Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two products from the proton-transfer reactions of benzene-1,2,4,5-tetra­carb­oxy­lic acid (pyromellitic acid, PMA) with 2,2'-bi­imidazole and 4,4'-dimethyl-2,2'-bipyridine, namely 2,2'-bi­imidazole-3,3'-diium 2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ate, C6H8N42+,C10H4O82-, (I), and 4-methyl-2-(4-methyl­pyridin-2-yl)pyridinium 2,4,5-tri­carb­oxy­benzoate mono­hydrate, C12H13N2+·C10H5O8-·H2O, (II), have been prepared and their structures determined. Both compounds crystallize in the space group P\overline{1}. The asymmetric unit of (I) is composed of two independent ion pairs. Both the 2,2'-bi­imidazole-3,3'-diium dication and the PMA2- anion are located on special positions (inversion centres). The protonated 2,2'-bi­imidazole-3,3'-diium ring H atoms are involved in hydrogen bonding with carboxyl­ate O atoms to form one-dimensional hydrogen-bonded chain structures. Adjacent chains are further linked via carbox­yl-carboxyl O-H...O hydrogen bonding, resulting in a two-dimensional supra­molecular sheet with the R65(34) motif extending in the (1\overline{2}1) plane. In (II), classical O-H...O hydrogen-bond-linked anion-anion units are extended into a one-dimensional chain running parallel to the [100] direction, giving an R22(8)R44(30) motif. The chains are connected by water-carboxyl O-H...O hydrogen bonds to form a two-dimensional network parallel to the (01\overline{1}) plane. The 4-methyl-2-(4-methyl­pyridin-2-yl)pyridinium cations lie between the two-dimensional supra­molecular layers linked via N-H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113030801/sf3209sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030801/sf3209Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030801/sf3209IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113030801/sf3209Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113030801/sf3209IIsup5.cml
Supplementary material

CCDC references: 787056; 971187

Introduction top

The supra­molecular assembly of metal–organic coordination frameworks has attracted increasing attention due to their fascinating structure, as well as their potential applications in materials science (Batten & Robson, 1998a; Pan et al., 2004; Zhang et al., 2010; Zhong et al., 2011). It is well established that hydrogen bonds play vital roles in molecular recognition and supra­molecular chemistry (Batten & Robson, 1998b; Juan et al., 2002; Qiu et al., 2008), owing to its moderately directional inter­molecular inter­action can effectively control short-range packing. Polycarboxyl­ate acids, such as benzene-1,2,4,5-tetra­carb­oxy­lic acid (Li et al., 2003; Oscar et al., 2008), benzene-1,3,5-tri­carb­oxy­lic acid (Pasdar et al., 2011) and benzene-1,2,3,4-tetra­carb­oxy­lic acid (pyromellitic acid, PMA; Zhang et al., 2010), have been widely applied in constructing inter­esting supra­molecule networks because they act not only as hydrogen-bond accepters but also as hydrogen-bond donors, depending upon the number of deprotonated carb­oxy­lic acid groups. Many transition metal complexes with benzene-1,2,4,5-tetra­carboxyl­ate have been previously synthesized and reported, such as the zinc (Rochon & Massarweh, 2000), nickel (Poleti et al., 1988; Murugavel et al., 2002), manganese (Hu et al., 2001), cobalt (Cheng et al., 2002), copper (Cao et al., 2002), silver (Jaber et al., 1997) and iron complexes (Chu et al., 2001). As far as we know, reports on benzene-1,2,4,5-tetra­carboxyl­ate salts with organic Lewis bases are few, e.g. guanidinium pyromellitate trihydrate monoperhydrate (Adams & Ramdas, 1978), 2,2'-bipyridinium hemi[benzene-1,2,4,5-tetra­carboxyl­ate(2-)] hemi(benzene-1,2,4,5-tetra­carb­oxy­lic acid) (Mrvos-Sermek et al., 1996), guanidinuium pyromellite (Sun et al., 2002a), imidazolium tri­hydrogen benzene-1,2,4,5-tetra­carboxyl­ate (Sun et al., 2002b), 6,21-di­aza-3,9,18,24-tetra­azoniatri­cyclo­[22.2.2.211,14]triaconta-11,13,24,26 (1),27,29-hexa­ene benzene-1,2,4,5-tetra­carboxyl­ate(4-) hexahydrate (Zhu et al., 2002), ethyl­enedi­ammonium bis­(tri­hydrogen benzene-1,2,4,5-tetra­carboxyl­ate) dehydrate (Li et al., 2006). Recently, we attempted to utilize polycarboxyl­ate acids and N-containing bidentate ligands as mixed ligands for the design of coordination networks. The title compounds, 2,2'-bi­imidazole and 4,4'-di­methyl-2,2'-bi­pyridine, namely 2,2'-bi­imidazole-3,3'-diium 2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ate, (I), and 4-methyl-2-(4-methyl­pyridin-2-yl)pyridinium 2,4,5-tri­carb­oxy­benzoate monohydrate, (II), were obtained unintentionally during an attempt to synthesize mixed-ligand transition-metal complexes with PMA and N-containing ligands via a solvothermal reaction. Their crystal structures have not been reported previously.

Experimental top

Synthesis and crystallization top

2,2'-Bi­imidazole (0.1 mmol, 0.0134 g), benzene-1,2,4,5-tetra­carb­oxy­lic acid (0.1 mmol, 0.0254 g), ZnSO4.7H2O (0.1 mmol, 0.0287 g) and water (2.0 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h, whereupon colourless block-shaped crystals of (I) were obtained. Colourless block-shaped crystal of (II) were obtained by a procedure similar to that described previously, using 4,4'-di­methyl-2,2'-bi­pyridine instead of 2,2'-bi­imidazole.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bound to C, N and O atoms were were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C); N—H = 0.96 Å and Uiso(H) = 1.2Ueq(N), and O—H = 0.82 Å and Uiso(O) = 1.5Ueq(C). The H atoms of water molecules were located in difference Fourier maps and placed in calculated positions so as to form a reasonable hydrogen-bond network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distance [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms. with Uiso(H) = 1.5Ueq(C).

Results and discussion top

In both title compunds, (I) and (II), proton transfer has occurred. However, the differences between the structures are significant so the discussion considers each structure individually. Compound (I) crystallizes in the space group P\-1. Its asymmetric unit consists of two halves of the 2,2'-bi­imidazole­diium dication protonated at imidazole ring N atom and two halves of the benzene-1,2,4,5-tetra­carboxyl­icate dianion (PMA2-) with two of the carb­oxy­lic acid groups deprotonated (Fig. 1). In (I), the two PMA2- anions lie on crystallographic centres of symmetry at (0, 1/2, 1/2) and (1/2, 1/2, 0), respectively. They are connected by an O1—H1···O7 hydrogen bond (Table 2). The two 2,2'-bi­imidazole-3,3'-diium dications lie on crystallographic centres of symmetry at (1/2, 0, 0) and (0, 1/2, 0), respectively, and are linked by N3—H3A···O3, N4—H4B···O4ii, N1—H1B···O7iv and N2—H2B···O8iii hydrogen bonds with adjacent PMA2- dianions (Fig. 1; see Table 2 for symmetry codes and geometric details). The environments of the two indepent 2,2'-bi­imidazole-3,3'-diium cations is similar. In contrast, both indepent PMA2- anions are different in that only one anion has an intra­molecular O—H···O hydrogen bond (O6i—H6i···O8). The bond lengths and angles of the benzene-1,2,4,5-tetra­carboxyl­icate dianion are comparable with values reported previously in guanidinuium pyromellite (Sun et al., 2002a). The benzene rings of the two PMA2- dianions are planar except for the carboxyl groups. The plane defined by the COO- groups (C17/O7/O8 and C11/O3/O4) and the least-squares plane of the benzene ring subtend a dihedral angles of 32.2 (1) and 60.6 (1)°, respectively, while the plane defined by the COOH groups (C13/O5/O6 and C7/O1/O2) are oriented at 15.2 (1) and 25.4 (1)°, respectively. The two imidazole rings of the two 2,2'-bi­imidazole-3,3'-diium cations are almost coplanar, the mean deviations from the least-squares plane being 0.0126 (5) and 0.0055 (4) Å, respectively. The dihedral angle of the mean planes of the two 2,2'-bi­imidazole-3,3'-diium cations is 51.7 (1)°. The C—N and C—C bond lengths in the 2,2'-bi­imidazole-3,3'-diium cation are consistent with those usually found (Liu & Zhu, 2010). The dication inter­acts with two neighbouring PMA2- anions via pairs of asymmetric inter­molecular N—H···O hydrogen bonds forming a primary cyclic R22(9) association (Bernstein et al., 1995) (Fig. 2). These aggregate units generate a one-dimensional supra­molecular chain. Adjacent chains are further linked via carboxyl–carboxyl O—H···O hydrogen bonds, resulting in a two-dimensional supra­molecular sheet extending parallel to the (121) plane. Within the sheet, the R65(34) motif can be discerned (Fig. 2).

The hydrate, (II), crystallize in the space group P1. The asymmetric unit of (II) is comprised of a 4-methyl-2-(4-methyl­pyridin-2-yl)pyridinium cation, a 2,4,5-tri­carb­oxy­benzoate anion and a water molecule (Fig. 3). Only one carboxyl group of the benzene-1,2,3,4-tetra­carb­oxy­lic acid molecule is deprotonated, which is different from that observed in the nonsubstituted 2,2'-bi­pyridine analogue (Mrvos-Sermek et al., 1996). Proton transfer from a carb­oxy­lic acid group of PMA to a ring N atom (N2) of 4,4'-di­methyl-2,2'-bi­pyridine is manifested in an increased inter­nal angle [C10—N2—C6 = 123.4 (2)°] of the pyridine ring, compared with that in unprotonated N1 atom of the pyridine ring [C1—N1—C5 = 116.7 (2)°]. Protonated atom N2 diminishing the steric effect of the lone pair of electrons is responsible for the slightly increased C10—N2—C6 angle (Fig. 3). The two rings of the cation are twisted slightly from away each other, forming a dihedral angle of 7.03 (8)°. The benzene ring of the PMA- anion and the two pyridine rings (C1–C5/N1 and C6–C10/N2) of the cation are oriented at 6.22 (8) and 10.99 (9)°, respectively. The dihedral angles between the least-squares plane of the benzene ring of PMA- and the carb­oxy­lic acid groups (COOH) are 13.35 (7) (O1/C21/O2), 31.20 (2) (O7/C20/O8) and 53.04 (9)° (O5/C19/O6). The O3/C22/O4 carboxyl­ate group (COO-) is twisted by 16.22 (1)° with respect to the benzene ring, which is similar to the value found in a previously reported PMA- compound (Sun et al., 2002b). The PMA- anions form a one-dimensional chain along the [100] direction via O6iv—H6ii···O3v, O8—H8···O7iv and O8iv—H8iv···O7 hydrogen bonds, enclosing R22(8)R44(30) rings (Fig. 4; see Table 3 for symmetry codes). Such chains are further joined together through water–carboxyl­ate O—H···O hydrogen bonds, viz O1Wi—H1WAi···O5 and O1Wi—H1WBi···O4vii, to yield a two-dimensional supra­molecular layer extending in the (011) plane, involving R44(20) and R66(26) motifs (Fig. 4 and Table 3). The 4-methyl-2-(4-methyl­pyridin-2-yl)pyridinium cations are linked to the PMA- anions through N2—H2···O3ii hydrogen bonds and lie between the above-mentioned two-dimensional supra­molecular layers (Table 3).

Related literature top

For related literature, see: Adams & Ramdas (1978); Batten & Robson (1998a, 1998b); Cao et al. (2002); Cheng et al. (2002); Chu et al. (2001); Hu et al. (2001); Jaber et al. (1997); Juan et al. (2002); Li et al. (2003, 2006); Liu & Zhu (2010); Mrvos-Sermek et al. (1996); Murugavel et al. (2002); Oscar et al. (2008); Pan et al. (2004); Pasdar et al. (2011); Poleti et al. (1988); Qiu et al. (2008); Rochon & Massarweh (2000); Sun et al. (2002a, 2002b); Zhang et al. (2010); Zhong et al. (2011); Zhu et al. (2002).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 35% probability level. The dashed lines represent O—H···O and N—H···O intra- and intermolecular interactions. H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z; (v) -x+2, -y+1, -z+1; (vi) -x, -y+2, -z+1.]
[Figure 2] Fig. 2. A view of the two-dimensional hydrogen-bonded network of (I) along the b axis, showing the formation of R22(9) and R65(34) motifs. The dashed lines represent O—H···O interactions. [Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z; (iii) -x, -y+1, -z+1; (v) -x+2, -y+1, -z+1; (vii) x, -y+1, z.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The dashed lines represent O—H···O intramolecular interactions.
[Figure 4] Fig. 4. The two-dimensional hydrogen-bonded structure of (II), extending parallel to the (102) crystallographic plane, showing the formation of R22(8), R44(30), R44(20) and R66(26) motifs. Hydrogen bonds are represented by dotted lines. [Symmetry codes: (i) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x+2, -y+1, -z; (vi) x+1, y, z; (vii) -x, -y+2, -z+1; (viii) x, y+1, z; (ix) -x+1, -y+2, -z+1; (x) -x+1, -y+1, -z+1.]
(I) 2-(Imidazol-1-ium-2-yl)imidazol-1-ium 2,5-dicarboxybenzene-1,4-dicarboxylate top
Crystal data top
C6H8N42+·C10H4O82Z = 2
Mr = 388.30F(000) = 400
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2246 (16) ÅCell parameters from 3731 reflections
b = 8.7495 (17) Åθ = 3.3–27.5°
c = 11.454 (2) ŵ = 0.13 mm1
α = 100.67 (3)°T = 223 K
β = 97.26 (3)°Block, colourless
γ = 94.68 (3)°0.40 × 0.27 × 0.20 mm
V = 798.8 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube2808 reflections with I > σ(I)
Graphite Monochromator monochromatorRint = 0.032
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 119
Tmin = 0.720, Tmax = 1.000l = 1314
7722 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3595 reflectionsΔρmax = 0.35 e Å3
254 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (7)
Crystal data top
C6H8N42+·C10H4O82γ = 94.68 (3)°
Mr = 388.30V = 798.8 (3) Å3
Triclinic, P1Z = 2
a = 8.2246 (16) ÅMo Kα radiation
b = 8.7495 (17) ŵ = 0.13 mm1
c = 11.454 (2) ÅT = 223 K
α = 100.67 (3)°0.40 × 0.27 × 0.20 mm
β = 97.26 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
2808 reflections with I > σ(I)
Tmin = 0.720, Tmax = 1.000Rint = 0.032
7722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
3595 reflectionsΔρmin = 0.57 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62669 (16)0.47277 (17)0.63757 (13)0.0491 (4)
H10.54110.42940.65160.074*
O20.62998 (16)0.24608 (15)0.51284 (12)0.0423 (4)
O30.65637 (14)0.31690 (14)0.27534 (11)0.0352 (3)
O40.83769 (16)0.14191 (15)0.27634 (12)0.0417 (3)
O50.82217 (15)0.24782 (15)0.95079 (12)0.0384 (3)
O60.94434 (13)0.42861 (15)1.10085 (10)0.0320 (3)
H60.92270.50871.14300.048*
O70.35869 (14)0.30795 (14)0.68918 (10)0.0321 (3)
O80.13262 (13)0.33080 (14)0.77385 (10)0.0312 (3)
N10.20074 (17)1.10573 (16)0.48835 (13)0.0305 (3)
H1B0.22891.17480.55330.037*
N20.06550 (17)0.91666 (16)0.35546 (12)0.0285 (3)
H2B0.00880.84210.31980.034*
N30.43654 (16)0.15350 (16)0.11289 (12)0.0272 (3)
H3A0.51700.18080.17080.033*
N40.28846 (16)0.03652 (16)0.05601 (12)0.0268 (3)
H4B0.25940.02430.12500.032*
C10.2026 (2)0.9631 (2)0.31045 (16)0.0350 (4)
H1A0.23190.92130.23630.042*
C20.2880 (2)1.0814 (2)0.39394 (16)0.0373 (4)
H2A0.38761.13610.38820.045*
C30.0645 (2)1.00457 (18)0.46313 (14)0.0255 (4)
C40.2873 (2)0.2127 (2)0.10564 (16)0.0308 (4)
H4A0.25520.29000.16290.037*
C50.1944 (2)0.1398 (2)0.00105 (16)0.0307 (4)
H5A0.08740.15670.02660.037*
C60.43411 (18)0.04627 (18)0.01405 (13)0.0232 (3)
C70.68894 (19)0.3774 (2)0.55609 (14)0.0274 (4)
C80.84615 (18)0.44614 (18)0.52423 (13)0.0229 (3)
C90.89777 (18)0.38360 (18)0.41569 (13)0.0226 (3)
C110.78931 (19)0.26791 (19)0.31646 (13)0.0247 (4)
C121.05207 (18)0.43707 (18)0.39288 (14)0.0242 (3)
H12A1.08810.39440.32130.029*
C130.81518 (19)0.36793 (19)1.02148 (14)0.0250 (4)
C140.65816 (18)0.44640 (18)1.01819 (13)0.0208 (3)
C150.54537 (18)0.38997 (18)0.91379 (13)0.0216 (3)
H15A0.57640.31470.85460.026*
C160.39022 (18)0.43945 (17)0.89325 (13)0.0202 (3)
C170.28687 (18)0.35632 (18)0.77638 (13)0.0225 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0338 (7)0.0558 (9)0.0483 (8)0.0146 (6)0.0210 (6)0.0158 (7)
O20.0370 (7)0.0389 (8)0.0459 (8)0.0106 (6)0.0112 (6)0.0017 (6)
O30.0285 (6)0.0337 (7)0.0356 (7)0.0065 (5)0.0115 (5)0.0039 (5)
O40.0375 (7)0.0345 (7)0.0419 (7)0.0114 (6)0.0127 (6)0.0119 (6)
O50.0313 (7)0.0376 (7)0.0391 (7)0.0124 (6)0.0024 (5)0.0098 (6)
O60.0236 (6)0.0388 (7)0.0281 (6)0.0067 (5)0.0024 (5)0.0047 (5)
O70.0273 (6)0.0420 (7)0.0203 (6)0.0038 (5)0.0038 (5)0.0078 (5)
O80.0209 (6)0.0371 (7)0.0287 (6)0.0036 (5)0.0007 (5)0.0063 (5)
N10.0320 (8)0.0297 (8)0.0237 (7)0.0047 (6)0.0012 (6)0.0032 (6)
N20.0273 (7)0.0273 (7)0.0247 (7)0.0008 (6)0.0036 (6)0.0045 (6)
N30.0251 (7)0.0318 (7)0.0210 (6)0.0005 (6)0.0003 (5)0.0005 (6)
N40.0218 (7)0.0282 (7)0.0264 (7)0.0013 (6)0.0037 (5)0.0005 (6)
C10.0330 (9)0.0418 (10)0.0257 (8)0.0001 (8)0.0026 (7)0.0019 (8)
C20.0349 (10)0.0407 (10)0.0313 (9)0.0055 (8)0.0042 (8)0.0013 (8)
C30.0275 (8)0.0230 (8)0.0227 (7)0.0004 (6)0.0034 (6)0.0015 (6)
C40.0287 (9)0.0331 (9)0.0303 (9)0.0051 (7)0.0079 (7)0.0019 (7)
C50.0230 (8)0.0332 (9)0.0361 (9)0.0052 (7)0.0024 (7)0.0074 (7)
C60.0220 (8)0.0227 (8)0.0227 (7)0.0015 (6)0.0003 (6)0.0025 (6)
C70.0222 (8)0.0361 (9)0.0211 (7)0.0015 (7)0.0000 (6)0.0029 (7)
C80.0197 (7)0.0270 (8)0.0208 (7)0.0025 (6)0.0006 (6)0.0029 (6)
C90.0210 (8)0.0237 (8)0.0209 (7)0.0014 (6)0.0012 (6)0.0024 (6)
C110.0233 (8)0.0268 (9)0.0211 (7)0.0007 (7)0.0009 (6)0.0007 (6)
C120.0232 (8)0.0282 (8)0.0192 (7)0.0022 (7)0.0023 (6)0.0002 (6)
C130.0241 (8)0.0289 (9)0.0216 (7)0.0031 (7)0.0030 (6)0.0035 (7)
C140.0199 (7)0.0225 (7)0.0194 (7)0.0002 (6)0.0035 (6)0.0034 (6)
C150.0223 (8)0.0225 (8)0.0182 (7)0.0005 (6)0.0041 (6)0.0002 (6)
C160.0213 (7)0.0203 (7)0.0174 (7)0.0022 (6)0.0028 (6)0.0012 (6)
C170.0220 (8)0.0241 (8)0.0194 (7)0.0002 (6)0.0014 (6)0.0011 (6)
Geometric parameters (Å, º) top
O1—C71.316 (2)C1—C21.351 (2)
O1—H10.8200C1—H1A0.9300
O2—C71.199 (2)C2—H2A0.9300
O3—C111.274 (2)C3—C3i1.443 (3)
O4—C111.231 (2)C4—C51.354 (2)
O5—C131.212 (2)C4—H4A0.9300
O6—C131.312 (2)C5—H5A0.9300
O6—H60.8200C6—C6ii1.438 (3)
O7—C171.2485 (18)C7—C81.497 (2)
O8—C171.2658 (18)C8—C91.394 (2)
N1—C31.336 (2)C8—C12iii1.395 (2)
N1—C21.366 (2)C9—C121.389 (2)
N1—H1B0.8600C9—C111.511 (2)
N2—C31.329 (2)C12—C8iii1.395 (2)
N2—C11.361 (2)C12—H12A0.9300
N2—H2B0.8600C13—C141.511 (2)
N3—C61.327 (2)C14—C151.400 (2)
N3—C41.370 (2)C14—C16iv1.406 (2)
N3—H3A0.8600C15—C161.387 (2)
N4—C61.342 (2)C15—H15A0.9300
N4—C51.366 (2)C16—C14iv1.406 (2)
N4—H4B0.8600C16—C171.515 (2)
C7—O1—H1109.5N4—C6—C6ii124.99 (17)
C13—O6—H6109.5O2—C7—O1124.22 (15)
C3—N1—C2108.77 (14)O2—C7—C8122.18 (16)
C3—N1—H1B125.6O1—C7—C8113.57 (14)
C2—N1—H1B125.6C9—C8—C12iii119.91 (13)
C3—N2—C1109.35 (14)C9—C8—C7119.72 (14)
C3—N2—H2B125.3C12iii—C8—C7120.13 (14)
C1—N2—H2B125.3C12—C9—C8119.12 (14)
C6—N3—C4107.37 (14)C12—C9—C11117.45 (13)
C6—N3—H3A126.3C8—C9—C11123.28 (13)
C4—N3—H3A126.3O4—C11—O3125.17 (15)
C6—N4—C5108.23 (14)O4—C11—C9119.76 (14)
C6—N4—H4B125.9O3—C11—C9114.88 (14)
C5—N4—H4B125.9C9—C12—C8iii120.96 (14)
C2—C1—N2107.01 (16)C9—C12—H12A119.5
C2—C1—H1A126.5C8iii—C12—H12A119.5
N2—C1—H1A126.5O5—C13—O6119.60 (15)
C1—C2—N1107.15 (15)O5—C13—C14119.99 (14)
C1—C2—H2A126.4O6—C13—C14120.41 (14)
N1—C2—H2A126.4C15—C14—C16iv117.36 (14)
N2—C3—N1107.72 (14)C15—C14—C13113.78 (13)
N2—C3—C3i125.75 (18)C16iv—C14—C13128.79 (14)
N1—C3—C3i126.50 (18)C16—C15—C14124.03 (14)
C5—C4—N3108.43 (15)C16—C15—H15A118.0
C5—C4—H4A125.8C14—C15—H15A118.0
N3—C4—H4A125.8C15—C16—C14iv118.61 (14)
C4—C5—N4106.62 (15)C15—C16—C17114.57 (13)
C4—C5—H5A126.7C14iv—C16—C17126.77 (14)
N4—C5—H5A126.7O7—C17—O8122.99 (14)
N3—C6—N4109.35 (14)O7—C17—C16118.47 (13)
N3—C6—C6ii125.66 (18)O8—C17—C16118.39 (13)
C3—N2—C1—C20.7 (2)C12iii—C8—C9—C11174.20 (15)
N2—C1—C2—N10.4 (2)C7—C8—C9—C1111.4 (2)
C3—N1—C2—C10.1 (2)C12—C9—C11—O459.3 (2)
C1—N2—C3—N10.79 (19)C8—C9—C11—O4125.24 (18)
C1—N2—C3—C3i177.1 (2)C12—C9—C11—O3115.92 (17)
C2—N1—C3—N20.6 (2)C8—C9—C11—O359.6 (2)
C2—N1—C3—C3i177.3 (2)C8—C9—C12—C8iii1.2 (3)
C6—N3—C4—C50.05 (18)C11—C9—C12—C8iii174.46 (15)
N3—C4—C5—N40.51 (18)O5—C13—C14—C1514.0 (2)
C6—N4—C5—C40.79 (18)O6—C13—C14—C15166.32 (13)
C4—N3—C6—N40.45 (17)O5—C13—C14—C16iv162.91 (15)
C4—N3—C6—C6ii179.20 (19)O6—C13—C14—C16iv16.8 (2)
C5—N4—C6—N30.78 (17)C16iv—C14—C15—C160.2 (2)
C5—N4—C6—C6ii178.87 (19)C13—C14—C15—C16177.05 (14)
O2—C7—C8—C922.7 (3)C14—C15—C16—C14iv0.2 (2)
O1—C7—C8—C9159.27 (16)C14—C15—C16—C17177.27 (13)
O2—C7—C8—C12iii151.64 (17)C15—C16—C17—O730.5 (2)
O1—C7—C8—C12iii26.4 (2)C14iv—C16—C17—O7152.22 (15)
C12iii—C8—C9—C121.2 (3)C15—C16—C17—O8145.24 (15)
C7—C8—C9—C12173.14 (15)C14iv—C16—C17—O832.0 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O8iv0.821.672.4939 (18)177
O1—H1···O70.821.912.7228 (18)173
N3—H3A···O30.861.752.553 (2)154
N4—H4B···O4ii0.861.892.738 (2)170
N2—H2B···O8v0.861.832.676 (2)168
N1—H1B···O7vi0.861.902.733 (2)162
Symmetry codes: (ii) x+1, y, z; (iv) x+1, y+1, z+2; (v) x, y+1, z+1; (vi) x, y+1, z.
(II) 4-Methyl-2-(4-methylpyridin-2-yl)pyridinium 2,4,5-tricarboxybenzoate monohydrate top
Crystal data top
C12H13N2+·C10H5O8·H2OZ = 2
Mr = 456.40F(000) = 476
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5166 (7) ÅCell parameters from 2637 reflections
b = 9.9970 (8) Åθ = 3.5–29.2°
c = 12.4106 (8) ŵ = 0.12 mm1
α = 77.979 (6)°T = 223 K
β = 73.421 (6)°Block, colourless
γ = 62.655 (8)°0.30 × 0.22 × 0.10 mm
V = 1001.03 (13) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3516 independent reflections
Radiation source: fine-focus sealed tube2681 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1111
Tmin = 0.997, Tmax = 1.000l = 1414
9371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.9963P]
where P = (Fo2 + 2Fc2)/3
3516 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.40 e Å3
Crystal data top
C12H13N2+·C10H5O8·H2Oγ = 62.655 (8)°
Mr = 456.40V = 1001.03 (13) Å3
Triclinic, P1Z = 2
a = 9.5166 (7) ÅMo Kα radiation
b = 9.9970 (8) ŵ = 0.12 mm1
c = 12.4106 (8) ÅT = 223 K
α = 77.979 (6)°0.30 × 0.22 × 0.10 mm
β = 73.421 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
3516 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
2681 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 1.000Rint = 0.041
9371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.39 e Å3
3516 reflectionsΔρmin = 0.40 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8114 (2)0.8651 (2)0.10369 (15)0.0220 (4)
O1W0.2492 (3)0.2056 (3)0.59885 (18)0.0538 (7)
H1WA0.181 (3)0.182 (4)0.6447 (18)0.065*
H1WB0.239 (4)0.211 (5)0.5345 (9)0.065*
O20.6903 (2)1.0820 (2)0.17697 (16)0.0279 (5)
H20.59801.14160.20370.042*
O30.4308 (2)1.2318 (2)0.28801 (16)0.0265 (5)
O40.2056 (2)1.2092 (2)0.37778 (15)0.0257 (5)
O50.0197 (2)0.8706 (2)0.28052 (15)0.0262 (5)
O60.0740 (2)0.8953 (2)0.09100 (14)0.0203 (4)
H60.00920.88480.09990.030*
O70.3591 (2)0.60899 (19)0.10235 (15)0.0206 (4)
O80.5562 (2)0.6521 (2)0.02698 (15)0.0246 (5)
H80.56670.57780.05250.037*
N10.6780 (3)0.3858 (2)0.20738 (17)0.0204 (5)
N20.3984 (2)0.4962 (2)0.35502 (17)0.0183 (5)
H2B0.43070.42060.31720.022*
C10.8219 (3)0.3208 (3)0.1372 (2)0.0243 (6)
H1A0.83720.24670.09500.029*
C20.9488 (3)0.3587 (3)0.1244 (2)0.0232 (6)
H2A1.04650.31040.07440.028*
C30.9308 (3)0.4685 (3)0.1860 (2)0.0207 (6)
C40.7813 (3)0.5371 (3)0.2584 (2)0.0188 (6)
H4A0.76270.61220.30110.023*
C50.6601 (3)0.4928 (3)0.2665 (2)0.0170 (6)
C60.5001 (3)0.5601 (3)0.3440 (2)0.0171 (5)
C70.4475 (3)0.6811 (3)0.4059 (2)0.0191 (6)
H7A0.51560.72660.40030.023*
C80.2937 (3)0.7353 (3)0.4764 (2)0.0213 (6)
C90.1945 (3)0.6648 (3)0.4831 (2)0.0232 (6)
H9A0.09100.69930.52910.028*
C100.2502 (3)0.5444 (3)0.4216 (2)0.0225 (6)
H10A0.18480.49630.42630.027*
C110.2372 (4)0.8670 (3)0.5426 (2)0.0325 (7)
H11A0.12930.88930.58640.049*
H11B0.23750.95360.49170.049*
H11C0.30870.84250.59210.049*
C121.0654 (3)0.5124 (3)0.1764 (2)0.0278 (7)
H12A1.15900.45390.12300.042*
H12B1.09210.49330.24880.042*
H12C1.03110.61800.15150.042*
C130.2554 (3)0.9052 (3)0.1798 (2)0.0150 (5)
C140.4064 (3)0.8186 (3)0.1140 (2)0.0144 (5)
C150.5373 (3)0.8476 (3)0.10869 (19)0.0143 (5)
H15A0.63730.79010.06480.017*
C160.5258 (3)0.9592 (3)0.1662 (2)0.0142 (5)
C170.3742 (3)1.0455 (3)0.2337 (2)0.0158 (5)
C180.2436 (3)1.0146 (3)0.2380 (2)0.0160 (5)
H18A0.14351.07080.28240.019*
C190.1040 (3)0.8861 (3)0.1895 (2)0.0160 (5)
C200.4367 (3)0.6847 (3)0.0611 (2)0.0152 (5)
C210.6861 (3)0.9682 (3)0.1483 (2)0.0167 (6)
C220.3332 (3)1.1702 (3)0.3060 (2)0.0177 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0129 (9)0.0237 (10)0.0311 (11)0.0078 (8)0.0013 (8)0.0110 (8)
O1W0.0750 (18)0.090 (2)0.0300 (12)0.0689 (17)0.0080 (13)0.0186 (14)
O20.0159 (9)0.0246 (11)0.0477 (12)0.0107 (9)0.0012 (9)0.0188 (9)
O30.0236 (10)0.0261 (10)0.0360 (11)0.0155 (9)0.0012 (9)0.0148 (9)
O40.0236 (10)0.0294 (11)0.0246 (10)0.0130 (9)0.0052 (8)0.0143 (8)
O50.0220 (10)0.0417 (12)0.0200 (10)0.0207 (10)0.0011 (8)0.0040 (9)
O60.0133 (9)0.0315 (11)0.0221 (10)0.0136 (8)0.0034 (7)0.0052 (8)
O70.0180 (9)0.0198 (10)0.0267 (10)0.0110 (8)0.0007 (8)0.0083 (8)
O80.0249 (10)0.0276 (11)0.0256 (10)0.0169 (9)0.0064 (8)0.0142 (8)
N10.0201 (12)0.0203 (12)0.0211 (12)0.0098 (10)0.0004 (10)0.0053 (9)
N20.0186 (11)0.0181 (11)0.0191 (11)0.0074 (10)0.0033 (9)0.0055 (9)
C10.0246 (15)0.0211 (14)0.0247 (15)0.0086 (13)0.0004 (12)0.0080 (12)
C20.0195 (14)0.0217 (15)0.0212 (14)0.0054 (12)0.0015 (11)0.0042 (11)
C30.0182 (13)0.0216 (14)0.0202 (14)0.0087 (12)0.0047 (11)0.0033 (11)
C40.0202 (13)0.0180 (14)0.0194 (13)0.0080 (12)0.0069 (11)0.0006 (11)
C50.0189 (13)0.0145 (13)0.0162 (13)0.0069 (11)0.0032 (10)0.0001 (10)
C60.0209 (13)0.0170 (13)0.0154 (12)0.0092 (12)0.0064 (11)0.0003 (10)
C70.0210 (13)0.0176 (13)0.0196 (13)0.0100 (12)0.0036 (11)0.0004 (11)
C80.0265 (14)0.0163 (14)0.0169 (13)0.0062 (12)0.0046 (11)0.0001 (11)
C90.0159 (13)0.0262 (15)0.0193 (14)0.0046 (12)0.0006 (11)0.0020 (12)
C100.0184 (14)0.0281 (15)0.0221 (14)0.0124 (13)0.0011 (11)0.0026 (12)
C110.0351 (17)0.0279 (16)0.0278 (16)0.0099 (14)0.0026 (13)0.0108 (13)
C120.0211 (14)0.0308 (16)0.0317 (16)0.0123 (13)0.0043 (12)0.0027 (13)
C130.0143 (12)0.0171 (13)0.0154 (12)0.0076 (11)0.0051 (10)0.0001 (10)
C140.0146 (12)0.0142 (13)0.0145 (12)0.0064 (11)0.0036 (10)0.0004 (10)
C150.0114 (12)0.0153 (13)0.0140 (12)0.0041 (11)0.0015 (10)0.0020 (10)
C160.0134 (12)0.0141 (13)0.0164 (13)0.0063 (11)0.0043 (10)0.0011 (10)
C170.0177 (13)0.0159 (13)0.0151 (12)0.0078 (11)0.0056 (10)0.0000 (10)
C180.0120 (12)0.0171 (13)0.0179 (13)0.0051 (11)0.0020 (10)0.0041 (10)
C190.0145 (12)0.0132 (13)0.0201 (14)0.0044 (11)0.0031 (11)0.0056 (10)
C200.0112 (12)0.0173 (13)0.0177 (13)0.0048 (11)0.0049 (10)0.0036 (10)
C210.0162 (13)0.0196 (14)0.0162 (13)0.0086 (12)0.0041 (11)0.0025 (11)
C220.0184 (13)0.0163 (13)0.0200 (13)0.0073 (12)0.0066 (11)0.0019 (11)
Geometric parameters (Å, º) top
O1—C211.234 (3)C6—C71.383 (4)
O1W—H1WA0.8201 (10)C7—C81.393 (4)
O1W—H1WB0.8201 (10)C7—H7A0.9300
O2—C211.281 (3)C8—C91.391 (4)
O2—H20.8200C8—C111.499 (4)
O3—C221.281 (3)C9—C101.371 (4)
O4—C221.230 (3)C9—H9A0.9300
O5—C191.212 (3)C10—H10A0.9300
O6—C191.308 (3)C11—H11A0.9600
O6—H60.8200C11—H11B0.9600
O7—C201.231 (3)C11—H11C0.9600
O8—C201.301 (3)C12—H12A0.9600
O8—H80.8200C12—H12B0.9600
N1—C11.339 (3)C12—H12C0.9600
N1—C51.342 (3)C13—C181.379 (3)
N2—C101.334 (3)C13—C141.401 (3)
N2—C61.348 (3)C13—C191.507 (3)
N2—H2B0.8600C14—C151.385 (3)
C1—C21.383 (4)C14—C201.487 (3)
C1—H1A0.9300C15—C161.393 (3)
C2—C31.386 (4)C15—H15A0.9300
C2—H2A0.9300C16—C171.413 (3)
C3—C41.390 (4)C16—C211.519 (3)
C3—C121.502 (4)C17—C181.397 (3)
C4—C51.386 (3)C17—C221.527 (3)
C4—H4A0.9300C18—H18A0.9300
C5—C61.479 (3)
H1WA—O1W—H1WB110.2 (12)H11A—C11—H11B109.5
C21—O2—H2109.5C8—C11—H11C109.5
C19—O6—H6109.5H11A—C11—H11C109.5
C20—O8—H8109.5H11B—C11—H11C109.5
C1—N1—C5116.7 (2)C3—C12—H12A109.5
C10—N2—C6123.4 (2)C3—C12—H12B109.5
C10—N2—H2B118.3H12A—C12—H12B109.5
C6—N2—H2B118.3C3—C12—H12C109.5
N1—C1—C2123.2 (2)H12A—C12—H12C109.5
N1—C1—H1A118.4H12B—C12—H12C109.5
C2—C1—H1A118.4C18—C13—C14118.6 (2)
C1—C2—C3120.1 (2)C18—C13—C19118.0 (2)
C1—C2—H2A120.0C14—C13—C19123.3 (2)
C3—C2—H2A120.0C15—C14—C13118.8 (2)
C2—C3—C4116.9 (2)C15—C14—C20118.2 (2)
C2—C3—C12122.2 (2)C13—C14—C20122.6 (2)
C4—C3—C12120.8 (2)C14—C15—C16122.9 (2)
C5—C4—C3119.5 (2)C14—C15—H15A118.6
C5—C4—H4A120.3C16—C15—H15A118.6
C3—C4—H4A120.3C15—C16—C17118.5 (2)
N1—C5—C4123.5 (2)C15—C16—C21113.1 (2)
N1—C5—C6114.9 (2)C17—C16—C21128.4 (2)
C4—C5—C6121.6 (2)C18—C17—C16117.8 (2)
N2—C6—C7117.9 (2)C18—C17—C22114.3 (2)
N2—C6—C5116.5 (2)C16—C17—C22127.9 (2)
C7—C6—C5125.6 (2)C13—C18—C17123.4 (2)
C6—C7—C8120.7 (2)C13—C18—H18A118.3
C6—C7—H7A119.7C17—C18—H18A118.3
C8—C7—H7A119.7O5—C19—O6126.0 (2)
C9—C8—C7118.4 (2)O5—C19—C13121.4 (2)
C9—C8—C11121.2 (2)O6—C19—C13112.5 (2)
C7—C8—C11120.4 (2)O7—C20—O8124.4 (2)
C10—C9—C8119.7 (2)O7—C20—C14121.6 (2)
C10—C9—H9A120.2O8—C20—C14114.0 (2)
C8—C9—H9A120.2O1—C21—O2120.8 (2)
N2—C10—C9119.9 (2)O1—C21—C16118.6 (2)
N2—C10—H10A120.0O2—C21—C16120.5 (2)
C9—C10—H10A120.0O4—C22—O3122.9 (2)
C8—C11—H11A109.5O4—C22—C17118.2 (2)
C8—C11—H11B109.5O3—C22—C17118.9 (2)
C5—N1—C1—C20.3 (4)C13—C14—C15—C160.2 (4)
N1—C1—C2—C30.1 (4)C20—C14—C15—C16172.5 (2)
C1—C2—C3—C40.6 (4)C14—C15—C16—C170.6 (4)
C1—C2—C3—C12179.2 (2)C14—C15—C16—C21179.3 (2)
C2—C3—C4—C50.6 (4)C15—C16—C17—C180.6 (4)
C12—C3—C4—C5179.2 (2)C21—C16—C17—C18179.1 (2)
C1—N1—C5—C40.3 (4)C15—C16—C17—C22178.5 (2)
C1—N1—C5—C6179.3 (2)C21—C16—C17—C220.0 (4)
C3—C4—C5—N10.2 (4)C14—C13—C18—C170.9 (4)
C3—C4—C5—C6178.7 (2)C19—C13—C18—C17178.5 (2)
C10—N2—C6—C70.5 (4)C16—C17—C18—C130.1 (4)
C10—N2—C6—C5180.0 (2)C22—C17—C18—C13179.3 (2)
N1—C5—C6—N26.7 (3)C18—C13—C19—O551.5 (3)
C4—C5—C6—N2172.3 (2)C14—C13—C19—O5129.2 (3)
N1—C5—C6—C7173.8 (2)C18—C13—C19—O6125.7 (2)
C4—C5—C6—C77.2 (4)C14—C13—C19—O653.7 (3)
N2—C6—C7—C80.5 (4)C15—C14—C20—O7144.7 (2)
C5—C6—C7—C8180.0 (2)C13—C14—C20—O727.6 (4)
C6—C7—C8—C90.1 (4)C15—C14—C20—O831.7 (3)
C6—C7—C8—C11179.6 (2)C13—C14—C20—O8156.0 (2)
C7—C8—C9—C100.5 (4)C15—C16—C21—O112.1 (3)
C11—C8—C9—C10179.8 (3)C17—C16—C21—O1166.4 (2)
C6—N2—C10—C90.1 (4)C15—C16—C21—O2166.5 (2)
C8—C9—C10—N20.6 (4)C17—C16—C21—O214.9 (4)
C18—C13—C14—C150.9 (4)C18—C17—C22—O415.0 (3)
C19—C13—C14—C15178.4 (2)C16—C17—C22—O4164.1 (3)
C18—C13—C14—C20171.4 (2)C18—C17—C22—O3163.5 (2)
C19—C13—C14—C209.3 (4)C16—C17—C22—O317.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.82 (1)2.12 (1)2.916 (3)163 (3)
O1W—H1WB···O4ii0.82 (1)2.06 (1)2.880 (3)175 (3)
N2—H2B···O3ii0.861.992.792 (3)154
O6—H6···O1iii0.821.792.609 (2)174
O8—H8···O7iv0.821.842.644 (2)166
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H8N42+·C10H4O82C12H13N2+·C10H5O8·H2O
Mr388.30456.40
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)223223
a, b, c (Å)8.2246 (16), 8.7495 (17), 11.454 (2)9.5166 (7), 9.9970 (8), 12.4106 (8)
α, β, γ (°)100.67 (3), 97.26 (3), 94.68 (3)77.979 (6), 73.421 (6), 62.655 (8)
V3)798.8 (3)1001.03 (13)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.130.12
Crystal size (mm)0.40 × 0.27 × 0.200.30 × 0.22 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Multi-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.720, 1.0000.997, 1.000
No. of measured, independent and
observed reflections
7722, 3595, 2808 [I > σ(I)]9371, 3516, 2681 [I > 2σ(I)]
Rint0.0320.041
(sin θ/λ)max1)0.6490.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.02 0.051, 0.126, 1.01
No. of reflections35953516
No. of parameters254304
No. of restraints03
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.570.39, 0.40

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O8i0.821.672.4939 (18)176.8
O1—H1···O70.821.912.7228 (18)172.6
N3—H3A···O30.861.752.553 (2)154.1
N4—H4B···O4ii0.861.892.738 (2)170.4
N2—H2B···O8iii0.861.832.676 (2)168.0
N1—H1B···O7iv0.861.902.733 (2)161.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.8201 (10)2.122 (9)2.916 (3)163 (3)
O1W—H1WB···O4ii0.8201 (10)2.063 (5)2.880 (3)175 (3)
N2—H2B···O3ii0.861.992.792 (3)154.0
O6—H6···O1iii0.821.792.609 (2)174.0
O8—H8···O7iv0.821.842.644 (2)165.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds