11 (3)0.052 (10)0.045 (12)-0.018 (14)0.023 (16)-0.030 (8)0.07 (1)
F10.052 (9)0.033 (6)0.033 (5)-0.009 (4)0.013 (5)-0.017 (4)0.0385 (9)
C10.012 (3)0.022 (2)0.025 (2)0.002 (2)0.001 (2)0.0058 (18)0.020 (1)
C10.022 (3)0.016 (2)0.020 (2)-0.0017 (18)0.0029 (19)0.0039 (16)0.019 (1)
C10.0136 (10)0.0162 (8)0.0179 (9)0.0013 (7)0.0035 (8)0.0029 (7)0.0157 (5)
C10.0127 (9)0.0162 (10)0.0194 (9)0.0015 (8)0.0032 (7)0.0025 (8)0.0160 (6)
C10.0251 (9)0.0336 (9)0.0348 (11)0.0022 (7)0.0047 (8)0.0016 (7)0.0310 (6)
N10.022 (3)0.026 (2)0.027 (2)0.003 (2)0.0066 (19)-0.0010 (18)0.025 (1)
N10.018 (2)0.027 (2)0.022 (2)0.0044 (18)0.0068 (16)-0.0039 (16)0.022 (1)
N10.0146 (9)0.0245 (8)0.0184 (8)0.0015 (7)0.0034 (7)-0.0026 (6)0.0190 (5)
N10.0150 (9)0.0256 (9)0.0179 (9)0.0018 (7)0.0029 (6)-0.0025 (7)0.0194 (5)
N10.0320 (9)0.0517 (10)0.0333 (11)0.0029 (8)0.0071 (7)-0.0067 (8)0.0387 (6)
O40.022 (2)0.042 (2)0.027 (2)-0.0036 (18)0.0021 (16)-0.0073 (17)0.031 (1)
O40.0170 (18)0.041 (2)0.0220 (17)-0.0035 (15)0.0035 (14)-0.0048 (15)0.027 (1)
O40.0130 (7)0.0314 (7)0.0219 (7)-0.0013 (6)0.0028 (6)-0.0051 (6)0.0220 (4)
O40.0131 (7)0.0334 (9)0.0214 (8)-0.0012 (6)0.0027 (6)-0.0054 (6)0.0226 (5)
O40.0235 (7)0.0704 (10)0.0431 (10)-0.0028 (6)0.0035 (7)-0.0130 (7)0.0457 (5)
N20.014 (2)0.022 (2)0.021 (2)-0.0012 (17)-0.0049 (16)0.0017 (15)0.020 (1)
N20.019 (2)0.0202 (19)0.0173 (17)0.0001 (15)-0.0024 (15)-0.0011 (14)0.019 (1)
N20.0137 (9)0.0206 (7)0.0142 (8)-0.0010 (6)0.0006 (6)-0.0024 (6)0.0162 (5)
N20.0145 (8)0.0205 (9)0.0152 (8)-0.0006 (6)0.0000 (6)-0.0017 (6)0.0169 (5)
N20.0233 (8)0.0422 (8)0.0255 (9)-0.0019 (6)0.0005 (6)-0.0028 (6)0.0305 (5)
C20.016 (3)0.014 (2)0.026 (2)-0.0015 (19)0.000 (2)0.0057 (19)0.019 (2)
C20.022 (3)0.014 (2)0.018 (2)0.0006 (18)-0.0008 (18)0.0043 (17)0.018 (1)
C20.0169 (11)0.0138 (9)0.0157 (9)0.0015 (7)0.0043 (8)0.0033 (7)0.0153 (6)
C20.0155 (10)0.0134 (10)0.0172 (10)0.0011 (7)0.0047 (8)0.0025 (8)0.0152 (6)
C20.0257 (9)0.0320 (9)0.0270 (11)0.0012 (7)0.0047 (8)0.0043 (7)0.0281 (6)
N30.020 (2)0.028 (2)0.0206 (19)-0.0015 (19)0.0016 (17)-0.0011 (18)0.023 (1)
N30.024 (2)0.029 (2)0.0151 (16)0.0008 (17)0.0005 (15)-0.0022 (17)0.023 (1)
N30.0149 (8)0.0271 (8)0.0146 (7)0.0000 (6)0.0024 (6)-0.0024 (6)0.0188 (5)
N30.0148 (8)0.0296 (10)0.0143 (7)0.0007 (7)0.0023 (6)-0.0021 (7)0.0195 (5)
N30.0295 (9)0.0559 (10)0.0261 (9)-0.0003 (7)0.0028 (7)-0.0054 (7)0.0372 (5)
N40.020 (3)0.030 (2)0.023 (2)-0.0031 (18)0.0031 (18)-0.0023 (17)0.024 (1)
N40.016 (2)0.031 (2)0.0197 (18)-0.0011 (17)0.0036 (15)0.0004 (16)0.022 (1)
N40.0143 (9)0.0279 (8)0.0171 (8)-0.0011 (6)0.0038 (6)0.0006 (6)0.0196 (5)
N40.0152 (9)0.0269 (10)0.0184 (8)-0.0005 (7)0.0027 (6)-0.0001 (7)0.0201 (5)
N40.0243 (9)0.0570 (10)0.0391 (12)-0.0032 (7)0.0078 (8)-0.0013 (8)0.0398 (6)
Selected geometric parameters (Å, º) for (IV) top
P1—O11.5728 (16)N1—H2n10.860 (15)
P1—O21.4989 (15)N2—H1n20.890 (16)
P1—O31.4933 (14)N2—C21.356 (3)
P1—F11.562 (14)C2—N31.315 (2)
P1—Hp11.29 (6)C2—N41.323 (3)
O1—H10.82 (3)N3—H1n30.860 (7)
C1—N11.335 (3)N3—H2n30.860 (18)
C1—O41.227 (2)N4—H1n40.860 (12)
C1—N21.395 (3)N4—H2n40.860 (13)
N1—H1n10.860 (8)H1n4—H2n41.490 (17)
O1—P1—O2107.35 (9)C1—N1—H2n1125.2 (11)
O1—P1—O3111.52 (9)H1n1—N1—H2n1120.0 (17)
O1—P1—F193.1 (6)C1—N2—H1n2121.3 (12)
O1—P1—Hp196 (3)C1—N2—C2124.40 (16)
O2—P1—O3117.88 (8)H1n2—N2—C2114.1 (12)
O2—P1—F1117.6 (6)N2—C2—N3122.29 (19)
O2—P1—Hp1114 (3)N2—C2—N4116.68 (17)
O3—P1—F1106.7 (6)N3—C2—N4121.03 (19)
O3—P1—Hp1108 (3)C2—N3—H1n3117.1 (13)
P1—O1—H1120 (2)C2—N3—H2n3122.4 (11)
N1—C1—O4123.48 (19)H1n3—N3—H2n3120.0 (18)
N1—C1—N2114.48 (16)C2—N4—H1n4117.1 (10)
O4—C1—N2122.04 (18)C2—N4—H2n4122.8 (9)
C1—N1—H1n1114.8 (13)H1n4—N4—H2n4120.0 (14)
N1—C1—N2—C2172.18 (19)C1—N2—C2—N4178.25 (18)
C1—N2—C2—N31.3 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds