Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
5-Ammonio­naphthalene-1-sulfonate monohydrate, C10H9N­O3S·H2O, contains layers of zwitterionic mol­ecules with the acidic sulfonic acid H atom transferred to the amine N atom. Within each layer, the charged groups (NH3+ and SO3-) are directed to the surface of the layer and are inverted on adjacent mol­ecules. The naphthalene rings in a given layer are all parallel. The layers are held together by N-H...O and O-H...O hydrogen bonds involving the ammonium, sulfon­ate and water atoms. The Mn and Ni salts crystallize as fully aquated trihydrates, namely hexa­aqua­managnese(II) bis­(5-amino­naphthalene-1-sulfonate) trihydrate, [Mn(H2O)6](C10­H8NO3S)2·3H2O, (II), and hexa­aqua­nickel(II) bis­(5-amino­naphthalene-1-sulfonate) trihydrate, [Ni(H2O)6](C10H8NO3S)2·3H2O, (III), in which layers of hexa­aqua­metal(II) complexes alternate with layers of 5-amino­naphthalene-1-sulfonate anions. The cations reside on twofold rotation axes and display regular octa­hedral coordination. The additional water mol­ecules are found in the inorganic layer between the complex cations, one on a twofold axis and one in a general position. The anions are packed in a herring-bone arrangement with the rings of neighboring rows of anions approximately 43° out of parallel. The NH2 and SO3- groups line the surface of the layer, where they participate in numerous hydrogen bonds with the water mol­ecules. Whereas the Mn and Ni salts are ortho­rhom­bic, the Co salt, hexa­aqua­cobalt(II) bis­(5-amino­naphthalene-1-sulfon­ate) dihydrate, [Co(H2O)6](C10H8NO3S)2·2H2O, (IV), crystallizes in a triclinic cell of similar dimensions, with the cations situated on centers of inversion. The overall packing is very similar to that of the Mn and Ni salts, with the main differences being the absence of the solvent water molecule on the special position and subtle modifications in the positioning of the anions within their layers. This series of salts is compared with those of the same metals with the 5-amino­naphthalene-2-sulfonate and 4-amino­naphthalene-1-sulfonate isomers, allowing for similarities and differences in packing to be discussed on the basis of the differing substitution of the naphthalene ring and, in some cases, differing degrees of hydration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107052286/sk3173sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052286/sk3173Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052286/sk3173IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052286/sk3173IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052286/sk3173IVsup5.hkl
Contains datablock IV

CCDC references: 672425; 672426; 672427; 672428

Comment top

Mixed organic–inorganic structures have been of interest over the past three decades due to their potential as functional materials. One class of compounds that has received considerable attention is metal organophosphonate salts (Thompson, 1994; Clearfield, 1998). Metal organosulfonate salts have also been actively studied in recent years as part of the growing field of crystal engineering. Both similarities with and differences from the corresponding phosphonates have been found. Key results have been summarized in two recent reviews (Cote & Shimizu, 2003; Cai, 2004).

We have previously characterized a variety of amine-substituted naphthalenesulfonate salts of main group and transition metals with the goal of discerning structural trends as functions of metal cation and substitution of the sulfonate group. Having examined structures containing 6-aminonaphthalene-2-sulfonate (Gunderman & Squattrito, 1995), 4-aminonaphthalene-1-sulfonate (Morris et al., 2003) and 5-aminonaphthalene-2-sulfonate (Downer et al., 2006), we now report the structures of a series of salts of 5-aminonaphthalene-1-sulfonate, as well as the parent acid itself. These results are compared with those of the isomeric sulfonates.

The 5-aminonaphthalene-1-sulfonic acid, (I), crystallizes as a monohydrate. The unit cell and space group have been reported previously (Corbridge et al., 1966), but this is the first complete structure determination. As is typical for amine-substituted sulfonic acids (Gunderman & Squattrito, 1996; Leonard & Squattrito, 1997), the molecules exist in the zwitterionic ammoniosulfonate form, with the acidic H atom on the amine N atom (Fig. 1). The conformation of the sulfonate group has atom O3 essentially eclipsing the naphthalene ring system [O3—S1—C1—C2 torsion angle 5.0 (2)°]. The molecules are packed in layers that stack along the c axis, with the charged groups directed to the surfaces of the layer (Fig. 2). The anions are positioned so that all the rings are parallel, with contacts between adjacent rings of ca 3.7 Å. Within each layer, rows of molecules have the sulfonate and ammonio groups alternating in opposite orientations along b. The packing is directed both within and between layers by four nearly linear hydrogen bonds involving the three ammonio H atoms (two to sulfonate O atoms and one to the water O atom) and one of the water H atoms to a sulfonate O atom (Table 1). The other water H atom is involved in a slightly weaker non-linear interaction with a sulfonate O atom.

The manganese and nickel salts, (II) and (III), respectively, crystallize in the orthorhombic space group P21212 with the formula [M(H2O)6](H2NC10H6SO3)2·3H2O (M = Mn or Ni), consisting of hexaaquametal(II) cations, 5-aminonaphthalene-1-sulfonate anions and three water molecules of crystallization (Fig. 3). The two salts are isostructural and differ only in that the absolute structure refinements yield apparently opposite enantiomers. It is likely that we have both enantiomeric crystals in both products and that the selection was accidental. The presence of fully hydrated cations is typical of the behavior of divalent transition metals in these aminosulfonate systems, which are crystallized from aqueous solutions (Gunderman et al., 1997). Only a few examples have been observed where either the N or O atoms of the sulfonate coordinate directly to the metal under these conditions (Gunderman et al., 1996; Downer et al., 2006). The cations reside on twofold rotation axes and display a modestly distorted octahedral geometry. The maximum deviations from ideal bond angles are in the range of 10–12° for Mn [O5—Mn1—O4 167.97 (3)° and O5—Mn1—O6i 99.39 (4)°; symmetry code: (i) 1 - x, 2 - y, z], while for Ni, all angles are within 5° of ideal. The sulfonate group displays the same eclipsed conformation as in the parent acid [O3—S1—C1—C2 torsion angle -4.89 (9)° for (II) and 3.93 (16)° for (III)].

The crystal packing (Fig. 4) is typical for transition metal arene- and naphthalenesulfonates (Chen et al., 2002; Gunderman et al., 1997), consisting of alternating layers of hexaaquametal cations and sulfonate anions parallel to the ac plane, with the anions positioned so that the polar and charged groups (i.e. NH2 and SO3-) line the surface of the layer. Within each layer, alternating rows of molecules have the sulfonate and amino groups in opposite orientations and the rings canted in opposite directions (interplanar angle ca 43°) in a herringbone arrangement. The water molecules of crystallization are located in between the cations in close association with the charged groups and coordinated water molecules, so as to participate in hydrogen-bonding interactions. One of the two crystallographically independent water molecules is located on a twofold rotation axis. The layers are held together by a series of robust (H···A ca 2.0 Å) approximately linear O—H···O and O—H···N hydrogen bonds involving water donors and sulfonate, amine and water acceptors (Table 2). The amine H atoms participate in slightly longer hydrogen bonds (H···O ca 2.3–2.4 Å) with sulfonate O atoms. The packing is comparable with that found in the Mn salt of 4-aminonaphthalene-1-sulfonate (Morris et al., 2003), which has very similar cell dimensions and a herringbone arrangement of the anions. This is not surprising given that both isomers have the polar/ionic groups perpendicular to the long dimension of the naphthalene ring system (i.e. in ring positions 1, 4, 5 or 8), and so would be similarly positioned to maximize favorable interactions with the cation layers. This is borne out by the very comparable distances between the metal atom layers, ca 11.4 Å for (II) and ca 11.7 Å for the 4,1 isomer. The structures do differ in degree of hydration, crystal system and space group (the 4,1 isomer crystallizes with two solvent water molecules per formula unit in the monoclinic space group P21/c). By contrast, the Mn salt of 5-aminonaphthalene-2-sulfonate (Downer et al., 2006) has a very different packing, caused primarily by the positioning of the SO3- group on one of the terminal C atoms of the ring system (positions 2, 3, 6 and 7), which causes the anions to be situated in the layer with the long dimension of the ring system closer to perpendicular to the layer. This is reflected in the longer repeat distance between the layers (ca 14.2 Å). The spacing within the layers is also somewhat larger and the added voids between the metal complexes are occupied by water, as the 5,2 isomer has six solvent water molecules per formula unit. Although only alkali metal salts of 6-aminonaphthalene-2-sulfonate have been characterized to date (Gunderman & Squattrito, 1995), the anion packing follows the expected pattern. If fully hydrated transition metal salts of the 6,2 isomer were to be obtained, the interlayer repeat distance would be expected to be slightly larger than that of the 5,2 isomer.

Nickel shows somewhat greater variability in its behavior. The Ni salt of 4-aminonaphthalene-1-sulfonate (Morris et al., 2003) crystallizes as a trihydrate like (III), but in an orthorhombic cell with both the b and c axes doubled. This unprecedented layered sulfonate structure contains a quadruple layer repeat pattern with two different types of sulfonate layer. Nevertheless, the layer thicknesses are very similar [(ca 11.3 Å, versus ca 11.5 Å for (III)], as is the case for the Mn salts. The Ni salt of 5-aminonaphthalene-2-sulfonate (Downer et al., 2006) also has a completely different structure from the Mn (or Co) salt. In that compound, the Ni atom is coordinated by four water molecules and two sulfonate anions through the amine N atom, and it thus constitutes one of the rare examples of direct coordination involving the sulfonate anion with a transition metal ion. Due to the direct Ni—N bonding, the thickness of the layer (ca 11.5 Å) is less than the ca 14.2 Å dimension for the fully hydrated Mn salt.

The Co salt of 5-aminonaphthalene-1-sulfonate, (IV), is not isostructural with the Mn and Ni analogs. It crystallizes as a dihydrate, [Co(H2O)6](H2NC10H6SO3)2·2H2O, in the triclinic system. The unit cell has almost the same dimensions as the orthorhombic cell of (II) and (III) and the overall structure is quite similar. The asymmetric unit in (IV) (Fig. 5) contains two independent Co2+ cations on centers of inversion, six coordinated water molecules, two sulfonate anions and two solvent water molecules (one of which is disordered over two nearby positions). The coordination geometries of the cations are quite regular, with maximum angular deviations of only 1° for Co1 and just under 6° for Co2. The sulfonate groups adopt the same conformation as in (I)–(III), with one O atom eclipsing the naphthalene ring (O—S—C—C torsion angles <4° in both anions). The anions are packed in a similar herringbone arrangement with a slightly larger interplanar angle of ca 51°. Comparison of the stacking of the anionic and cationic layers in (III) (Fig. 4) with that in (IV) (Fig. 6) shows that they are almost the same. The main difference is that the water molecules at (0, 0, z) and (1/2, 1/2, z) in (III) are absent in (IV). The anions also appear to have a small extra tilt in (III) that is not present in (IV).

In our previous studies, there is precedence for both differences and a lack of difference in the sulfonate salts of these metals. The Mn, Co and Ni salts of 4-styrenesulfonate are isostructural, with no extra water beyond that coordinated to the metal cations (Leonard et al., 1999). For 4-aminonaphthalene-1-sulfonate, the Co and Ni salts are isostructural orthorhombic trihydrates, while the Mn salt is a monoclinic dihydrate (Morris et al., 2003). And for 5-aminonaphthalene-2-sulfonate, the Mn and Co salts are isostructural monoclinic hexahydrates, while the Ni salt is a triclinic dihydrate with direct Ni—N bonding to the amino group of the sulfonate (Downer et al., 2006). Taken together, these results demonstrate an unexpected structural diversity in these divalent aminonaphthalenesulfonate salts.

Related literature top

For related literature, see: Bruker (2000, 2003); Cai (2004); Chen et al. (2002); Clearfield (1998); Corbridge et al. (1966); Cote & Shimizu (2003); Downer et al. (2006); Gunderman & Squattrito (1995, 1996); Gunderman et al. (1997); Gunderman, Squattrito & Dubey (1996); Leonard & Squattrito (1997); Leonard et al. (1999); Morris et al. (2003); Sheldrick (2007); Thompson (1994).

Experimental top

The starting acid, (I), was crystallized inadvertently from a reaction of itself with Ni(NO3)2·6H2O. The Mn salt, (II), was prepared by direct reaction of Mn(NO3)2·6H2O and 5-aminonaphthalene-1-sulfonic acid (1:2 stoichiometry) in aqueous solution. A small amount of NaOH was added to the sulfonic acid to aid in deprotonation prior to introduction of the manganese nitrate. Following approximately 1 h of heating (Temperature?), during which most of the reactants dissolved, the resulting dark-purple solution was gravity filtered and set out in open air. Upon evaporation of the water, many purple plate-shaped crystals suitable for X-ray diffraction were recovered. The Ni salt, (III), was prepared by combining NiCO3 with 5-aminonaphthalene-1-sulfonic acid (1:2 stoichiometry) in aqueous solution. Following approximately 1 h of heating (Temperature?), during which the reactants dissolved, the resulting dark-purple solution was gravity filtered and set out in open air. Upon evaporation of the water, many purple clumps of needle-shaped crystals growing from a central point were obtained. The Co salt, (IV), was obtained from a reaction of Co(OH)2 and 5-aminonaphthalene-1-sulfonic acid (1:2 stoichiometry) in water. The reactants dissolved over about 30 min of heating (Temperature?) and the solution was then gravity filtered. Large (>5 mm) red plate-shaped crystals were left following complete evaporation of the solvent from the dark-red–purple solution.

Refinement top

For (I), (II) and (III), all H atoms were located in difference Fourier maps and refined isotropically. All crystals of (IV) under investigation were identified as non-merohedral twins using RLATT (Bruker, 2000). Two orientation matrices were assigned to the two different twin components [GEMINI (Bruker, 2000) and SMART (Bruker, 2003)]. Integration of the data using SAINT-Plus (Bruker, 2003) using both orientation matrices deconvoluted the data set into overlapped reflections and reflections originated by only one of the twin components. Correction for absorption, decay and inhomogeneity of the X-ray beam were applied using TWINABS (Sheldrick, 2007), where each component was scaled separately, followed by applying the resulting scale factors to the overlapping reflections. The twinning law is a 180° rotation around c* and the ratio of the two twin components was refined to 0.344 (4):0.656 (4). Equivalent reflections were merged if they originated from the same twin component, or if they originated simultaneously from both components. Thus, a total of 8586 reflections measured were merged to 5584 unique data that include reflections from each of the twin components. All non-H atoms were refined with anisotropic atomic displacement parameters, with the exception of water atom O14, which is disordered over two sites (80:20) and which was refined isotropically; no H atoms were included in the refinement for this water molecule. Other H atoms were located in difference Fourier syntheses and refined with distance restraints of O—H = 0.82 (5) Å, N—H = 0.86 (5) Å and C—H = 0.95 (5) Å, and with Uiso = 1.5Ueq(N,O) or 1.2Ueq(C).

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, showing layers connected by O—H···O and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry-equivalent water molecules (marked with an asterisk) are included to show the complete coordination environment of the cation. The Ni salt, (III), is isostructural with (II). [Symmetry code: (*) 1 - x, 2 - y, z]
[Figure 4] Fig. 4. The packing of (II), viewed down the c axis, showing layers of hydrated cations and additional water molecules alternating with layers of anions and connected by O—H···O and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
[Figure 5] Fig. 5. The molecular structure of (IV), showing two independent Co cations and sulfonate anions, along with two solvent water molecules. Additional symmetry-equivalent water molecules (marked with and asterisk or a hash sign) are included to show the complete coordination environments of the cations. One solvent water molecule is disordered over two nearby positions labeled O14 and O14A. H atoms on this water molecule could not be located. [Symmetry codes: (*) -x, -y, 1 - z; (#) -x, 1 - y, -z]
[Figure 6] Fig. 6. The packing of (IV), viewed down the a axis, showing layers of hydrated cations and additional water molecules alternating with layers of anions and connected by O—H···O and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. Comparison with Fig. 4 shows that the water molecules at (0, 0, z) and (1/2, 1/2, z) in (II) are missing in (IV).
(I) 5-Ammonionaphthalene-1-sulfonate monohydrate top
Crystal data top
C10H9NO3S·H2OZ = 4
Mr = 241.26F(000) = 504
Monoclinic, P21/cDx = 1.516 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1157 (16) ŵ = 0.30 mm1
b = 7.8434 (16) ÅT = 150 K
c = 16.723 (3) ÅBlock, purple
β = 96.90 (3)°0.30 × 0.06 × 0.03 mm
V = 1056.8 (4) Å3
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
1957 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.5°, θmin = 2.5°
ω scansh = 1010
9016 measured reflectionsk = 109
2475 independent reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.4287P]
where P = (Fo2 + 2Fc2)/3
2475 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H9NO3S·H2OV = 1056.8 (4) Å3
Mr = 241.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1157 (16) ŵ = 0.30 mm1
b = 7.8434 (16) ÅT = 150 K
c = 16.723 (3) Å0.30 × 0.06 × 0.03 mm
β = 96.90 (3)°
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
1957 reflections with I > 2σ(I)
9016 measured reflectionsRint = 0.024
2475 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.04Δρmax = 0.29 e Å3
2475 reflectionsΔρmin = 0.27 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29464 (6)0.78581 (7)0.16340 (3)0.03429 (17)
O10.4086 (2)0.90939 (19)0.20430 (9)0.0475 (4)
O20.3358 (3)0.6167 (2)0.19111 (9)0.0609 (5)
O30.1242 (2)0.8310 (4)0.16788 (11)0.0855 (8)
O40.0571 (3)0.8956 (3)0.29399 (14)0.0708 (6)
N10.6426 (3)0.7435 (2)0.16997 (11)0.0374 (4)
C10.3210 (2)0.7977 (2)0.05947 (11)0.0308 (4)
C20.1899 (3)0.8564 (3)0.00856 (13)0.0393 (5)
C30.2011 (3)0.8756 (3)0.07399 (13)0.0454 (5)
C40.3441 (3)0.8341 (3)0.10422 (12)0.0390 (5)
C50.6329 (2)0.7232 (3)0.08349 (12)0.0335 (4)
C60.7650 (3)0.6612 (3)0.03517 (13)0.0411 (5)
C70.7554 (3)0.6420 (3)0.04748 (14)0.0464 (5)
C80.6140 (3)0.6849 (3)0.07968 (13)0.0400 (5)
C90.4737 (2)0.7504 (2)0.03040 (11)0.0295 (4)
C100.4821 (2)0.7700 (2)0.05357 (11)0.0301 (4)
H20.091 (3)0.885 (3)0.0303 (15)0.052 (7)*
H30.102 (3)0.923 (3)0.1086 (17)0.063 (8)*
H40.349 (3)0.846 (3)0.1593 (15)0.039 (6)*
H60.866 (3)0.626 (3)0.0579 (14)0.046 (6)*
H70.848 (3)0.602 (3)0.0767 (15)0.054 (7)*
H80.613 (2)0.677 (3)0.1359 (13)0.029 (5)*
H1A0.617 (3)0.858 (4)0.1851 (15)0.050 (7)*
H1B0.565 (3)0.677 (3)0.2016 (16)0.052 (7)*
H1C0.748 (3)0.713 (3)0.1819 (16)0.052 (7)*
H4A0.003 (4)0.880 (5)0.255 (2)0.090 (11)*
H4B0.091 (5)1.001 (6)0.280 (3)0.120 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0382 (3)0.0402 (3)0.0254 (2)0.0015 (2)0.00772 (18)0.00102 (19)
O10.0719 (11)0.0367 (9)0.0321 (7)0.0088 (7)0.0010 (7)0.0015 (6)
O20.1184 (15)0.0329 (9)0.0326 (8)0.0100 (9)0.0136 (9)0.0043 (7)
O30.0455 (10)0.176 (2)0.0380 (9)0.0199 (12)0.0161 (8)0.0026 (12)
O40.0667 (12)0.0761 (16)0.0775 (14)0.0163 (11)0.0416 (11)0.0153 (11)
N10.0469 (10)0.0341 (10)0.0335 (9)0.0023 (8)0.0143 (8)0.0019 (7)
C10.0340 (9)0.0306 (10)0.0281 (9)0.0024 (8)0.0051 (7)0.0012 (7)
C20.0346 (10)0.0493 (13)0.0344 (10)0.0060 (9)0.0059 (8)0.0013 (9)
C30.0395 (11)0.0632 (15)0.0325 (11)0.0105 (10)0.0000 (8)0.0057 (10)
C40.0433 (11)0.0480 (13)0.0254 (10)0.0022 (9)0.0034 (8)0.0028 (9)
C50.0389 (10)0.0320 (10)0.0307 (10)0.0032 (8)0.0087 (8)0.0029 (8)
C60.0349 (10)0.0465 (13)0.0428 (12)0.0034 (9)0.0089 (9)0.0059 (10)
C70.0375 (11)0.0584 (15)0.0419 (12)0.0117 (10)0.0004 (9)0.0008 (11)
C80.0417 (11)0.0483 (13)0.0295 (10)0.0061 (9)0.0028 (8)0.0016 (9)
C90.0320 (9)0.0284 (10)0.0281 (9)0.0007 (7)0.0033 (7)0.0006 (7)
C100.0347 (9)0.0271 (10)0.0291 (9)0.0027 (7)0.0065 (7)0.0015 (7)
Geometric parameters (Å, º) top
S1—O21.4309 (18)C3—C41.360 (3)
S1—O31.4386 (18)C3—H31.00 (3)
S1—O11.4526 (16)C4—C101.413 (3)
S1—C11.7788 (19)C4—H40.93 (2)
O4—H4A0.87 (4)C5—C61.353 (3)
O4—H4B0.89 (5)C5—C101.425 (3)
N1—C51.466 (3)C6—C71.402 (3)
N1—H1A0.95 (3)C6—H60.98 (2)
N1—H1B0.93 (3)C7—C81.366 (3)
N1—H1C0.93 (3)C7—H70.90 (2)
C1—C21.360 (3)C8—C91.419 (3)
C1—C91.433 (3)C8—H80.94 (2)
C2—C31.402 (3)C9—C101.422 (3)
C2—H20.95 (3)
O2—S1—O3113.56 (15)C3—C4—C10120.85 (19)
O2—S1—O1110.82 (11)C3—C4—H4119.0 (14)
O3—S1—O1111.88 (13)C10—C4—H4120.1 (14)
O2—S1—C1108.33 (9)C6—C5—C10122.37 (18)
O3—S1—C1105.49 (10)C6—C5—N1119.68 (18)
O1—S1—C1106.29 (9)C10—C5—N1117.95 (18)
H4A—O4—H4B97 (4)C5—C6—C7119.55 (19)
C5—N1—H1A109.3 (15)C5—C6—H6120.5 (14)
C5—N1—H1B112.7 (16)C7—C6—H6119.9 (14)
H1A—N1—H1B105 (2)C8—C7—C6120.7 (2)
C5—N1—H1C110.0 (17)C8—C7—H7123.7 (17)
H1A—N1—H1C111 (2)C6—C7—H7115.5 (17)
H1B—N1—H1C108 (2)C7—C8—C9120.9 (2)
C2—C1—C9121.22 (18)C7—C8—H8119.1 (12)
C2—C1—S1116.90 (15)C9—C8—H8119.9 (12)
C9—C1—S1121.87 (14)C8—C9—C10118.82 (18)
C1—C2—C3120.94 (19)C8—C9—C1124.26 (18)
C1—C2—H2118.3 (15)C10—C9—C1116.92 (17)
C3—C2—H2120.7 (15)C4—C10—C9120.10 (17)
C4—C3—C2119.95 (19)C4—C10—C5122.27 (18)
C4—C3—H3122.2 (16)C9—C10—C5117.64 (18)
C2—C3—H3117.8 (16)
O2—S1—C1—C2126.91 (19)C7—C8—C9—C1179.8 (2)
O3—S1—C1—C25.0 (2)C2—C1—C9—C8178.6 (2)
O1—S1—C1—C2113.95 (18)S1—C1—C9—C82.4 (3)
O2—S1—C1—C954.02 (19)C2—C1—C9—C100.9 (3)
O3—S1—C1—C9175.94 (18)S1—C1—C9—C10178.16 (14)
O1—S1—C1—C965.12 (18)C3—C4—C10—C90.9 (3)
C9—C1—C2—C31.2 (3)C3—C4—C10—C5179.1 (2)
S1—C1—C2—C3177.85 (18)C8—C9—C10—C4179.68 (19)
C1—C2—C3—C40.5 (4)C1—C9—C10—C40.2 (3)
C2—C3—C4—C100.6 (4)C8—C9—C10—C50.4 (3)
C10—C5—C6—C70.1 (3)C1—C9—C10—C5179.85 (16)
N1—C5—C6—C7180.0 (2)C6—C5—C10—C4179.8 (2)
C5—C6—C7—C80.1 (4)N1—C5—C10—C40.1 (3)
C6—C7—C8—C90.2 (4)C6—C5—C10—C90.3 (3)
C7—C8—C9—C100.3 (3)N1—C5—C10—C9179.87 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.95 (3)1.86 (3)2.803 (3)172 (2)
N1—H1B···O1ii0.93 (3)2.01 (3)2.917 (3)162 (2)
N1—H1C···O4iii0.93 (3)1.88 (3)2.801 (3)168 (2)
O4—H4A···O30.87 (4)1.89 (4)2.759 (3)176 (4)
O4—H4B···O2iv0.89 (5)2.29 (4)2.884 (3)124 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
(II) hexaaquamanagnese(II) bis(5-aminonaphthalene-1-sulfonate) trihydrate top
Crystal data top
[Mn(H2O)6](C10H8NO3S)2·3H2OF(000) = 690
Mr = 661.55Dx = 1.541 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 42059 reflections
a = 8.3263 (3) Åθ = 2.4–35.4°
b = 22.8436 (7) ŵ = 0.68 mm1
c = 7.4940 (2) ÅT = 140 K
V = 1425.38 (8) Å3Plate, purple
Z = 20.35 × 0.20 × 0.08 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
6245 independent reflections
Radiation source: fine-focus sealed tube6115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 35.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS and SAINT-Plus; Bruker, 2003)
h = 1313
Tmin = 0.815, Tmax = 0.947k = 3637
47963 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
6245 reflectionsΔρmax = 0.55 e Å3
250 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2571 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.103 (9)
Crystal data top
[Mn(H2O)6](C10H8NO3S)2·3H2OV = 1425.38 (8) Å3
Mr = 661.55Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.3263 (3) ŵ = 0.68 mm1
b = 22.8436 (7) ÅT = 140 K
c = 7.4940 (2) Å0.35 × 0.20 × 0.08 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
6245 independent reflections
Absorption correction: multi-scan
(SADABS and SAINT-Plus; Bruker, 2003)
6115 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.947Rint = 0.023
47963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.074Δρmax = 0.55 e Å3
S = 1.09Δρmin = 0.24 e Å3
6245 reflectionsAbsolute structure: Flack (1983), with 2571 Friedel pairs
250 parametersAbsolute structure parameter: 0.103 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50001.00000.84874 (2)0.01670 (5)
O40.48042 (9)0.93283 (3)0.64516 (10)0.02070 (12)
O50.42741 (11)0.93488 (4)1.04010 (11)0.02382 (14)
O60.75874 (10)0.97859 (4)0.82986 (12)0.02961 (17)
S10.38905 (3)0.611453 (9)0.55423 (3)0.01675 (5)
O10.50792 (10)0.59555 (3)0.69145 (10)0.02180 (12)
O20.23843 (10)0.57938 (3)0.58196 (12)0.02382 (14)
O30.45030 (11)0.60407 (3)0.37392 (10)0.02441 (14)
N10.16964 (12)0.85279 (4)0.95060 (14)0.02448 (16)
C10.34692 (11)0.68653 (4)0.58644 (12)0.01633 (14)
C20.38820 (12)0.72426 (4)0.45065 (13)0.02075 (15)
C30.36681 (15)0.78511 (4)0.47268 (15)0.02468 (18)
C40.30299 (13)0.80635 (4)0.62772 (15)0.02267 (17)
C50.19104 (11)0.79134 (4)0.93068 (13)0.01930 (15)
C60.15266 (13)0.75375 (5)1.06824 (14)0.02320 (17)
C70.17482 (14)0.69304 (5)1.04901 (15)0.02465 (18)
C80.23551 (13)0.66947 (4)0.89420 (13)0.02051 (16)
C90.27917 (11)0.70686 (4)0.75118 (12)0.01560 (13)
C100.25750 (11)0.76874 (4)0.76933 (12)0.01688 (14)
H20.433 (2)0.7098 (7)0.349 (2)0.022 (4)*
H30.405 (2)0.8128 (9)0.372 (3)0.035 (5)*
H40.275 (3)0.8490 (10)0.635 (3)0.050 (6)*
H60.107 (3)0.7697 (8)1.179 (3)0.035 (5)*
H70.146 (2)0.6658 (8)1.146 (3)0.028 (4)*
H80.261 (3)0.6305 (9)0.892 (3)0.044 (5)*
H1A0.129 (3)0.8692 (9)0.851 (3)0.033 (4)*
H1B0.111 (3)0.8604 (9)1.039 (3)0.037 (5)*
H4A0.422 (2)0.9410 (8)0.570 (3)0.029 (4)*
H4B0.559 (3)0.9240 (10)0.598 (3)0.045 (6)*
H5A0.392 (2)0.9428 (8)1.141 (3)0.030 (4)*
H5B0.369 (3)0.9087 (9)1.012 (3)0.037 (5)*
H6A0.818 (3)0.9839 (11)0.911 (4)0.060 (7)*
H6B0.808 (3)0.9543 (10)0.757 (3)0.039 (5)*
O70.50000.50000.92418 (13)0.02178 (17)
H7A0.490 (3)0.5272 (10)0.864 (3)0.050 (6)*
O80.79367 (9)0.53913 (4)0.63220 (11)0.02230 (14)
H8A0.772 (3)0.5061 (11)0.622 (3)0.049 (6)*
H8B0.711 (3)0.5546 (9)0.630 (3)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01585 (8)0.01996 (8)0.01431 (8)0.00087 (6)0.0000.000
O40.0210 (3)0.0216 (3)0.0195 (3)0.0009 (2)0.0014 (3)0.0015 (2)
O50.0305 (4)0.0236 (3)0.0174 (3)0.0004 (3)0.0024 (3)0.0016 (2)
O60.0170 (3)0.0428 (4)0.0290 (4)0.0063 (3)0.0050 (3)0.0176 (3)
S10.01827 (9)0.01499 (8)0.01699 (9)0.00041 (7)0.00175 (7)0.00270 (6)
O10.0216 (3)0.0208 (3)0.0230 (3)0.0040 (3)0.0058 (3)0.0015 (2)
O20.0218 (3)0.0193 (3)0.0303 (4)0.0060 (2)0.0021 (3)0.0019 (3)
O30.0317 (4)0.0230 (3)0.0185 (3)0.0004 (3)0.0032 (3)0.0057 (2)
N10.0272 (4)0.0200 (3)0.0262 (4)0.0039 (3)0.0013 (3)0.0061 (3)
C10.0170 (3)0.0161 (3)0.0159 (3)0.0008 (3)0.0001 (3)0.0016 (3)
C20.0247 (4)0.0197 (3)0.0179 (3)0.0008 (3)0.0032 (3)0.0008 (3)
C30.0314 (5)0.0191 (4)0.0235 (4)0.0014 (3)0.0059 (4)0.0033 (3)
C40.0271 (4)0.0162 (3)0.0248 (4)0.0009 (3)0.0040 (3)0.0004 (3)
C50.0179 (3)0.0198 (3)0.0202 (4)0.0011 (3)0.0006 (3)0.0043 (3)
C60.0233 (4)0.0265 (4)0.0198 (4)0.0018 (3)0.0045 (3)0.0022 (3)
C70.0288 (4)0.0252 (4)0.0200 (4)0.0003 (4)0.0057 (4)0.0021 (3)
C80.0236 (4)0.0193 (4)0.0187 (3)0.0000 (3)0.0035 (3)0.0013 (3)
C90.0159 (3)0.0157 (3)0.0152 (3)0.0007 (2)0.0001 (3)0.0011 (3)
C100.0160 (3)0.0153 (3)0.0193 (3)0.0008 (3)0.0004 (3)0.0024 (3)
O70.0214 (4)0.0272 (4)0.0168 (4)0.0004 (4)0.0000.000
O80.0197 (3)0.0242 (3)0.0230 (3)0.0003 (3)0.0023 (3)0.0034 (3)
Geometric parameters (Å, º) top
Mn1—O52.1528 (8)C1—C91.4346 (12)
Mn1—O5i2.1529 (8)C2—C31.4111 (14)
Mn1—O42.1699 (7)C2—H20.907 (17)
Mn1—O4i2.1699 (8)C3—C41.3667 (15)
Mn1—O62.2137 (8)C3—H31.03 (2)
Mn1—O6i2.2137 (8)C4—C101.4170 (13)
O4—H4A0.77 (2)C4—H41.00 (2)
O4—H4B0.77 (3)C5—C61.3792 (15)
O5—H5A0.83 (2)C5—C101.4265 (13)
O5—H5B0.80 (2)C6—C71.4066 (15)
O6—H6A0.80 (3)C6—H60.98 (2)
O6—H6B0.88 (2)C7—C81.3751 (14)
S1—O31.4542 (8)C7—H70.985 (19)
S1—O21.4673 (8)C8—C91.4178 (13)
S1—O11.4728 (8)C8—H80.92 (2)
S1—C11.7670 (9)C9—C101.4316 (12)
N1—C51.4228 (13)O7—H7A0.77 (2)
N1—H1A0.90 (2)O8—H8A0.78 (3)
N1—H1B0.84 (2)O8—H8B0.77 (2)
C1—C21.3771 (13)
O5—Mn1—O5i96.47 (5)H1A—N1—H1B110.5 (18)
O5—Mn1—O487.63 (3)C2—C1—C9122.11 (8)
O5i—Mn1—O4167.97 (3)C2—C1—S1117.19 (7)
O5—Mn1—O4i167.97 (3)C9—C1—S1120.65 (7)
O5i—Mn1—O4i87.63 (3)C1—C2—C3119.90 (9)
O4—Mn1—O4i90.65 (4)C1—C2—H2119.5 (11)
O5—Mn1—O699.39 (4)C3—C2—H2120.6 (11)
O5i—Mn1—O685.53 (3)C4—C3—C2119.89 (9)
O4—Mn1—O682.64 (3)C4—C3—H3121.3 (12)
O4i—Mn1—O692.19 (4)C2—C3—H3118.7 (12)
O5—Mn1—O6i85.53 (3)C3—C4—C10121.69 (9)
O5i—Mn1—O6i99.39 (4)C3—C4—H4118.7 (14)
O4—Mn1—O6i92.19 (4)C10—C4—H4119.1 (14)
O4i—Mn1—O6i82.64 (3)C6—C5—N1120.45 (9)
O6—Mn1—O6i172.67 (5)C6—C5—C10119.87 (9)
Mn1—O4—H4A112.9 (15)N1—C5—C10119.65 (9)
Mn1—O4—H4B116.5 (18)C5—C6—C7120.46 (9)
H4A—O4—H4B105 (2)C5—C6—H6119.4 (11)
Mn1—O5—H5A123.7 (13)C7—C6—H6120.1 (11)
Mn1—O5—H5B121.1 (15)C8—C7—C6121.37 (10)
H5A—O5—H5B100.7 (19)C8—C7—H7117.5 (10)
Mn1—O6—H6A121.6 (19)C6—C7—H7121.1 (10)
Mn1—O6—H6B128.9 (14)C7—C8—C9119.75 (9)
H6A—O6—H6B107 (2)C7—C8—H8118.7 (15)
O3—S1—O2111.93 (5)C9—C8—H8120.9 (15)
O3—S1—O1112.61 (5)C8—C9—C10119.38 (8)
O2—S1—O1110.63 (5)C8—C9—C1123.81 (8)
O3—S1—C1108.01 (5)C10—C9—C1116.80 (8)
O2—S1—C1107.20 (4)C4—C10—C5121.26 (8)
O1—S1—C1106.11 (4)C4—C10—C9119.60 (8)
C5—N1—H1A111.7 (13)C5—C10—C9119.13 (8)
C5—N1—H1B111.0 (15)H8A—O8—H8B103 (2)
O3—S1—C1—C24.89 (9)C7—C8—C9—C1178.46 (10)
O2—S1—C1—C2125.66 (8)C2—C1—C9—C8179.84 (9)
O1—S1—C1—C2116.09 (8)S1—C1—C9—C82.68 (13)
O3—S1—C1—C9177.82 (7)C2—C1—C9—C100.60 (13)
O2—S1—C1—C957.05 (9)S1—C1—C9—C10176.56 (7)
O1—S1—C1—C961.20 (8)C3—C4—C10—C5179.98 (10)
C9—C1—C2—C31.15 (15)C3—C4—C10—C90.31 (16)
S1—C1—C2—C3176.10 (8)C6—C5—C10—C4177.96 (10)
C1—C2—C3—C40.96 (17)N1—C5—C10—C40.03 (15)
C2—C3—C4—C100.23 (17)C6—C5—C10—C91.71 (14)
N1—C5—C6—C7179.57 (10)N1—C5—C10—C9179.70 (9)
C10—C5—C6—C71.60 (16)C8—C9—C10—C4179.14 (9)
C5—C6—C7—C80.27 (17)C1—C9—C10—C40.13 (13)
C6—C7—C8—C90.92 (17)C8—C9—C10—C50.54 (14)
C7—C8—C9—C100.76 (15)C1—C9—C10—C5179.81 (8)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.90 (2)2.33 (2)3.1970 (13)161.2 (18)
N1—H1B···O1iii0.84 (2)2.41 (2)3.2251 (12)161.9 (19)
O4—H4A···O8ii0.77 (2)1.91 (2)2.6737 (11)174 (2)
O4—H4B···O2iv0.77 (3)2.01 (3)2.7549 (11)162 (2)
O5—H5A···O8iii0.83 (2)1.93 (2)2.7611 (12)175 (2)
O5—H5B···N10.80 (2)2.14 (2)2.9279 (13)167 (2)
O6—H6A···O7v0.80 (3)1.99 (3)2.7698 (11)168 (3)
O6—H6B···O3iv0.88 (2)2.04 (2)2.9054 (11)169 (2)
O7—H7A···O10.77 (2)2.04 (2)2.7947 (10)169 (3)
O8—H8A···O2vi0.78 (3)1.98 (3)2.7462 (11)168 (2)
O8—H8B···O10.77 (2)1.99 (2)2.7421 (11)165 (2)
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+1/2, z+2; (vi) x+1, y+1, z.
(III) hexaaquanickel(II) bis(5-aminonaphthalene-1-sulfonate) trihydrate top
Crystal data top
[Ni(H2O)6](C10H8NO3S)2·3H2OF(000) = 696
Mr = 665.32Dx = 1.593 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 5158 reflections
a = 8.1031 (6) Åθ = 2.7–28.3°
b = 22.9375 (18) ŵ = 0.93 mm1
c = 7.4607 (6) ÅT = 140 K
V = 1386.68 (19) Å3Needle, purple
Z = 20.22 × 0.12 × 0.06 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
3435 independent reflections
Radiation source: fine-focus sealed tube3309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS and SAINT-Plus; Bruker, 2003)
h = 1010
Tmin = 0.844, Tmax = 0.950k = 3028
14174 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3435 reflectionsΔρmax = 0.35 e Å3
250 parametersΔρmin = 0.27 e Å3
11 restraintsAbsolute structure: Flack (1983), with 1433 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.072 (10)
Crystal data top
[Ni(H2O)6](C10H8NO3S)2·3H2OV = 1386.68 (19) Å3
Mr = 665.32Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.1031 (6) ŵ = 0.93 mm1
b = 22.9375 (18) ÅT = 140 K
c = 7.4607 (6) Å0.22 × 0.12 × 0.06 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
3435 independent reflections
Absorption correction: multi-scan
(SADABS and SAINT-Plus; Bruker, 2003)
3309 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.950Rint = 0.023
14174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.059Δρmax = 0.35 e Å3
S = 1.10Δρmin = 0.27 e Å3
3435 reflectionsAbsolute structure: Flack (1983), with 1433 Friedel pairs
250 parametersAbsolute structure parameter: 0.072 (10)
11 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.16459 (4)0.01453 (7)
O40.52792 (15)0.06370 (5)0.35328 (18)0.0183 (3)
O50.54423 (17)0.06237 (6)0.02426 (18)0.0210 (3)
O60.24743 (16)0.01656 (6)0.1793 (2)0.0249 (3)
H4A0.588 (3)0.0553 (10)0.436 (3)0.019 (6)*
H4B0.442 (2)0.0730 (11)0.406 (3)0.034 (7)*
H5A0.584 (3)0.0527 (11)0.121 (3)0.037 (7)*
H5B0.603 (3)0.0888 (10)0.008 (3)0.040 (8)*
H6A0.190 (3)0.0098 (12)0.095 (3)0.042 (7)*
H6B0.212 (4)0.0436 (10)0.241 (3)0.045 (8)*
S10.60765 (5)0.389280 (18)0.44610 (6)0.01671 (9)
O10.48764 (17)0.40606 (5)0.30697 (16)0.0212 (3)
O20.76543 (16)0.41907 (6)0.41785 (19)0.0237 (3)
O30.54535 (17)0.39794 (6)0.62683 (18)0.0255 (3)
N10.8111 (2)0.14556 (7)0.0538 (2)0.0236 (3)
C10.6438 (2)0.31376 (7)0.4158 (2)0.0160 (3)
C20.6004 (2)0.27733 (8)0.5532 (3)0.0196 (3)
C30.6174 (2)0.21633 (8)0.5327 (3)0.0227 (4)
C40.6795 (2)0.19426 (8)0.3774 (3)0.0216 (4)
C50.7934 (2)0.20710 (8)0.0713 (3)0.0186 (3)
C60.8337 (2)0.24341 (9)0.0676 (3)0.0225 (4)
C70.8163 (2)0.30410 (9)0.0498 (3)0.0234 (4)
C80.7572 (2)0.32862 (8)0.1046 (3)0.0203 (4)
C90.7104 (2)0.29261 (7)0.2501 (2)0.0159 (3)
C100.7281 (2)0.23058 (8)0.2336 (2)0.0174 (3)
H20.561 (2)0.2945 (8)0.656 (3)0.014 (5)*
H30.583 (3)0.1928 (9)0.626 (3)0.015 (5)*
H40.692 (3)0.1542 (10)0.369 (3)0.022 (6)*
H60.875 (3)0.2291 (10)0.184 (3)0.029 (6)*
H70.849 (3)0.3286 (10)0.143 (4)0.029 (6)*
H80.747 (3)0.3686 (10)0.110 (3)0.020 (5)*
H1A0.855 (3)0.1281 (9)0.148 (3)0.023 (6)*
H1B0.864 (3)0.1375 (11)0.042 (3)0.040 (7)*
O70.50000.50000.0704 (2)0.0220 (3)
H7A0.508 (4)0.4718 (9)0.132 (3)0.045 (8)*
O80.19375 (16)0.46432 (6)0.3492 (2)0.0208 (3)
H8A0.220 (3)0.4971 (8)0.362 (3)0.036 (6)*
H8B0.280 (2)0.4482 (10)0.350 (4)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01453 (13)0.01568 (14)0.01337 (13)0.00068 (12)0.0000.000
O40.0194 (7)0.0178 (6)0.0177 (6)0.0001 (4)0.0018 (5)0.0013 (5)
O50.0257 (7)0.0192 (6)0.0180 (7)0.0001 (5)0.0006 (5)0.0001 (5)
O60.0168 (6)0.0330 (8)0.0250 (7)0.0044 (5)0.0034 (5)0.0120 (6)
S10.0188 (2)0.01335 (18)0.01800 (19)0.00040 (15)0.00160 (16)0.00255 (16)
O10.0217 (6)0.0179 (6)0.0241 (6)0.0037 (5)0.0037 (6)0.0023 (4)
O20.0227 (6)0.0183 (6)0.0301 (8)0.0055 (5)0.0031 (6)0.0015 (5)
O30.0336 (7)0.0215 (6)0.0214 (6)0.0004 (5)0.0034 (5)0.0055 (5)
N10.0272 (8)0.0202 (8)0.0234 (8)0.0026 (6)0.0015 (7)0.0069 (7)
C10.0150 (7)0.0136 (7)0.0194 (8)0.0002 (6)0.0014 (6)0.0017 (6)
C20.0200 (8)0.0204 (8)0.0182 (8)0.0003 (7)0.0013 (7)0.0031 (7)
C30.0263 (9)0.0184 (8)0.0235 (9)0.0030 (7)0.0016 (8)0.0045 (7)
C40.0224 (9)0.0140 (8)0.0283 (10)0.0014 (7)0.0004 (7)0.0000 (7)
C50.0140 (7)0.0187 (8)0.0230 (9)0.0005 (6)0.0029 (7)0.0039 (7)
C60.0204 (8)0.0280 (9)0.0190 (9)0.0015 (7)0.0017 (7)0.0040 (8)
C70.0236 (9)0.0258 (9)0.0208 (8)0.0009 (7)0.0027 (8)0.0041 (8)
C80.0212 (8)0.0169 (8)0.0227 (9)0.0010 (7)0.0006 (7)0.0010 (7)
C90.0134 (7)0.0154 (8)0.0189 (8)0.0010 (6)0.0016 (6)0.0010 (7)
C100.0140 (8)0.0171 (8)0.0210 (8)0.0001 (6)0.0010 (6)0.0023 (7)
O70.0225 (8)0.0257 (9)0.0179 (8)0.0003 (9)0.0000.000
O80.0189 (6)0.0206 (6)0.0231 (7)0.0001 (5)0.0020 (6)0.0028 (6)
Geometric parameters (Å, º) top
Ni1—O52.0396 (13)C1—C91.433 (2)
Ni1—O5i2.0397 (13)C2—C31.414 (2)
Ni1—O42.0414 (13)C2—H20.92 (2)
Ni1—O4i2.0415 (13)C3—C41.361 (3)
Ni1—O62.0844 (13)C3—H30.93 (2)
Ni1—O6i2.0845 (13)C4—C101.414 (3)
O4—H4A0.809 (16)C4—H40.93 (2)
O4—H4B0.826 (17)C5—C61.369 (3)
O5—H5A0.824 (17)C5—C101.427 (2)
O5—H5B0.811 (17)C6—C71.405 (3)
O6—H6A0.794 (17)C6—H60.99 (2)
O6—H6B0.823 (17)C7—C81.368 (3)
S1—O31.4534 (13)C7—H70.93 (3)
S1—O21.4649 (14)C8—C91.416 (3)
S1—O11.4735 (13)C8—H80.92 (2)
S1—C11.7714 (17)C9—C101.435 (2)
N1—C51.425 (2)O7—H7A0.796 (16)
N1—H1A0.884 (16)O8—H8A0.788 (17)
N1—H1B0.858 (17)O8—H8B0.793 (16)
C1—C21.368 (3)
O5—Ni1—O5i92.62 (8)H1A—N1—H1B111 (2)
O5—Ni1—O487.42 (5)C2—C1—C9122.42 (16)
O5i—Ni1—O4176.19 (5)C2—C1—S1117.31 (13)
O5—Ni1—O4i176.19 (5)C9—C1—S1120.23 (13)
O5i—Ni1—O4i87.41 (5)C1—C2—C3119.89 (17)
O4—Ni1—O4i92.81 (7)C1—C2—H2116.9 (13)
O5—Ni1—O694.65 (6)C3—C2—H2123.2 (12)
O5i—Ni1—O689.52 (5)C4—C3—C2119.71 (18)
O4—Ni1—O686.68 (5)C4—C3—H3122.5 (13)
O4i—Ni1—O689.16 (5)C2—C3—H3117.8 (13)
O5—Ni1—O6i89.52 (5)C3—C4—C10122.00 (17)
O5i—Ni1—O6i94.65 (6)C3—C4—H4117.8 (14)
O4—Ni1—O6i89.16 (5)C10—C4—H4120.2 (14)
O4i—Ni1—O6i86.68 (5)C6—C5—N1120.63 (17)
O6—Ni1—O6i173.96 (8)C6—C5—C10120.09 (17)
Ni1—O4—H4A115.0 (17)N1—C5—C10119.26 (17)
Ni1—O4—H4B114.8 (18)C5—C6—C7120.45 (18)
H4A—O4—H4B102 (2)C5—C6—H6123.0 (14)
Ni1—O5—H5A119.2 (18)C7—C6—H6116.5 (14)
Ni1—O5—H5B115.0 (19)C8—C7—C6121.47 (19)
H5A—O5—H5B104 (3)C8—C7—H7118.8 (15)
Ni1—O6—H6A120 (2)C6—C7—H7119.7 (15)
Ni1—O6—H6B121 (2)C7—C8—C9119.96 (17)
H6A—O6—H6B113 (3)C7—C8—H8118.4 (14)
O3—S1—O2111.89 (8)C9—C8—H8121.6 (14)
O3—S1—O1112.87 (8)C8—C9—C1124.38 (16)
O2—S1—O1110.65 (8)C8—C9—C10119.05 (16)
O3—S1—C1108.04 (8)C1—C9—C10116.56 (16)
O2—S1—C1107.06 (8)C4—C10—C5121.65 (16)
O1—S1—C1105.95 (7)C4—C10—C9119.41 (16)
C5—N1—H1A114.6 (15)C5—C10—C9118.94 (16)
C5—N1—H1B110.0 (18)H8A—O8—H8B102 (2)
O3—S1—C1—C23.93 (16)C7—C8—C9—C100.8 (3)
O2—S1—C1—C2124.60 (14)C2—C1—C9—C8179.91 (17)
O1—S1—C1—C2117.28 (14)S1—C1—C9—C82.4 (2)
O3—S1—C1—C9178.29 (13)C2—C1—C9—C100.7 (2)
O2—S1—C1—C957.62 (15)S1—C1—C9—C10176.98 (13)
O1—S1—C1—C960.50 (15)C3—C4—C10—C5179.86 (17)
C9—C1—C2—C31.4 (3)C3—C4—C10—C90.6 (3)
S1—C1—C2—C3176.34 (14)C6—C5—C10—C4177.67 (17)
C1—C2—C3—C41.1 (3)N1—C5—C10—C40.4 (3)
C2—C3—C4—C100.1 (3)C6—C5—C10—C91.9 (2)
N1—C5—C6—C7179.89 (17)N1—C5—C10—C9179.91 (15)
C10—C5—C6—C72.1 (3)C8—C9—C10—C4179.14 (16)
C5—C6—C7—C80.9 (3)C1—C9—C10—C40.3 (2)
C6—C7—C8—C90.6 (3)C8—C9—C10—C50.4 (2)
C7—C8—C9—C1178.59 (17)C1—C9—C10—C5179.87 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.88 (2)2.36 (2)3.206 (2)161 (2)
N1—H1B···O1iii0.86 (2)2.43 (2)3.270 (2)168 (2)
O4—H4A···O8ii0.81 (2)1.87 (2)2.673 (2)171 (2)
O4—H4B···O2iv0.83 (2)1.95 (2)2.7561 (18)164 (3)
O5—H5A···O8iii0.82 (2)1.96 (2)2.778 (2)175 (3)
O5—H5B···N10.81 (2)2.16 (2)2.942 (2)164 (3)
O6—H6A···O7v0.79 (2)1.99 (2)2.7629 (18)165 (3)
O6—H6B···O3iv0.82 (2)2.14 (2)2.9358 (19)161 (3)
O7—H7A···O10.80 (2)2.00 (2)2.7872 (16)169 (3)
O8—H8A···O2vi0.79 (2)1.97 (2)2.7435 (18)166 (3)
O8—H8B···O10.79 (2)1.97 (2)2.7487 (18)170 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y1/2, z; (vi) x+1, y+1, z.
(IV) hexaaquacobalt(II) bis(5-aminonaphthalene-1-sulfonate) dihydrate top
Crystal data top
[Co(H2O)6](C10H8NO3S)2·2H2OZ = 2
Mr = 647.53F(000) = 674
Triclinic, P1Dx = 1.582 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.013 (2) ÅCell parameters from 1152 reflections
b = 8.710 (3) Åθ = 3.1–24.6°
c = 22.385 (7) ŵ = 0.86 mm1
α = 89.394 (8)°T = 150 K
β = 83.909 (8)°Plate, red
γ = 88.271 (8)°0.41 × 0.18 × 0.02 mm
V = 1359.1 (7) Å3
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
5584 independent reflections
Radiation source: fine-focus sealed tube4971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(TWINABS; Sheldrick 2007)
h = 99
Tmin = 0.702, Tmax = 0.983k = 1111
8586 measured reflectionsl = 029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157Only H-atom coordinates refined
S = 1.12 w = 1/[σ2(Fo2) + (0.1514P)2 + 50.7497P]
where P = (Fo2 + 2Fc2)/3
5525 reflections(Δ/σ)max < 0.001
445 parametersΔρmax = 0.77 e Å3
35 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Co(H2O)6](C10H8NO3S)2·2H2Oγ = 88.271 (8)°
Mr = 647.53V = 1359.1 (7) Å3
Triclinic, P1Z = 2
a = 7.013 (2) ÅMo Kα radiation
b = 8.710 (3) ŵ = 0.86 mm1
c = 22.385 (7) ÅT = 150 K
α = 89.394 (8)°0.41 × 0.18 × 0.02 mm
β = 83.909 (8)°
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
5584 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick 2007)
4971 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.983Rint = 0.052
8586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05835 restraints
wR(F2) = 0.157Only H-atom coordinates refined
S = 1.12 w = 1/[σ2(Fo2) + (0.1514P)2 + 50.7497P]
where P = (Fo2 + 2Fc2)/3
5525 reflectionsΔρmax = 0.77 e Å3
445 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.50000.0200 (7)
Co20.00000.50000.00000.0244 (7)
S10.4555 (5)0.2457 (4)0.11300 (18)0.0246 (9)
S20.5592 (5)0.7446 (4)0.38705 (17)0.0199 (8)
N10.180 (2)0.3611 (17)0.3963 (7)0.033 (3)
H1A0.08 (2)0.40 (2)0.417 (8)0.050*
H1B0.284 (18)0.41 (2)0.399 (10)0.050*
N21.020 (2)0.8713 (17)0.1234 (7)0.030 (3)
H2A0.919 (18)0.89 (2)0.105 (8)0.044*
H2B1.11 (2)0.933 (18)0.119 (9)0.044*
O10.2885 (15)0.1628 (13)0.0991 (5)0.028 (3)
O20.4453 (16)0.4070 (13)0.0942 (6)0.031 (3)
O30.6342 (16)0.1693 (14)0.0881 (6)0.032 (3)
O40.5509 (15)0.9053 (12)0.4040 (5)0.027 (2)
O50.7139 (16)0.6596 (12)0.4130 (5)0.026 (2)
O60.3770 (15)0.6707 (12)0.4018 (5)0.025 (2)
O70.1795 (18)0.0913 (14)0.4407 (6)0.031 (3)
H7A0.22 (3)0.179 (10)0.440 (10)0.047*
H7B0.27 (2)0.04 (2)0.431 (9)0.047*
O80.0222 (15)0.2258 (13)0.4624 (5)0.028 (3)
H8A0.066 (15)0.24 (2)0.443 (7)0.041*
H8B0.120 (13)0.25 (2)0.442 (7)0.041*
O90.2256 (18)0.0738 (15)0.4455 (7)0.042 (4)
H9A0.23 (3)0.162 (10)0.434 (10)0.063*
H9B0.328 (17)0.03 (2)0.434 (10)0.063*
O100.2627 (17)0.4158 (15)0.0402 (6)0.036 (3)
H10A0.360 (17)0.467 (17)0.045 (10)0.054*
H10B0.30 (2)0.331 (11)0.053 (9)0.054*
O110.0215 (19)0.2932 (17)0.0470 (7)0.047 (4)
H11A0.126 (15)0.26 (3)0.057 (9)0.071*
H11B0.04 (2)0.28 (3)0.075 (7)0.071*
O120.146 (2)0.5974 (18)0.0641 (7)0.052 (4)
H12A0.23 (3)0.55 (2)0.079 (10)0.077*
H12B0.10 (3)0.66 (2)0.088 (8)0.077*
O130.369 (2)0.6311 (14)0.5393 (6)0.044 (3)
H13A0.30 (3)0.560 (19)0.551 (11)0.067*
H13B0.39 (3)0.62 (3)0.502 (3)0.067*
O140.673 (3)0.894 (2)0.0316 (9)0.056 (5)*0.80
O14B0.539 (16)0.862 (12)0.035 (5)0.09 (3)*0.20
C10.458 (2)0.2449 (17)0.1920 (7)0.021 (3)
C20.618 (2)0.1841 (19)0.2148 (8)0.029 (4)
H20.717 (18)0.143 (19)0.187 (6)0.034*
C30.631 (2)0.1841 (19)0.2762 (8)0.030 (4)
H30.747 (15)0.15 (2)0.291 (8)0.036*
C40.487 (3)0.2445 (19)0.3149 (8)0.030 (4)
H40.50 (3)0.24 (2)0.357 (3)0.036*
C50.162 (2)0.3683 (17)0.3338 (7)0.026 (3)
C60.002 (2)0.4263 (19)0.3112 (8)0.032 (4)
H60.099 (19)0.465 (19)0.339 (7)0.038*
C70.013 (2)0.4282 (19)0.2503 (8)0.030 (4)
H70.126 (16)0.46 (2)0.234 (8)0.036*
C80.130 (2)0.3698 (18)0.2092 (7)0.025 (3)
H80.12 (2)0.38 (2)0.168 (3)0.029*
C90.301 (2)0.3080 (16)0.2305 (7)0.020 (3)
C100.317 (2)0.3059 (16)0.2932 (7)0.023 (3)
C110.613 (2)0.7393 (17)0.3078 (7)0.020 (3)
C120.483 (2)0.6802 (17)0.2745 (8)0.024 (3)
H120.371 (15)0.646 (19)0.297 (7)0.029*
C130.516 (2)0.6775 (19)0.2115 (8)0.028 (4)
H130.413 (18)0.634 (19)0.194 (7)0.033*
C140.679 (2)0.7387 (18)0.1833 (7)0.026 (3)
H140.70 (2)0.73 (2)0.141 (3)0.031*
C150.985 (2)0.8724 (17)0.1869 (7)0.023 (3)
C161.117 (2)0.9292 (18)0.2200 (8)0.029 (4)
H161.226 (17)0.969 (19)0.196 (7)0.034*
C171.090 (2)0.9243 (17)0.2828 (8)0.025 (3)
H171.183 (19)0.969 (18)0.304 (7)0.030*
C180.930 (2)0.8646 (17)0.3131 (7)0.022 (3)
H180.92 (2)0.862 (19)0.355 (2)0.026*
C190.788 (2)0.8027 (16)0.2800 (6)0.018 (3)
C200.816 (2)0.8043 (17)0.2159 (7)0.023 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0173 (15)0.0191 (16)0.0231 (16)0.0013 (11)0.0002 (11)0.0021 (11)
Co20.0245 (17)0.0258 (17)0.0228 (17)0.0045 (12)0.0019 (12)0.0007 (12)
S10.022 (2)0.024 (2)0.027 (2)0.0019 (15)0.0005 (15)0.0002 (16)
S20.0184 (18)0.0177 (19)0.023 (2)0.0004 (13)0.0004 (14)0.0037 (14)
N10.041 (9)0.028 (8)0.029 (8)0.004 (6)0.005 (7)0.001 (6)
N20.030 (8)0.033 (8)0.025 (7)0.007 (6)0.003 (6)0.003 (6)
O10.025 (6)0.028 (6)0.034 (7)0.007 (5)0.004 (5)0.005 (5)
O20.026 (6)0.026 (6)0.040 (7)0.005 (5)0.002 (5)0.009 (5)
O30.027 (6)0.031 (7)0.036 (7)0.004 (5)0.004 (5)0.005 (5)
O40.024 (6)0.023 (6)0.032 (6)0.002 (4)0.002 (5)0.007 (5)
O50.031 (6)0.023 (6)0.025 (6)0.002 (5)0.003 (5)0.000 (5)
O60.023 (6)0.025 (6)0.026 (6)0.003 (4)0.004 (5)0.002 (5)
O70.034 (7)0.024 (6)0.037 (7)0.004 (5)0.013 (6)0.008 (5)
O80.021 (6)0.028 (6)0.035 (7)0.004 (5)0.006 (5)0.009 (5)
O90.031 (7)0.031 (7)0.056 (9)0.011 (5)0.022 (6)0.018 (6)
O100.032 (7)0.030 (7)0.042 (8)0.004 (5)0.012 (6)0.000 (6)
O110.029 (7)0.046 (8)0.066 (10)0.010 (6)0.004 (6)0.029 (7)
O120.056 (10)0.043 (9)0.062 (10)0.015 (7)0.033 (8)0.021 (7)
O130.071 (10)0.021 (7)0.038 (8)0.010 (6)0.005 (7)0.003 (6)
C10.023 (8)0.018 (8)0.023 (8)0.005 (6)0.005 (6)0.000 (6)
C20.023 (8)0.023 (8)0.039 (10)0.000 (6)0.001 (7)0.001 (7)
C30.024 (8)0.025 (9)0.041 (10)0.005 (7)0.008 (7)0.003 (7)
C40.033 (9)0.026 (9)0.033 (9)0.010 (7)0.010 (7)0.003 (7)
C50.033 (9)0.010 (7)0.032 (9)0.008 (6)0.004 (7)0.001 (6)
C60.028 (9)0.024 (9)0.040 (10)0.004 (7)0.012 (7)0.006 (7)
C70.026 (8)0.022 (8)0.041 (10)0.002 (6)0.002 (7)0.002 (7)
C80.027 (8)0.023 (8)0.025 (8)0.002 (6)0.006 (7)0.006 (6)
C90.019 (7)0.012 (7)0.028 (8)0.004 (5)0.001 (6)0.002 (6)
C100.025 (8)0.012 (7)0.030 (8)0.006 (6)0.001 (7)0.003 (6)
C110.023 (7)0.017 (7)0.018 (7)0.006 (6)0.001 (6)0.001 (6)
C120.016 (7)0.018 (8)0.038 (9)0.002 (6)0.002 (6)0.005 (6)
C130.023 (8)0.029 (9)0.034 (9)0.006 (6)0.013 (7)0.002 (7)
C140.031 (9)0.023 (8)0.023 (8)0.001 (6)0.003 (7)0.006 (6)
C150.026 (8)0.015 (7)0.027 (8)0.003 (6)0.000 (6)0.000 (6)
C160.021 (8)0.025 (8)0.037 (10)0.001 (6)0.006 (7)0.004 (7)
C170.021 (8)0.018 (8)0.038 (9)0.005 (6)0.008 (7)0.002 (6)
C180.028 (8)0.017 (7)0.020 (8)0.000 (6)0.004 (6)0.004 (6)
C190.019 (7)0.015 (7)0.020 (7)0.004 (5)0.001 (6)0.001 (5)
C200.021 (8)0.016 (7)0.031 (9)0.003 (6)0.003 (6)0.000 (6)
Geometric parameters (Å, º) top
Co1—O92.009 (11)O12—H12B0.81 (5)
Co1—O9i2.009 (11)O13—H13A0.82 (5)
Co1—O72.061 (12)O13—H13B0.83 (5)
Co1—O7i2.061 (12)C1—C21.37 (2)
Co1—O8i2.142 (11)C1—C91.43 (2)
Co1—O82.142 (11)C2—C31.39 (3)
Co2—O122.055 (14)C2—H20.95 (5)
Co2—O12ii2.055 (13)C3—C41.36 (3)
Co2—O112.078 (12)C3—H30.94 (5)
Co2—O11ii2.078 (12)C4—C101.42 (2)
Co2—O10ii2.079 (11)C4—H40.94 (5)
Co2—O102.079 (11)C5—C61.36 (2)
S1—O11.457 (11)C5—C101.44 (2)
S1—O31.460 (12)C6—C71.38 (3)
S1—O21.465 (12)C6—H60.94 (5)
S1—C11.771 (16)C7—C81.38 (2)
S2—O41.452 (11)C7—H70.95 (5)
S2—O61.453 (11)C8—C91.42 (2)
S2—O51.462 (12)C8—H80.94 (5)
S2—C111.776 (15)C9—C101.42 (2)
N1—C51.42 (2)C11—C121.36 (2)
N1—H1A0.86 (5)C11—C191.43 (2)
N1—H1B0.86 (5)C12—C131.40 (2)
N2—C151.42 (2)C12—H120.94 (5)
N2—H2A0.86 (5)C13—C141.36 (2)
N2—H2B0.86 (5)C13—H130.95 (5)
O7—H7A0.82 (5)C14—C201.41 (2)
O7—H7B0.82 (5)C14—H140.95 (5)
O8—H8A0.82 (5)C15—C161.36 (2)
O8—H8B0.82 (5)C15—C201.43 (2)
O9—H9A0.81 (5)C16—C171.40 (2)
O9—H9B0.81 (5)C16—H160.95 (5)
O10—H10A0.82 (5)C17—C181.36 (2)
O10—H10B0.81 (5)C17—H170.95 (5)
O11—H11A0.81 (5)C18—C191.43 (2)
O11—H11B0.82 (5)C18—H180.94 (5)
O12—H12A0.82 (5)C19—C201.43 (2)
O9—Co1—O9i179.998 (2)Co2—O12—H12B126 (10)
O9—Co1—O789.0 (6)H12A—O12—H12B108 (9)
O9i—Co1—O791.0 (6)H13A—O13—H13B105 (10)
O9—Co1—O7i91.0 (6)C2—C1—C9121.1 (15)
O9i—Co1—O7i89.0 (6)C2—C1—S1117.8 (12)
O7—Co1—O7i180.0 (6)C9—C1—S1121.1 (12)
O9—Co1—O8i87.0 (5)C1—C2—C3120.6 (16)
O9i—Co1—O8i93.0 (5)C1—C2—H2117 (10)
O7—Co1—O8i84.1 (5)C3—C2—H2122 (10)
O7i—Co1—O8i95.9 (5)C4—C3—C2120.8 (17)
O9—Co1—O893.0 (5)C4—C3—H3119 (10)
O9i—Co1—O887.0 (5)C2—C3—H3120 (10)
O7—Co1—O895.9 (5)C3—C4—C10120.4 (17)
O7i—Co1—O884.1 (5)C3—C4—H4119 (10)
O8i—Co1—O8179.999 (1)C10—C4—H4121 (10)
O12—Co2—O12ii180.000 (2)C6—C5—N1122.5 (15)
O12—Co2—O1192.1 (7)C6—C5—C10119.1 (16)
O12ii—Co2—O1187.9 (7)N1—C5—C10118.3 (15)
O12—Co2—O11ii87.9 (7)C5—C6—C7121.3 (15)
O12ii—Co2—O11ii92.1 (7)C5—C6—H6118 (10)
O11—Co2—O11ii179.999 (1)C7—C6—H6121 (10)
O12—Co2—O10ii92.2 (6)C6—C7—C8122.1 (16)
O12ii—Co2—O10ii87.8 (6)C6—C7—H7122 (10)
O11—Co2—O10ii93.0 (5)C8—C7—H7116 (10)
O11ii—Co2—O10ii87.0 (5)C7—C8—C9118.8 (16)
O12—Co2—O1087.8 (6)C7—C8—H8119 (10)
O12ii—Co2—O1092.2 (6)C9—C8—H8122 (10)
O11—Co2—O1087.0 (5)C10—C9—C8119.2 (14)
O11ii—Co2—O1093.0 (5)C10—C9—C1117.4 (14)
O10ii—Co2—O10179.999 (1)C8—C9—C1123.3 (15)
O1—S1—O3111.7 (7)C9—C10—C4119.6 (15)
O1—S1—O2111.8 (7)C9—C10—C5119.5 (15)
O3—S1—O2111.7 (7)C4—C10—C5120.9 (16)
O1—S1—C1108.1 (7)C12—C11—C19121.3 (14)
O3—S1—C1106.5 (7)C12—C11—S2118.4 (12)
O2—S1—C1106.6 (7)C19—C11—S2120.2 (11)
O4—S2—O6112.4 (6)C11—C12—C13120.7 (14)
O4—S2—O5111.7 (7)C11—C12—H12115 (10)
O6—S2—O5110.9 (7)C13—C12—H12125 (10)
O4—S2—C11106.8 (7)C14—C13—C12119.7 (15)
O6—S2—C11107.6 (7)C14—C13—H13129 (10)
O5—S2—C11107.1 (7)C12—C13—H13112 (10)
C5—N1—H1A111 (10)C13—C14—C20121.6 (15)
C5—N1—H1B102 (10)C13—C14—H14116 (10)
H1A—N1—H1B112 (10)C20—C14—H14122 (10)
C15—N2—H2A114 (10)C16—C15—N2119.7 (14)
C15—N2—H2B99 (10)C16—C15—C20120.3 (15)
H2A—N2—H2B121 (10)N2—C15—C20119.9 (14)
Co1—O7—H7A126 (10)C15—C16—C17120.6 (14)
Co1—O7—H7B122 (10)C15—C16—H16114 (10)
H7A—O7—H7B104 (10)C17—C16—H16126 (10)
Co1—O8—H8A113 (10)C18—C17—C16121.9 (15)
Co1—O8—H8B119 (10)C18—C17—H17120 (10)
H8A—O8—H8B106 (9)C16—C17—H17118 (10)
Co1—O9—H9A121 (10)C17—C18—C19119.2 (14)
Co1—O9—H9B132 (10)C17—C18—H18120 (10)
H9A—O9—H9B107 (9)C19—C18—H18121 (10)
Co2—O10—H10A124 (10)C18—C19—C20119.2 (13)
Co2—O10—H10B131 (10)C18—C19—C11123.3 (13)
H10A—O10—H10B105 (8)C20—C19—C11117.4 (14)
Co2—O11—H11A120 (10)C14—C20—C19119.2 (14)
Co2—O11—H11B120 (10)C14—C20—C15122.1 (15)
H11A—O11—H11B107 (9)C19—C20—C15118.7 (14)
Co2—O12—H12A123 (10)
O1—S1—C1—C2122.7 (12)O4—S2—C11—C12117.4 (13)
O3—S1—C1—C22.6 (14)O6—S2—C11—C123.6 (14)
O2—S1—C1—C2116.9 (12)O5—S2—C11—C12122.8 (12)
O1—S1—C1—C958.3 (13)O4—S2—C11—C1959.9 (13)
O3—S1—C1—C9178.4 (11)O6—S2—C11—C19179.2 (11)
O2—S1—C1—C962.1 (13)O5—S2—C11—C1960.0 (13)
C9—C1—C2—C31 (2)C19—C11—C12—C131 (2)
S1—C1—C2—C3178.1 (12)S2—C11—C12—C13178.1 (12)
C1—C2—C3—C40 (3)C11—C12—C13—C142 (3)
C2—C3—C4—C102 (2)C12—C13—C14—C200 (3)
N1—C5—C6—C7178.3 (15)N2—C15—C16—C17176.7 (15)
C10—C5—C6—C71 (2)C20—C15—C16—C171 (2)
C5—C6—C7—C81 (3)C15—C16—C17—C181 (3)
C6—C7—C8—C91 (2)C16—C17—C18—C191 (2)
C7—C8—C9—C101 (2)C17—C18—C19—C200 (2)
C7—C8—C9—C1179.9 (14)C17—C18—C19—C11179.2 (14)
C2—C1—C9—C100 (2)C12—C11—C19—C18179.3 (15)
S1—C1—C9—C10178.6 (10)S2—C11—C19—C184 (2)
C2—C1—C9—C8178.7 (14)C12—C11—C19—C201 (2)
S1—C1—C9—C82 (2)S2—C11—C19—C20175.8 (11)
C8—C9—C10—C4179.9 (14)C13—C14—C20—C192 (2)
C1—C9—C10—C41 (2)C13—C14—C20—C15178.3 (15)
C8—C9—C10—C51 (2)C18—C19—C20—C14178.0 (14)
C1—C9—C10—C5179.9 (13)C11—C19—C20—C143 (2)
C3—C4—C10—C92 (2)C18—C19—C20—C152 (2)
C3—C4—C10—C5179.2 (15)C11—C19—C20—C15177.5 (13)
C6—C5—C10—C91 (2)C16—C15—C20—C14177.5 (15)
N1—C5—C10—C9178.4 (13)N2—C15—C20—C142 (2)
C6—C5—C10—C4179.9 (15)C16—C15—C20—C192 (2)
N1—C5—C10—C43 (2)N2—C15—C20—C19178.0 (14)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O13iii0.82 (5)1.95 (8)2.741 (18)163 (21)
O8—H8A···O5iv0.82 (5)1.96 (8)2.750 (15)162 (19)
O8—H8B···O6v0.82 (5)2.02 (6)2.832 (15)172 (17)
O9—H9A···N10.81 (5)1.95 (7)2.748 (19)166 (23)
O9—H9B···O4v0.81 (5)1.95 (6)2.757 (16)173 (21)
O10—H10A···O2vi0.82 (5)2.01 (12)2.768 (15)153 (22)
O10—H10B···O14vi0.81 (5)2.02 (13)2.73 (2)144 (21)
O11—H11A···O3vii0.81 (5)1.93 (6)2.740 (16)174 (20)
O11—H11B···O10.82 (5)2.08 (16)2.781 (18)141 (24)
O12—H12A···O20.82 (5)1.98 (7)2.769 (18)165 (22)
O12—H12B···N2vii0.81 (5)2.04 (10)2.82 (2)160 (25)
O13—H13A···O5viii0.82 (5)2.07 (14)2.790 (16)147 (23)
O13—H13B···O60.83 (5)2.29 (9)3.088 (18)163 (23)
Symmetry codes: (iii) x, y+1, z+1; (iv) x1, y1, z; (v) x, y1, z; (vi) x+1, y+1, z; (vii) x1, y, z; (viii) x+1, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H9NO3S·H2O[Mn(H2O)6](C10H8NO3S)2·3H2O[Ni(H2O)6](C10H8NO3S)2·3H2O[Co(H2O)6](C10H8NO3S)2·2H2O
Mr241.26661.55665.32647.53
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P21212Orthorhombic, P21212Triclinic, P1
Temperature (K)150140140150
a, b, c (Å)8.1157 (16), 7.8434 (16), 16.723 (3)8.3263 (3), 22.8436 (7), 7.4940 (2)8.1031 (6), 22.9375 (18), 7.4607 (6)7.013 (2), 8.710 (3), 22.385 (7)
α, β, γ (°)90, 96.90 (3), 9090, 90, 9090, 90, 9089.394 (8), 83.909 (8), 88.271 (8)
V3)1056.8 (4)1425.38 (8)1386.68 (19)1359.1 (7)
Z4222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.300.680.930.86
Crystal size (mm)0.30 × 0.06 × 0.030.35 × 0.20 × 0.080.22 × 0.12 × 0.060.41 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART 6000 CCD area-detector
diffractometer
Bruker SMART 6000 CCD area-detector
diffractometer
Bruker SMART 6000 CCD area-detector
diffractometer
Bruker SMART 6000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS and SAINT-Plus; Bruker, 2003)
Multi-scan
(SADABS and SAINT-Plus; Bruker, 2003)
Multi-scan
(TWINABS; Sheldrick 2007)
Tmin, Tmax0.815, 0.9470.844, 0.9500.702, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9016, 2475, 1957 47963, 6245, 6115 14174, 3435, 3309 8586, 5584, 4971
Rint0.0240.0230.0230.052
(sin θ/λ)max1)0.6710.8150.6670.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.04 0.028, 0.074, 1.09 0.025, 0.059, 1.10 0.058, 0.157, 1.12
No. of reflections2475624534355525
No. of parameters189250250445
No. of restraints001135
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedOnly H-atom coordinates refined
w = 1/[σ2(Fo2) + (0.0634P)2 + 0.4287P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0534P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0269P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.1514P)2 + 50.7497P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.29, 0.270.55, 0.240.35, 0.270.77, 0.79
Absolute structure?Flack (1983), with 2571 Friedel pairsFlack (1983), with 1433 Friedel pairs?
Absolute structure parameter?0.103 (9)0.072 (10)?

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2000) and local programs.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.95 (3)1.86 (3)2.803 (3)172 (2)
N1—H1B···O1ii0.93 (3)2.01 (3)2.917 (3)162 (2)
N1—H1C···O4iii0.93 (3)1.88 (3)2.801 (3)168 (2)
O4—H4A···O30.87 (4)1.89 (4)2.759 (3)176 (4)
O4—H4B···O2iv0.89 (5)2.29 (4)2.884 (3)124 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
Selected bond lengths (Å) for (II) top
Mn1—O52.1528 (8)Mn1—O62.2137 (8)
Mn1—O42.1699 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.90 (2)2.33 (2)3.1970 (13)161.2 (18)
N1—H1B···O1ii0.84 (2)2.41 (2)3.2251 (12)161.9 (19)
O4—H4A···O8i0.77 (2)1.91 (2)2.6737 (11)174 (2)
O4—H4B···O2iii0.77 (3)2.01 (3)2.7549 (11)162 (2)
O5—H5A···O8ii0.83 (2)1.93 (2)2.7611 (12)175 (2)
O5—H5B···N10.80 (2)2.14 (2)2.9279 (13)167 (2)
O6—H6A···O7iv0.80 (3)1.99 (3)2.7698 (11)168 (3)
O6—H6B···O3iii0.88 (2)2.04 (2)2.9054 (11)169 (2)
O7—H7A···O10.77 (2)2.04 (2)2.7947 (10)169 (3)
O8—H8A···O2v0.78 (3)1.98 (3)2.7462 (11)168 (2)
O8—H8B···O10.77 (2)1.99 (2)2.7421 (11)165 (2)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+3/2, z+1; (iv) x+3/2, y+1/2, z+2; (v) x+1, y+1, z.
Selected bond lengths (Å) for (III) top
Ni1—O52.0396 (13)Ni1—O62.0844 (13)
Ni1—O42.0414 (13)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.884 (16)2.356 (17)3.206 (2)161 (2)
N1—H1B···O1ii0.858 (17)2.427 (18)3.270 (2)168 (2)
O4—H4A···O8i0.809 (16)1.872 (17)2.673 (2)171 (2)
O4—H4B···O2iii0.826 (17)1.954 (18)2.7561 (18)164 (3)
O5—H5A···O8ii0.824 (17)1.957 (17)2.778 (2)175 (3)
O5—H5B···N10.811 (17)2.155 (18)2.942 (2)164 (3)
O6—H6A···O7iv0.794 (17)1.989 (18)2.7629 (18)165 (3)
O6—H6B···O3iii0.823 (17)2.144 (19)2.9358 (19)161 (3)
O7—H7A···O10.796 (16)2.001 (17)2.7872 (16)169 (3)
O8—H8A···O2v0.788 (17)1.971 (18)2.7435 (18)166 (3)
O8—H8B···O10.793 (16)1.965 (17)2.7487 (18)170 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z; (v) x+1, y+1, z.
Selected bond lengths (Å) for (IV) top
Co1—O92.009 (11)Co2—O122.055 (14)
Co1—O72.061 (12)Co2—O112.078 (12)
Co1—O82.142 (11)Co2—O102.079 (11)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O13i0.82 (5)1.95 (8)2.741 (18)163 (21)
O8—H8A···O5ii0.82 (5)1.96 (8)2.750 (15)162 (19)
O8—H8B···O6iii0.82 (5)2.02 (6)2.832 (15)172 (17)
O9—H9A···N10.81 (5)1.95 (7)2.748 (19)166 (23)
O9—H9B···O4iii0.81 (5)1.95 (6)2.757 (16)173 (21)
O10—H10A···O2iv0.82 (5)2.01 (12)2.768 (15)153 (22)
O10—H10B···O14iv0.81 (5)2.02 (13)2.73 (2)144 (21)
O11—H11A···O3v0.81 (5)1.93 (6)2.740 (16)174 (20)
O11—H11B···O10.82 (5)2.08 (16)2.781 (18)141 (24)
O12—H12A···O20.82 (5)1.98 (7)2.769 (18)165 (22)
O12—H12B···N2v0.81 (5)2.04 (10)2.82 (2)160 (25)
O13—H13A···O5vi0.82 (5)2.07 (14)2.790 (16)147 (23)
O13—H13B···O60.83 (5)2.29 (9)3.088 (18)163 (23)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds