Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two novel symmetric fluorene-based ligands, namely, 2,7-bis­(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene [L1 or (I), C21H18N4] and 2,7-bis­(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene (L2), have been used to construct the coordination polymers catena-poly[[di­chlorido­dicopper(I)(Cu-Cu)]-[mu]-2,7-bis­(1H-imid­azol-1-yl)-9,9-dimethyl-9H-fluorene], [Cu2Cl2(C21H18N4)]n, (II), and catena-poly[[tetra-[mu]2-chlorido-tetra­copper(I)]-bis­[[mu]-2,7-bis­(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene]], [Cu4Cl4(C25H26N4)2]n, (III). There are three types of C-H...N hydrogen bonds in (I), resulting a two-dimensional network in the ab plane, including a chiral helical chain along the b axis. Compounds (II) and (III) are related one-dimensional polymers. In both, CuI atoms connect the symmetric ligands (L1 or L2) into a one-dimensional chain. In (II), the {[CuICl2]-} unit, acting as a co-anion, adheres to the one-dimensional chain through a weak Cu...Cu inter­action. However, in (III), the {[CuI2Cl4]2-} unit links two different chains into a one-dimensional rope-ladder-type chain. In addition, there are C-H...Cl hydrogen bonds and [pi]-[pi] inter­actions in the extended structures of (II) and (III), the difference is that the chains in (II) are linked into a two-dimensional network while the chains in (III) are stacked into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113030163/sf3208sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030163/sf3208Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030163/sf3208IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030163/sf3208IIIsup4.hkl
Contains datablock III

CCDC references: 969907; 969908; 969909

Introduction top

Polymetric metal–organic complexes have attracted tremendous attention over recent decades because of their fascinating topologies (Eddaoudi et al., 2002; Chakrabary et al., 2011) and enormous potential for many practical applications, such as gas storage (Li & Yang, 2007; Kim et al., 2013), heterogeneous catalysis (Huang et al., 2013), drug delivery (Horcajada et al., 2008), ion exchange (Genna et al., 2013), luminescence (Liu et al., 2013) and chemical sensing (Yang et al., 2013). It is well known that fluorene is an excellent chromophore and has been widely studied in the field of organic luminescence (Yue et al., 2010; Peterson et al., 2011). Cuprous compounds have also been investigated as potential optical materials (Fang et al., 2011). Coordination polymers generated from fluorene-based ligands with CuCl could be expected to have good fluorescence properties. Based on this, we synthesized 2,7-bis­(1H-imidazol-1-yl)-9,9-di­methyl-9H-fluorene [L1 or (I)] and 2,7-bis­(1H-imidazol-1-yl)-9,9-di­propyl-9H-fluorene (L2), and two coordination polymers of L1 and L2, viz. [Cu2Cl2L1]n, (II), and [Cu4Cl4(L2)2]n. The structures of (I), (II) and (III) are reported here.

Experimental top

Synthesis and crystallization top

For the preparation of (I), a mixture of 2,7-di­bromo-9,9-di­methyl­fluorene (3.52 g, 10 mmol), imidazole (1.90 g, 28 mmol), copper iodide (0.38 g, 2 mmol), caesium carbonate (13.04 g, 40 mmol) in di­methyl­formamide (DMF, 20 ml) was stirred under nitro­gen at 393 K for 36 h. The reaction was monitored by thin-layer chromatography (TLC). The reaction product was poured into water, suction filtered and the residue purified by silica-gel column chromatography using di­chloro­methane and ethyl acetate (1:1 v/v) as eluent to afford (I) as a light-yellow solid (yield 2.48 g, 7.60 mmol, 76.1%). A solution of (I) (3.26 mg, 0.010 mmol) in tetra­hydro­furan (THF, 10 ml) was left for about 2 d at room temperature, after which time colourless crystals of (I) were obtained (yield 2.34 mg, 71.7%). 1H NMR (300 MHz, CDCl3, 298 K, TMS): δ 8.05–7.12 (m, 6H, –C3H3N2; 6H, –C6H3), 1.59 (s, 6H, –CH3). IR (v, cm-1): 3087.68 (w), 2945.70 (w), 2917.33 (w), 2852.38 (w), 1613.55 (w), 1584.35 (w), 1490.72 (s), 1312.95 (m), 1250.46 (m), 1089.91 (w), 1052.59 (s), 976.15 (w), 903.13 (w), 813.96 (s), 763.38 (m), 732.23 (s), 655.92 (s), 627.12 (m). Elemental analysis (%) calculated for C21H18N4: C 77.30, H 5.52, N 17.18; found: C 77.40, H 5.42, N 17.18.

For the preparation of L2, a mixture of 2,7-di­bromo-9,9-di­propyl­fluorene (3.82 g, 10 mmol), imidazole (1.90 g, 28 mmol), copper iodide (0.38 g, 2 mmol), caesium carbonate (13.04 g, 40 mmol) in DMF (20 ml) was stirred under nitro­gen at 393 K for 36 h. The reaction was monitored by TLC. The reaction product was poured into water, suction filtered and the residue was purified by silica-gel column chromatography using di­chloro­methane and ethyl acetate (1:1 v/v) as eluent to afford L2 as a light-yellow solid (yield 2.80 g, 7.33 mmol, 73.3%). 1H NMR (300 MHz, CDCl3, 298 K, TMS): δ 8.25–7.45 (m, 6H, –C3H3N2; 6H, –C6H3), 2.07 (s, 4H, –CH2), 0.73 (m, 10H, –CH3CH2). IR (v, cm-1): 3107.50 (w), 2958.92 (w), 2924.25 (w), 2857.92 (w), 1614.06 (w), 1587.38 (w),1494.70 (s), 1294.67 (m), 1106.14 (m), 1052.35 (s), 901.77 (m), 796.91 (m), 708.67 (m), 694.07 (s). Elemental analysis (%) calculated for C25H26N4: C 78.53, H 6.81, N 14.66; found: C 78.43, H 6.91, N 14.66.

For the preparation of (II), a mixture of L1 (6.52 mg, 0.020 mmol), CuCl (19.8 mg, 0.20 mmol) and water (2 ml) was sealed in a 5 ml glass tube, heated at 423 K for 72 h and cooled slowly to room temperature over a period of 50 h. Yellow crystals of (II) were obtained (yield 8.11 mg, 0.016 mmol, 77.3%). IR (v, cm-1): 3117.34 (w), 2961.00 (w), 2925.92 (w), 1506.85 (s),1304.18 (m),1253.25 (m), 1118.08 (w), 1058.63 (m), 1052.35 (s), 810.94 (s), 734.45 (s), 644.07 (m), 607.56 (w).

For the preparation of (III), a mixture of L2 (7.64 mg, 0.020 mmol), CuCl (19.8 mg, 0.20 mmol) and water (2 ml) was sealed in a 5 ml glass tube, heated at 423 K for 72 h and cooled slowly to room temperature over a period of 50 h. Yellow crystals of (III) were obtained (yield 6.29 mg, 0.011 mmol, 54.3%). IR (v, cm-1): 3117.10 (w), 2923.92 (w), 2861.25 (w), 1506.02 (s), 1463.76 (m), 1300.25 (m), 1251.81 (m), 1104.75 (w), 1058.18 (m), 808.15 (s), 734.02 (m), 648.20 (m), 622.79 (w).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined with anisotropic displacementparameters·Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.95 Å and Uiso(H) = 1.2*Ueq(C) (aromatic); C—H = 0.98 Å and Uiso(H) = 1.5*Ueq(C) (methyl).

Results and discussion top

Compound (I) crystallizes in a chiral monoclinic space group P21, with an independent molecule in the asymmetric unit (Fig. 1a). The dihedral angles between the planes of the imidazole rings and fluorene system are 35.0 (9) and 41.7 (9)°. The dihedral angle between the imidazole rings is 78.8 (7)°.

In the crystal structure, molecules of (I) are arranged in chiral chains via C1—H1···N4iii nonclassical hydrogen bonds along the b axis (see Table 2 for symmetry code and geometric details). The H1···N4 distance is shorter than published values of 2.9 Å (Jones et al., 2007) [what is this value for?]. The chains are stacked via two other hydrogen bonds (C5—H5···N4ii and C6—H6···N2i; Fig. 2 and Table 2) ino a two-dimensional network in the ab plane.

In compound (II), there are two crystallographically independent CuI centres (Fig. 1b and Table 3). Atom Cu1 lies in an approximately linear {CuN2} coordination environment consisting of two terminal imidazole N-atom donors (N1 and N4). Atom Cu2 lies in an approximately linear {CuCl2} coordination environment consisting of two cuprous ions (Cl1 and Cl2). Remarkably, complex (II) shows a short Cu···Cu contact [2.928 (5) Å] through which {[CuICl2]-} adheres to the undulating chain. Such close contacts can be inter­preted in terms of a weak bonding inter­action and compared with the results reported by Neumann et al. (1997), with a Cu···Cu contact of 2.810 (2) Å.

In the extended structure of (II), the chains are linked into a two-dimensional structure through ππ inter­actions and a C21—H21···Cl2iii hydrogen bond (see Table 4 for symmetry code and geometric details). The H21···Cl2iii distance is shorter than reported in the literature (3.31 Å [what is this value for?]; Bats et al., 2001) (Fig. 4). The ππ inter­actions between pairs of benzene rings of fluorene exhibit centroid–centroid distances of 3.783 (1) Å.

For (III), there are two CuI centres which are in different approximate trigonal coordination environments (Fig. 1c and Table 5). Atom Cu1 lies in a {CuN2Cl} coordination environment consisting of two terminal imidazole N-atom donors and one chloride ion from the {[CuI2Cl4]2-} unit. The Cu1 centre is deviates slightly (by 0.0615 Å) from the trigonal plane defined by the donor atoms N1, N4 and Cl1. Atom Cu2 lies in a {CuCl3} coordination environment consisting of three chloride ions from the {[CuI2Cl4]2-} unit. The Cu2 centre is deviates slightly (by 0.0188 Å) from the plane defined by the three donor atoms. The {[CuI2Cl4]2-} unit, acting as a bridging unit, links two different chains to a one-dimensional rope-ladder-type chain through a Cu1—Cl1 coordination inter­action, and there are C23—H23···Cl1iii nonclassical hydrogen bonds in the chain (Fig. 5, and see Table 6 for symmetry code and geometric details).

In the extended structure of (III), the chains are linked into a two-dimensional net through C9—H9···Cl1iv and C13A–H13A···Cl2Bv hydrogen bonds (Fig. 6 and Table 6). The two-dimensional nets are packed into a three-dimensional framework through ππ inter­actions between parallel benzene rings of fluorene, with a centroid–centroid distance of 4.094 (4) Å, which is shorter than the value of 4.286 Å reported by Degtyarenko & Domasevitch (2013).

The photoluminescent properties of (II) and (III) were investigated in the solid state after excitation at 449 and 418 nm at room temperature. Complexes (II) and (III) exhibit emission maxima at 542 and 476 nm, respectively, with an obvious red shift for compound (II) (Fig. 7). This may be attributed to the difference of dihedral angles between terminal imidazole and fluorene ring. In compound (II), the dihedral angles are 7.8 (4) and 11.1 (7)°, while that in compound (III) are 25.6 (3) and 11.6 (1)°, which indicate that the terminal imidazole ring and and the fluorene system are more coplanar in (II) than in (III).

In summary, two new coordination polymers have been obtained from the assembly of fluorene-based ligands with cuprous chloride. In compound (II), the {[CuICl2]-} unit adheres to the undulating chain through a weak Cu···Cu inter­action, and in (III), the {[CuI2Cl4]2-} unit connects two chains into a rope-ladder-type double chain. Meanwhile, the two compounds show different fluorescence properties. We can thus try to obtain complexes that present different fluorescence properties by controlling the structure formed by cuprous ions and chlorine ions with influence on the coplanarity of terminal imidazole and fluorene ring [not clear]. We are currently extending this study by preparing new symmetric fluorene-based ligands containing other coordination groups.

Related literature top

For related literature, see: Bats et al. (2001); Chakrabary et al. (2011); Degtyarenko & Domasevitch (2013); Eddaoudi et al. (2002); Fang et al. (2011); Genna et al. (2013); Horcajada et al. (2008); Huang et al. (2013); Jones et al. (2007); Kim et al. (2013); Li & Yang (2007); Liu et al. (2013); Neumann et al. (1997); Peterson et al. (2011); Yang et al. (2013); Yue et al. (2010).

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008 for (I); SHELXTL (Sheldrick, 2008) for (II), (III). Software used to prepare material for publication: SHELXTL (Sheldrick, 2008 for (I); SHELXTL (Sheldrick, 2008) for (II), (III).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) (I), (b) (II) and (c) (III), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms in (b) and (c) have been omitted for clarity.
[Figure 2] Fig. 2. The two-dimensional sheet of (I) parallel to the ab plane, including a chiral helical chain and three types of hydrogen bonds (pink, bright green and lime dashed lines in the electronic version of the paper). [Symmetry codes: (i) -x+1, y+1/2, -z+2; (ii) x-1, y, z+1; (iii) -x+2, y-1/2, -z+1.]
[Figure 3] Fig. 3. The structure of the one-dimensional undulating chain in (II).
[Figure 4] Fig. 4. The two-dimensional sheet in (II), constructed by hydrogen bonds (orange dashed lines in the electronic version of the paper) and ππ stacking interactions (indigo dashed lines). H atoms not involved in C—H···Cl hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) x+1, -y+1/2, z+3/2; (ii) x-1, -y+1/2, z-3/2; (iii) x-1, y, z-1.]
[Figure 5] Fig. 5. The structure of the one-dimensional rope-ladder-type chain in (III) and the hydrogen bonds (violet dashed lines in the electronic version of the paper) within the chain. [Symmetry codes: (i) x+1, y+1, z; (ii) -x+3, -y+2, -z+1; (iii) x-1, y-1, z.]
[Figure 6] Fig. 6. (a) The two-dimensional sheet in (III) formed by C—H···Cl hydrogen bonds (pink and red dashed lines in the electronic version of the paper). (b) ππ interactions (dark teal dashed lines) between the benzene rings in (III). (c) The three-dimensional framework of (III). [Symmetry codes: (iv) -x+2, -y+2, -z+1; (v) x-1, y, z.]
[Figure 7] Fig. 7. The solid-state photoluminescent emission spectra for (II) and (III) at room temperature.
(I) 2,7-Bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene top
Crystal data top
C21H18N4F(000) = 344
Mr = 326.39Dx = 1.286 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 1540 reflections
a = 6.616 (3) Åθ = 3.5–22.4°
b = 15.683 (6) ŵ = 0.08 mm1
c = 8.545 (4) ÅT = 298 K
β = 108.037 (5)°Block, colourless
V = 843.1 (6) Å30.29 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.6°, θmin = 2.5°
phi and ω scansh = 78
4430 measured reflectionsk = 919
1631 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0639P]
where P = (Fo2 + 2Fc2)/3
1631 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C21H18N4V = 843.1 (6) Å3
Mr = 326.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.616 (3) ŵ = 0.08 mm1
b = 15.683 (6) ÅT = 298 K
c = 8.545 (4) Å0.29 × 0.15 × 0.12 mm
β = 108.037 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1427 reflections with I > 2σ(I)
4430 measured reflectionsRint = 0.042
1631 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.12Δρmax = 0.15 e Å3
1631 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4013 (6)0.1268 (3)1.0206 (5)0.0470 (10)
H10.48940.16410.98730.056*
C20.1669 (6)0.0773 (3)1.1154 (5)0.0539 (11)
H20.05730.07461.16200.065*
C30.2549 (6)0.0099 (3)1.0683 (4)0.0449 (10)
H30.22000.04701.07610.054*
C40.5468 (5)0.0075 (3)0.9427 (4)0.0375 (8)
C50.6168 (6)0.0862 (2)1.0140 (4)0.0408 (9)
H50.57190.10581.10050.049*
C60.7516 (6)0.1349 (3)0.9575 (4)0.0430 (9)
H60.79690.18791.00420.052*
C70.8198 (5)0.1043 (2)0.8299 (4)0.0366 (8)
C80.7452 (5)0.0263 (2)0.7564 (4)0.0359 (8)
C90.6089 (5)0.0227 (2)0.8118 (4)0.0393 (8)
H90.55950.07480.76280.047*
C100.8331 (5)0.0086 (2)0.6135 (4)0.0369 (8)
C110.6528 (6)0.0062 (3)0.4498 (4)0.0491 (10)
H11A0.57480.05880.43500.074*
H11B0.55910.04040.45090.074*
H11C0.71140.00140.36110.074*
C120.9605 (6)0.0743 (3)0.6366 (5)0.0478 (10)
H12A0.86840.12160.63670.072*
H12B1.07290.07260.73950.072*
H12C1.02000.08090.54820.072*
C130.9729 (5)0.0872 (2)0.6219 (4)0.0362 (8)
C140.9645 (5)0.1409 (2)0.7498 (4)0.0355 (8)
C151.0817 (6)0.2155 (2)0.7833 (4)0.0421 (9)
H151.07840.25010.87080.051*
C161.2034 (6)0.2376 (3)0.6847 (5)0.0447 (9)
H161.28080.28810.70400.054*
C171.2106 (5)0.1846 (2)0.5568 (4)0.0399 (9)
C181.0976 (6)0.1087 (2)0.5256 (4)0.0399 (9)
H181.10600.07290.44100.048*
C191.2812 (7)0.2047 (3)0.2898 (5)0.0522 (11)
H191.15350.18180.22390.063*
C201.5320 (6)0.2466 (3)0.5064 (5)0.0465 (10)
H201.61270.25940.61380.056*
C211.5856 (7)0.2603 (3)0.3694 (6)0.0559 (11)
H211.71370.28410.36760.067*
N10.4079 (5)0.0412 (2)1.0057 (3)0.0386 (7)
N20.2587 (6)0.1513 (2)1.0863 (5)0.0600 (10)
N31.3351 (5)0.21008 (19)0.4559 (4)0.0414 (7)
N41.4267 (6)0.2349 (2)0.2328 (4)0.0585 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.040 (2)0.049 (2)0.006 (2)0.023 (2)0.0067 (18)
C20.052 (2)0.061 (3)0.060 (3)0.004 (2)0.034 (2)0.004 (2)
C30.045 (2)0.048 (3)0.042 (2)0.0056 (19)0.0141 (18)0.0040 (18)
C40.0367 (19)0.0410 (19)0.0333 (17)0.0035 (18)0.0089 (15)0.0062 (17)
C50.050 (2)0.040 (2)0.0347 (19)0.0005 (19)0.0154 (17)0.0030 (17)
C60.052 (2)0.039 (2)0.039 (2)0.0011 (19)0.0141 (19)0.0068 (17)
C70.0361 (19)0.034 (2)0.0349 (18)0.0025 (16)0.0044 (15)0.0031 (16)
C80.0335 (18)0.038 (2)0.0315 (17)0.0035 (16)0.0041 (15)0.0012 (16)
C90.0383 (19)0.0386 (19)0.0374 (18)0.0008 (17)0.0065 (16)0.0012 (16)
C100.0395 (18)0.0370 (18)0.0328 (17)0.0012 (18)0.0091 (15)0.0040 (17)
C110.054 (2)0.051 (2)0.0378 (19)0.007 (2)0.0076 (17)0.0022 (19)
C120.055 (2)0.042 (2)0.048 (2)0.001 (2)0.0180 (19)0.0052 (18)
C130.0327 (18)0.041 (2)0.0331 (18)0.0060 (17)0.0074 (15)0.0026 (16)
C140.0348 (19)0.036 (2)0.0339 (19)0.0052 (17)0.0079 (16)0.0011 (16)
C150.047 (2)0.041 (2)0.039 (2)0.0035 (18)0.0143 (18)0.0079 (17)
C160.043 (2)0.041 (2)0.048 (2)0.009 (2)0.0107 (17)0.0049 (19)
C170.036 (2)0.041 (2)0.043 (2)0.0001 (18)0.0138 (17)0.0036 (18)
C180.043 (2)0.040 (2)0.0366 (19)0.0003 (18)0.0126 (17)0.0062 (16)
C190.059 (2)0.055 (3)0.045 (2)0.005 (2)0.020 (2)0.006 (2)
C200.039 (2)0.046 (2)0.051 (2)0.006 (2)0.0090 (18)0.0014 (19)
C210.052 (2)0.046 (3)0.076 (3)0.007 (2)0.029 (2)0.003 (2)
N10.0419 (18)0.0398 (17)0.0335 (16)0.0023 (15)0.0112 (14)0.0008 (14)
N20.069 (2)0.054 (2)0.068 (2)0.002 (2)0.038 (2)0.0103 (19)
N30.0432 (16)0.0375 (17)0.0441 (18)0.0009 (15)0.0145 (14)0.0010 (15)
N40.072 (2)0.061 (2)0.055 (2)0.007 (2)0.036 (2)0.0046 (18)
Geometric parameters (Å, º) top
C1—N21.297 (5)C11—H11B0.9600
C1—N11.352 (5)C11—H11C0.9600
C1—H10.9300C12—H12A0.9600
C2—C31.328 (6)C12—H12B0.9600
C2—N21.368 (6)C12—H12C0.9600
C2—H20.9300C13—C181.376 (5)
C3—N11.373 (4)C13—C141.394 (5)
C3—H30.9300C14—C151.383 (5)
C4—C91.389 (5)C15—C161.377 (5)
C4—C51.391 (5)C15—H150.9300
C4—N11.422 (4)C16—C171.386 (5)
C5—C61.371 (5)C16—H160.9300
C5—H50.9300C17—C181.387 (5)
C6—C71.388 (5)C17—N31.422 (4)
C6—H60.9300C18—H180.9300
C7—C81.394 (5)C19—N41.296 (5)
C7—C141.457 (5)C19—N31.355 (5)
C8—C91.375 (5)C19—H190.9300
C8—C101.531 (5)C20—C211.341 (6)
C9—H90.9300C20—N31.365 (5)
C10—C131.529 (5)C20—H200.9300
C10—C121.530 (5)C21—N41.366 (5)
C10—C111.532 (5)C21—H210.9300
C11—H11A0.9600
N2—C1—N1112.6 (4)C10—C12—H12B109.5
N2—C1—H1123.7H12A—C12—H12B109.5
N1—C1—H1123.7C10—C12—H12C109.5
C3—C2—N2111.0 (3)H12A—C12—H12C109.5
C3—C2—H2124.5H12B—C12—H12C109.5
N2—C2—H2124.5C18—C13—C14119.8 (3)
C2—C3—N1106.2 (4)C18—C13—C10129.5 (3)
C2—C3—H3126.9C14—C13—C10110.7 (3)
N1—C3—H3126.9C15—C14—C13121.2 (3)
C9—C4—C5120.9 (3)C15—C14—C7130.1 (3)
C9—C4—N1120.6 (3)C13—C14—C7108.8 (3)
C5—C4—N1118.5 (3)C16—C15—C14118.8 (3)
C6—C5—C4120.4 (3)C16—C15—H15120.6
C6—C5—H5119.8C14—C15—H15120.6
C4—C5—H5119.8C15—C16—C17120.1 (3)
C5—C6—C7119.2 (4)C15—C16—H16120.0
C5—C6—H6120.4C17—C16—H16120.0
C7—C6—H6120.4C16—C17—C18121.2 (3)
C6—C7—C8120.1 (3)C16—C17—N3118.5 (3)
C6—C7—C14130.9 (3)C18—C17—N3120.3 (3)
C8—C7—C14109.0 (3)C13—C18—C17118.9 (3)
C9—C8—C7120.9 (3)C13—C18—H18120.6
C9—C8—C10128.7 (3)C17—C18—H18120.6
C7—C8—C10110.4 (3)N4—C19—N3112.7 (4)
C8—C9—C4118.4 (4)N4—C19—H19123.6
C8—C9—H9120.8N3—C19—H19123.6
C4—C9—H9120.8C21—C20—N3106.0 (4)
C13—C10—C12112.2 (3)C21—C20—H20127.0
C13—C10—C8101.0 (3)N3—C20—H20127.0
C12—C10—C8112.4 (3)C20—C21—N4110.9 (4)
C13—C10—C11110.6 (3)C20—C21—H21124.5
C12—C10—C11109.8 (3)N4—C21—H21124.5
C8—C10—C11110.6 (3)C1—N1—C3105.6 (3)
C10—C11—H11A109.5C1—N1—C4127.8 (3)
C10—C11—H11B109.5C3—N1—C4126.6 (3)
H11A—C11—H11B109.5C1—N2—C2104.6 (4)
C10—C11—H11C109.5C19—N3—C20105.8 (3)
H11A—C11—H11C109.5C19—N3—C17127.1 (3)
H11B—C11—H11C109.5C20—N3—C17127.0 (3)
C10—C12—H12A109.5C19—N4—C21104.5 (3)
N2—C2—C3—N10.4 (5)C6—C7—C14—C13177.0 (4)
C9—C4—C5—C61.0 (5)C8—C7—C14—C132.4 (4)
N1—C4—C5—C6179.7 (3)C13—C14—C15—C161.9 (5)
C4—C5—C6—C70.9 (5)C7—C14—C15—C16177.9 (3)
C5—C6—C7—C82.4 (5)C14—C15—C16—C171.4 (5)
C5—C6—C7—C14178.3 (3)C15—C16—C17—C180.3 (5)
C6—C7—C8—C92.0 (5)C15—C16—C17—N3179.0 (3)
C14—C7—C8—C9178.5 (3)C14—C13—C18—C170.9 (5)
C6—C7—C8—C10176.9 (3)C10—C13—C18—C17179.6 (3)
C14—C7—C8—C102.6 (4)C16—C17—C18—C131.5 (5)
C7—C8—C9—C40.1 (5)N3—C17—C18—C13177.8 (3)
C10—C8—C9—C4178.6 (3)N3—C20—C21—N41.0 (5)
C5—C4—C9—C81.4 (5)N2—C1—N1—C30.0 (5)
N1—C4—C9—C8179.3 (3)N2—C1—N1—C4178.5 (3)
C9—C8—C10—C13179.5 (3)C2—C3—N1—C10.2 (4)
C7—C8—C10—C131.7 (3)C2—C3—N1—C4178.8 (3)
C9—C8—C10—C1259.8 (5)C9—C4—N1—C136.3 (5)
C7—C8—C10—C12121.4 (3)C5—C4—N1—C1144.4 (4)
C9—C8—C10—C1163.3 (5)C9—C4—N1—C3145.5 (3)
C7—C8—C10—C11115.5 (3)C5—C4—N1—C333.8 (5)
C12—C10—C13—C1859.4 (4)N1—C1—N2—C20.2 (5)
C8—C10—C13—C18179.3 (3)C3—C2—N2—C10.4 (5)
C11—C10—C13—C1863.5 (5)N4—C19—N3—C200.2 (5)
C12—C10—C13—C14120.0 (3)N4—C19—N3—C17178.6 (4)
C8—C10—C13—C140.1 (3)C21—C20—N3—C190.5 (4)
C11—C10—C13—C14117.0 (3)C21—C20—N3—C17179.3 (4)
C18—C13—C14—C150.8 (5)C16—C17—N3—C19137.1 (4)
C10—C13—C14—C15178.8 (3)C18—C17—N3—C1942.1 (5)
C18—C13—C14—C7179.1 (3)C16—C17—N3—C2041.5 (5)
C10—C13—C14—C71.3 (4)C18—C17—N3—C20139.2 (4)
C6—C7—C14—C152.9 (6)N3—C19—N4—C210.8 (5)
C8—C7—C14—C15177.7 (3)C20—C21—N4—C191.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.633.371 (6)137
C5—H5···N4ii0.932.643.460 (5)147
C1—H1···N4iii0.932.653.494 (5)152
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x1, y, z+1; (iii) x+2, y1/2, z+1.
(II) catena-Poly[[dichloridodicopper(I)(CuCu)]-µ-2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene] top
Crystal data top
[Cu2Cl2(C21H18N4)]F(000) = 1056
Mr = 524.37Dx = 1.700 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 3555 reflections
a = 12.749 (9) Åθ = 2.7–27.2°
b = 17.215 (11) ŵ = 2.35 mm1
c = 9.489 (6) ÅT = 298 K
β = 100.402 (9)°Bar, pink
V = 2048 (2) Å30.48 × 0.23 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3831 independent reflections
Radiation source: fine-focus sealed tube2755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
phi and ω scansθmax = 25.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1315
Tmin = 0.398, Tmax = 0.705k = 2018
10566 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.099P)2]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Cu2Cl2(C21H18N4)]V = 2048 (2) Å3
Mr = 524.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.749 (9) ŵ = 2.35 mm1
b = 17.215 (11) ÅT = 298 K
c = 9.489 (6) Å0.48 × 0.23 × 0.16 mm
β = 100.402 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2755 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.705Rint = 0.069
10566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.07Δρmax = 0.91 e Å3
3831 reflectionsΔρmin = 0.87 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6949 (4)0.3358 (3)0.7449 (5)0.0547 (13)
H10.74180.36990.80020.066*
C20.6200 (4)0.3566 (3)0.6310 (6)0.0549 (14)
H20.60520.40660.59600.066*
C30.6160 (4)0.2320 (3)0.6638 (5)0.0434 (11)
H30.59670.17990.65250.052*
C40.4862 (3)0.2815 (2)0.4563 (4)0.0325 (9)
C50.4586 (3)0.2085 (2)0.3991 (5)0.0376 (10)
H50.49580.16520.43990.045*
C60.3782 (3)0.1990 (2)0.2843 (4)0.0339 (9)
H60.35840.14950.25020.041*
C70.3262 (3)0.2642 (2)0.2187 (4)0.0298 (8)
C80.3552 (3)0.3387 (2)0.2740 (4)0.0332 (9)
C90.4336 (3)0.3480 (2)0.3928 (4)0.0368 (10)
H90.45140.39710.43030.044*
C100.2905 (3)0.4015 (2)0.1815 (4)0.0358 (9)
C110.2225 (4)0.4498 (2)0.2671 (5)0.0432 (11)
H11A0.18860.49130.20820.065*
H11B0.26730.47110.35030.065*
H11C0.16910.41730.29610.065*
C120.3639 (4)0.4557 (3)0.1148 (5)0.0472 (11)
H12A0.40680.42540.06200.071*
H12B0.40930.48380.18940.071*
H12C0.32140.49170.05150.071*
C130.2203 (3)0.3512 (2)0.0691 (4)0.0322 (9)
C140.2410 (3)0.2727 (2)0.0954 (4)0.0301 (9)
C150.1829 (3)0.2170 (2)0.0049 (4)0.0344 (9)
H150.19520.16420.02140.041*
C160.1072 (3)0.2420 (2)0.1091 (5)0.0369 (9)
H160.06770.20560.16890.044*
C170.0892 (3)0.3200 (2)0.1355 (4)0.0314 (9)
C180.1445 (3)0.3764 (2)0.0449 (4)0.0351 (9)
H180.13080.42900.06080.042*
C190.0034 (4)0.4189 (3)0.3096 (6)0.0630 (16)
H190.03060.46350.26920.076*
C200.0774 (4)0.4156 (3)0.4282 (6)0.0613 (15)
H200.10430.45810.48400.074*
C210.0509 (3)0.2993 (3)0.3515 (5)0.0423 (11)
H210.05450.24560.34330.051*
Cl10.65855 (15)0.02121 (12)0.8299 (2)0.0946 (6)
Cl20.88472 (16)0.10157 (9)0.5935 (2)0.0916 (6)
Cu10.78789 (5)0.20173 (4)0.89997 (6)0.0511 (2)
Cu20.77042 (6)0.06509 (4)0.71334 (8)0.0729 (3)
N10.6917 (3)0.2586 (2)0.7663 (4)0.0431 (9)
N20.5701 (3)0.28965 (19)0.5776 (4)0.0352 (8)
N30.0134 (3)0.3451 (2)0.2583 (3)0.0351 (8)
N40.1078 (3)0.3396 (2)0.4553 (4)0.0424 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.048 (3)0.043 (3)0.012 (2)0.027 (2)0.001 (2)
C20.060 (3)0.033 (3)0.056 (3)0.009 (2)0.031 (2)0.013 (2)
C30.049 (3)0.035 (2)0.035 (3)0.0092 (19)0.022 (2)0.0002 (19)
C40.032 (2)0.037 (2)0.024 (2)0.0031 (16)0.0071 (16)0.0041 (16)
C50.043 (2)0.033 (2)0.032 (2)0.0052 (18)0.0066 (18)0.0081 (17)
C60.042 (2)0.026 (2)0.030 (2)0.0001 (16)0.0050 (18)0.0040 (16)
C70.034 (2)0.029 (2)0.022 (2)0.0003 (15)0.0066 (16)0.0005 (15)
C80.036 (2)0.031 (2)0.027 (2)0.0047 (16)0.0088 (17)0.0024 (17)
C90.041 (2)0.028 (2)0.034 (2)0.0001 (16)0.0131 (18)0.0031 (17)
C100.045 (2)0.025 (2)0.028 (2)0.0010 (17)0.0187 (18)0.0018 (16)
C110.054 (3)0.031 (2)0.038 (3)0.0074 (19)0.011 (2)0.0027 (18)
C120.053 (3)0.038 (2)0.042 (3)0.0038 (19)0.015 (2)0.004 (2)
C130.037 (2)0.027 (2)0.027 (2)0.0002 (15)0.0103 (17)0.0042 (16)
C140.037 (2)0.029 (2)0.021 (2)0.0012 (16)0.0042 (16)0.0014 (15)
C150.041 (2)0.027 (2)0.030 (2)0.0021 (16)0.0068 (18)0.0033 (16)
C160.038 (2)0.034 (2)0.033 (2)0.0038 (17)0.0088 (18)0.0073 (18)
C170.028 (2)0.034 (2)0.025 (2)0.0020 (16)0.0115 (16)0.0034 (16)
C180.038 (2)0.030 (2)0.029 (2)0.0028 (16)0.0139 (17)0.0051 (17)
C190.079 (4)0.031 (3)0.059 (3)0.000 (2)0.042 (3)0.003 (2)
C200.071 (4)0.041 (3)0.055 (3)0.001 (2)0.035 (3)0.003 (2)
C210.045 (3)0.042 (3)0.031 (2)0.0057 (19)0.0160 (19)0.0025 (19)
Cl10.0933 (12)0.1121 (14)0.0703 (11)0.0218 (10)0.0075 (9)0.0288 (10)
Cl20.1080 (13)0.0503 (9)0.1051 (14)0.0130 (8)0.0111 (10)0.0052 (8)
Cu10.0478 (4)0.0591 (4)0.0352 (4)0.0098 (3)0.0223 (3)0.0048 (3)
Cu20.0828 (6)0.0565 (5)0.0644 (5)0.0184 (3)0.0272 (4)0.0178 (3)
N10.041 (2)0.048 (2)0.032 (2)0.0064 (16)0.0149 (16)0.0019 (17)
N20.038 (2)0.0344 (19)0.0277 (19)0.0014 (14)0.0098 (15)0.0038 (14)
N30.0334 (18)0.0347 (19)0.0295 (19)0.0012 (14)0.0152 (14)0.0050 (14)
N40.042 (2)0.047 (2)0.030 (2)0.0018 (16)0.0162 (15)0.0030 (16)
Geometric parameters (Å, º) top
C1—N11.346 (6)C12—H12B0.9600
C1—C21.355 (6)C12—H12C0.9600
C1—H10.9300C13—C181.383 (5)
C2—N21.369 (6)C13—C141.391 (6)
C2—H20.9300C14—C151.406 (5)
C3—N11.323 (6)C15—C161.382 (6)
C3—N21.351 (5)C15—H150.9300
C3—H30.9300C16—C171.378 (6)
C4—C51.389 (6)C16—H160.9300
C4—C91.406 (6)C17—C181.400 (5)
C4—N21.430 (5)C17—N31.440 (5)
C5—C61.364 (6)C18—H180.9300
C5—H50.9300C19—C201.333 (6)
C6—C71.393 (5)C19—N31.364 (6)
C6—H60.9300C19—H190.9300
C7—C81.408 (6)C20—N41.376 (6)
C7—C141.453 (5)C20—H200.9300
C8—C91.374 (5)C21—N41.311 (6)
C8—C101.536 (5)C21—N31.347 (5)
C9—H90.9300C21—H210.9300
C10—C131.531 (5)Cl1—Cu22.097 (2)
C10—C111.535 (6)Cl2—Cu22.100 (2)
C10—C121.535 (6)Cu1—N4i1.871 (4)
C11—H11A0.9600Cu1—N11.873 (4)
C11—H11B0.9600Cu1—Cu22.9285 (17)
C11—H11C0.9600N4—Cu1ii1.871 (4)
C12—H12A0.9600
N1—C1—C2110.2 (4)C18—C13—C14121.8 (4)
N1—C1—H1124.9C18—C13—C10127.3 (4)
C2—C1—H1124.9C14—C13—C10110.9 (3)
C1—C2—N2106.6 (4)C13—C14—C15119.5 (4)
C1—C2—H2126.7C13—C14—C7109.4 (3)
N2—C2—H2126.7C15—C14—C7131.1 (4)
N1—C3—N2111.7 (4)C16—C15—C14118.8 (4)
N1—C3—H3124.2C16—C15—H15120.6
N2—C3—H3124.2C14—C15—H15120.6
C5—C4—C9120.1 (4)C17—C16—C15121.0 (4)
C5—C4—N2120.2 (3)C17—C16—H16119.5
C9—C4—N2119.7 (4)C15—C16—H16119.5
C6—C5—C4121.4 (4)C16—C17—C18121.0 (4)
C6—C5—H5119.3C16—C17—N3120.3 (3)
C4—C5—H5119.3C18—C17—N3118.7 (3)
C5—C6—C7119.3 (4)C13—C18—C17117.8 (4)
C5—C6—H6120.4C13—C18—H18121.1
C7—C6—H6120.4C17—C18—H18121.1
C6—C7—C8119.7 (4)C20—C19—N3107.7 (4)
C6—C7—C14131.9 (4)C20—C19—H19126.2
C8—C7—C14108.4 (3)N3—C19—H19126.2
C9—C8—C7121.0 (4)C19—C20—N4109.3 (4)
C9—C8—C10128.4 (4)C19—C20—H20125.3
C7—C8—C10110.5 (3)N4—C20—H20125.3
C8—C9—C4118.4 (4)N4—C21—N3111.9 (4)
C8—C9—H9120.8N4—C21—H21124.1
C4—C9—H9120.8N3—C21—H21124.1
C13—C10—C11111.1 (3)N4i—Cu1—N1170.84 (17)
C13—C10—C12112.3 (4)N4i—Cu1—Cu296.01 (13)
C11—C10—C12109.5 (3)N1—Cu1—Cu292.38 (12)
C13—C10—C8100.7 (3)Cl1—Cu2—Cl2176.28 (7)
C11—C10—C8112.1 (3)Cl1—Cu2—Cu187.43 (7)
C12—C10—C8111.0 (4)Cl2—Cu2—Cu195.90 (6)
C10—C11—H11A109.5C3—N1—C1105.6 (4)
C10—C11—H11B109.5C3—N1—Cu1128.2 (3)
H11A—C11—H11B109.5C1—N1—Cu1125.8 (3)
C10—C11—H11C109.5C3—N2—C2105.9 (4)
H11A—C11—H11C109.5C3—N2—C4126.5 (4)
H11B—C11—H11C109.5C2—N2—C4127.7 (3)
C10—C12—H12A109.5C21—N3—C19105.8 (4)
C10—C12—H12B109.5C21—N3—C17126.6 (4)
H12A—C12—H12B109.5C19—N3—C17127.4 (3)
C10—C12—H12C109.5C21—N4—C20105.3 (4)
H12A—C12—H12C109.5C21—N4—Cu1ii125.0 (3)
H12B—C12—H12C109.5C20—N4—Cu1ii129.6 (3)
N1—C1—C2—N21.5 (6)C15—C16—C17—N3177.2 (4)
C9—C4—C5—C62.4 (6)C14—C13—C18—C170.7 (6)
N2—C4—C5—C6179.4 (4)C10—C13—C18—C17179.9 (4)
C4—C5—C6—C73.2 (6)C16—C17—C18—C132.1 (6)
C5—C6—C7—C81.7 (6)N3—C17—C18—C13177.2 (4)
C5—C6—C7—C14178.5 (4)N3—C19—C20—N40.7 (7)
C6—C7—C8—C90.7 (6)N4i—Cu1—Cu2—Cl186.60 (14)
C14—C7—C8—C9179.2 (4)N1—Cu1—Cu2—Cl197.09 (14)
C6—C7—C8—C10177.8 (4)N4i—Cu1—Cu2—Cl291.74 (14)
C14—C7—C8—C102.3 (5)N1—Cu1—Cu2—Cl284.57 (14)
C7—C8—C9—C41.5 (6)N2—C3—N1—C10.3 (5)
C10—C8—C9—C4176.7 (4)N2—C3—N1—Cu1173.0 (3)
C5—C4—C9—C80.0 (6)C2—C1—N1—C31.1 (6)
N2—C4—C9—C8178.2 (4)C2—C1—N1—Cu1174.0 (4)
C9—C8—C10—C13179.3 (4)N4i—Cu1—N1—C3179.2 (9)
C7—C8—C10—C131.0 (5)Cu2—Cu1—N1—C324.5 (4)
C9—C8—C10—C1162.6 (6)N4i—Cu1—N1—C19.5 (13)
C7—C8—C10—C11119.1 (4)Cu2—Cu1—N1—C1146.8 (4)
C9—C8—C10—C1260.2 (6)N1—C3—N2—C20.6 (5)
C7—C8—C10—C12118.1 (4)N1—C3—N2—C4179.8 (4)
C11—C10—C13—C1861.4 (6)C1—C2—N2—C31.3 (6)
C12—C10—C13—C1861.6 (6)C1—C2—N2—C4179.2 (4)
C8—C10—C13—C18179.8 (4)C5—C4—N2—C313.3 (6)
C11—C10—C13—C14118.1 (4)C9—C4—N2—C3168.5 (4)
C12—C10—C13—C14118.9 (4)C5—C4—N2—C2167.2 (5)
C8—C10—C13—C140.8 (5)C9—C4—N2—C211.0 (7)
C18—C13—C14—C150.6 (6)N4—C21—N3—C191.2 (6)
C10—C13—C14—C15178.9 (4)N4—C21—N3—C17177.5 (4)
C18—C13—C14—C7178.3 (4)C20—C19—N3—C211.2 (6)
C10—C13—C14—C72.2 (5)C20—C19—N3—C17177.4 (5)
C6—C7—C14—C13177.3 (4)C16—C17—N3—C214.8 (6)
C8—C7—C14—C132.8 (4)C18—C17—N3—C21175.9 (4)
C6—C7—C14—C151.5 (7)C16—C17—N3—C19170.8 (5)
C8—C7—C14—C15178.4 (4)C18—C17—N3—C198.6 (7)
C13—C14—C15—C160.6 (6)N3—C21—N4—C200.8 (6)
C7—C14—C15—C16178.0 (4)N3—C21—N4—Cu1ii176.4 (3)
C14—C15—C16—C170.8 (6)C19—C20—N4—C210.0 (7)
C15—C16—C17—C182.2 (6)C19—C20—N4—Cu1ii177.0 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cl2iii0.932.633.519 (5)159
Symmetry code: (iii) x1, y, z1.
(III) catena-Poly[[tetra-µ2-chlorido-tetracopper(I)]-bis[µ-2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene]] top
Crystal data top
[Cu2Cl2(C25H26N4)]Z = 2
Mr = 580.48F(000) = 592
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.205 (4) ÅCell parameters from 1395 reflections
b = 11.347 (4) Åθ = 2.5–22.4°
c = 11.652 (4) ŵ = 1.95 mm1
α = 66.157 (5)°T = 298 K
β = 66.036 (4)°Block, colourless
γ = 81.515 (5)°0.42 × 0.17 × 0.08 mm
V = 1238.0 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4577 independent reflections
Radiation source: fine-focus sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.494, Tmax = 0.859k = 1313
6627 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
4577 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.70 e Å3
1 restraintΔρmin = 0.55 e Å3
Crystal data top
[Cu2Cl2(C25H26N4)]γ = 81.515 (5)°
Mr = 580.48V = 1238.0 (7) Å3
Triclinic, P1Z = 2
a = 11.205 (4) ÅMo Kα radiation
b = 11.347 (4) ŵ = 1.95 mm1
c = 11.652 (4) ÅT = 298 K
α = 66.157 (5)°0.42 × 0.17 × 0.08 mm
β = 66.036 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4577 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2525 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.859Rint = 0.030
6627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.70 e Å3
4577 reflectionsΔρmin = 0.55 e Å3
320 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.1996 (5)0.9952 (5)0.1717 (5)0.0508 (13)
H11.27210.97750.10540.061*
C21.0775 (5)1.0702 (5)0.3211 (5)0.0553 (14)
H21.05001.11530.37830.066*
C30.9999 (5)0.9965 (5)0.3133 (5)0.0577 (15)
H30.91070.98140.36320.069*
C41.0379 (4)0.8685 (4)0.1694 (5)0.0389 (11)
C51.1103 (4)0.8755 (4)0.0381 (5)0.0481 (13)
H51.18470.92830.01490.058*
C61.0730 (4)0.8045 (4)0.0148 (5)0.0455 (12)
H61.12200.80740.10230.055*
C70.9598 (4)0.7287 (4)0.0668 (5)0.0390 (11)
C80.8892 (4)0.7196 (4)0.1999 (5)0.0406 (12)
C90.9265 (4)0.7898 (4)0.2539 (5)0.0451 (12)
H90.87940.78450.34250.054*
C100.7693 (5)0.6289 (5)0.2682 (5)0.0492 (14)
C110.6416 (5)0.7023 (7)0.3067 (6)0.071 (2)
H11A0.56870.64430.34110.086*
H11B0.63530.72630.37990.086*
C120.6284 (6)0.8198 (7)0.1949 (8)0.091 (2)0.42 (5)
H12A0.62350.80160.12240.109*0.42 (5)
H12B0.69630.88410.15830.109*0.42 (5)
C13A0.495 (4)0.855 (5)0.285 (7)0.132 (13)0.42 (5)
H13A0.42600.82030.27880.198*0.42 (5)
H13B0.48840.94740.25460.198*0.42 (5)
H13C0.48780.82040.37770.198*0.42 (5)
C12'0.6284 (6)0.8198 (7)0.1949 (8)0.091 (2)0.58 (5)
H12C0.64540.79470.11950.109*0.58 (5)
H12D0.69930.87790.16660.109*0.58 (5)
C13B0.4999 (19)0.903 (2)0.210 (3)0.080 (7)0.58 (5)
H13D0.42620.84900.24050.120*0.58 (5)
H13E0.50950.97020.12290.120*0.58 (5)
H13F0.48640.94140.27390.120*0.58 (5)
C140.7642 (7)0.5202 (7)0.3975 (6)0.090 (2)
H14A0.74440.55670.46520.108*
H14B0.69050.46470.42720.108*
C150.8676 (8)0.4449 (8)0.4001 (8)0.124 (3)
H15A0.94180.49970.37010.149*
H15B0.88700.40660.33370.149*
C160.8575 (8)0.3320 (8)0.5401 (7)0.143 (4)
H16A0.83210.36660.60930.215*
H16B0.94090.29200.53060.215*
H16C0.79350.26910.56510.215*
C170.7850 (4)0.5895 (4)0.1520 (5)0.0402 (11)
C180.8953 (4)0.6503 (4)0.0353 (5)0.0391 (11)
C190.9251 (4)0.6322 (5)0.0817 (5)0.0485 (13)
H190.99930.67170.15740.058*
C200.8451 (4)0.5551 (5)0.0883 (5)0.0460 (13)
H200.86390.54430.16880.055*
C210.7375 (4)0.4946 (4)0.0258 (5)0.0388 (11)
C220.7064 (4)0.5105 (4)0.1466 (5)0.0443 (12)
H220.63370.46850.22290.053*
C230.5576 (5)0.3388 (5)0.1157 (5)0.0592 (15)
H230.53210.32770.20610.071*
C240.6597 (5)0.4078 (6)0.0989 (6)0.0753 (19)
H240.71760.45190.18710.090*
C250.5641 (5)0.3242 (6)0.0605 (6)0.0736 (19)
H250.54540.30080.11930.088*
Cl11.27524 (14)1.23830 (15)0.39214 (14)0.0714 (5)
Cl2A1.3646 (9)0.9094 (12)0.6438 (11)0.108 (3)0.50
Cl2B1.3622 (12)0.8722 (13)0.6090 (12)0.124 (3)0.50
Cu11.34449 (6)1.17696 (6)0.18473 (7)0.0639 (3)
Cu21.40380 (10)1.08864 (10)0.46070 (9)0.1152 (4)
N11.2024 (4)1.0690 (4)0.2329 (4)0.0518 (11)
N21.0773 (4)0.9482 (4)0.2180 (4)0.0426 (10)
N30.6553 (3)0.4151 (4)0.0156 (4)0.0428 (10)
N40.4999 (4)0.2798 (4)0.0742 (4)0.0531 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (3)0.054 (3)0.055 (3)0.019 (3)0.022 (3)0.016 (3)
C20.060 (3)0.055 (3)0.054 (3)0.017 (3)0.017 (3)0.023 (3)
C30.051 (3)0.067 (4)0.057 (3)0.022 (3)0.013 (3)0.026 (3)
C40.045 (3)0.033 (3)0.045 (3)0.011 (2)0.024 (2)0.010 (2)
C50.044 (3)0.041 (3)0.060 (4)0.015 (2)0.019 (3)0.015 (3)
C60.044 (3)0.046 (3)0.043 (3)0.011 (2)0.011 (2)0.016 (2)
C70.037 (3)0.033 (3)0.049 (3)0.006 (2)0.020 (2)0.011 (2)
C80.044 (3)0.037 (3)0.041 (3)0.014 (2)0.018 (2)0.009 (2)
C90.049 (3)0.051 (3)0.039 (3)0.015 (3)0.018 (2)0.014 (2)
C100.063 (3)0.050 (3)0.036 (3)0.029 (3)0.023 (3)0.003 (2)
C110.048 (3)0.112 (6)0.057 (4)0.044 (4)0.008 (3)0.048 (4)
C120.052 (4)0.103 (6)0.135 (7)0.001 (4)0.034 (4)0.064 (6)
C13A0.12 (2)0.16 (3)0.16 (4)0.08 (2)0.10 (3)0.09 (3)
C12'0.052 (4)0.103 (6)0.135 (7)0.001 (4)0.034 (4)0.064 (6)
C13B0.081 (9)0.090 (13)0.103 (14)0.030 (9)0.052 (10)0.061 (11)
C140.101 (5)0.081 (5)0.091 (5)0.033 (4)0.053 (5)0.007 (4)
C150.099 (6)0.102 (7)0.129 (7)0.015 (5)0.023 (6)0.017 (5)
C160.158 (8)0.115 (7)0.092 (6)0.026 (6)0.049 (6)0.016 (5)
C170.040 (3)0.035 (3)0.050 (3)0.008 (2)0.021 (2)0.013 (2)
C180.043 (3)0.038 (3)0.046 (3)0.003 (2)0.022 (2)0.018 (2)
C190.042 (3)0.053 (3)0.048 (3)0.015 (2)0.009 (2)0.020 (3)
C200.043 (3)0.054 (3)0.041 (3)0.014 (2)0.008 (2)0.023 (3)
C210.039 (3)0.039 (3)0.049 (3)0.003 (2)0.023 (2)0.018 (2)
C220.039 (3)0.045 (3)0.046 (3)0.014 (2)0.013 (2)0.012 (2)
C230.060 (3)0.072 (4)0.049 (3)0.030 (3)0.013 (3)0.024 (3)
C240.074 (4)0.107 (5)0.052 (4)0.044 (4)0.008 (3)0.038 (4)
C250.071 (4)0.102 (5)0.077 (4)0.022 (4)0.026 (4)0.055 (4)
Cl10.0700 (9)0.0837 (11)0.0634 (9)0.0198 (8)0.0174 (8)0.0319 (8)
Cl2A0.056 (3)0.121 (7)0.089 (5)0.020 (3)0.007 (3)0.003 (4)
Cl2B0.105 (4)0.120 (7)0.107 (6)0.032 (4)0.038 (4)0.005 (4)
Cu10.0633 (5)0.0590 (5)0.0775 (5)0.0270 (4)0.0286 (4)0.0225 (4)
Cu20.1243 (8)0.1292 (9)0.0919 (7)0.0121 (7)0.0473 (6)0.0392 (6)
N10.058 (3)0.049 (3)0.057 (3)0.022 (2)0.026 (2)0.016 (2)
N20.047 (2)0.040 (2)0.046 (2)0.0133 (19)0.020 (2)0.013 (2)
N30.039 (2)0.046 (2)0.049 (3)0.0109 (19)0.016 (2)0.021 (2)
N40.056 (3)0.058 (3)0.052 (3)0.019 (2)0.018 (2)0.024 (2)
Geometric parameters (Å, º) top
C1—N11.310 (6)C14—H14B0.9700
C1—N21.356 (5)C15—C161.587 (10)
C1—H10.9300C15—H15A0.9700
C2—C31.343 (6)C15—H15B0.9700
C2—N11.360 (6)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—N21.362 (6)C16—H16C0.9600
C3—H30.9300C17—C221.381 (5)
C4—C51.385 (6)C17—C181.408 (6)
C4—C91.395 (5)C18—C191.360 (6)
C4—N21.438 (5)C19—C201.383 (5)
C5—C61.384 (6)C19—H190.9300
C5—H50.9300C20—C211.378 (5)
C6—C71.390 (6)C20—H200.9300
C6—H60.9300C21—C221.387 (6)
C7—C81.393 (6)C21—N31.449 (5)
C7—C181.455 (5)C22—H220.9300
C8—C91.386 (6)C23—N31.317 (5)
C8—C101.542 (6)C23—N41.322 (5)
C9—H90.9300C23—H230.9300
C10—C141.497 (7)C24—C251.348 (6)
C10—C171.528 (6)C24—N31.350 (6)
C10—C111.539 (8)C24—H240.9300
C11—C121.481 (9)C25—N41.336 (6)
C11—H11A0.9700C25—H250.9300
C11—H11B0.9700Cl1—Cu22.171 (2)
C12—C13A1.55 (4)Cl1—Cu12.5700 (17)
C12—H12A0.9700Cl2A—Cu22.209 (13)
C12—H12B0.9700Cl2A—Cu2i2.376 (9)
C13A—H13A0.9600Cl2B—Cu22.342 (13)
C13A—H13B0.9600Cl2B—Cu2i2.460 (11)
C13A—H13C0.9600Cu1—N4ii1.901 (4)
C13B—H13D0.9600Cu1—N11.910 (3)
C13B—H13E0.9600Cu2—Cl2Ai2.376 (9)
C13B—H13F0.9600Cu2—Cl2Bi2.460 (11)
C14—C151.338 (9)Cu2—Cu2i2.893 (2)
C14—H14A0.9700N4—Cu1iii1.901 (4)
N1—C1—N2111.0 (5)H16B—C16—H16C109.5
N1—C1—H1124.5C22—C17—C18119.1 (4)
N2—C1—H1124.5C22—C17—C10129.7 (4)
C3—C2—N1109.9 (5)C18—C17—C10111.2 (3)
C3—C2—H2125.0C19—C18—C17121.0 (4)
N1—C2—H2125.0C19—C18—C7130.8 (4)
C2—C3—N2106.6 (4)C17—C18—C7108.3 (4)
C2—C3—H3126.7C18—C19—C20120.1 (4)
N2—C3—H3126.7C18—C19—H19119.9
C5—C4—C9122.1 (4)C20—C19—H19119.9
C5—C4—N2118.6 (4)C21—C20—C19119.2 (4)
C9—C4—N2119.3 (4)C21—C20—H20120.4
C6—C5—C4120.6 (4)C19—C20—H20120.4
C6—C5—H5119.7C20—C21—C22121.6 (4)
C4—C5—H5119.7C20—C21—N3117.9 (4)
C5—C6—C7117.9 (4)C22—C21—N3120.5 (4)
C5—C6—H6121.0C17—C22—C21119.0 (4)
C7—C6—H6121.0C17—C22—H22120.5
C6—C7—C8121.2 (4)C21—C22—H22120.5
C6—C7—C18129.4 (4)N3—C23—N4112.8 (4)
C8—C7—C18109.4 (4)N3—C23—H23123.6
C9—C8—C7121.1 (4)N4—C23—H23123.6
C9—C8—C10128.0 (4)C25—C24—N3106.6 (5)
C7—C8—C10110.8 (4)C25—C24—H24126.7
C8—C9—C4117.0 (4)N3—C24—H24126.7
C8—C9—H9121.5N4—C25—C24110.3 (5)
C4—C9—H9121.5N4—C25—H25124.8
C14—C10—C17115.5 (5)C24—C25—H25124.8
C14—C10—C11105.6 (5)Cu2—Cl1—Cu186.93 (6)
C17—C10—C11110.7 (4)Cu2—Cl2A—Cu2i78.2 (3)
C14—C10—C8113.9 (4)Cu2—Cl2B—Cu2i74.0 (3)
C17—C10—C8100.4 (3)N4ii—Cu1—N1158.65 (17)
C11—C10—C8110.9 (4)N4ii—Cu1—Cl198.40 (13)
C12—C11—C10115.3 (5)N1—Cu1—Cl1102.52 (13)
C12—C11—H11A108.5Cl1—Cu2—Cl2A131.7 (3)
C10—C11—H11A108.5Cl1—Cu2—Cl2B131.3 (3)
C12—C11—H11B108.5Cl2A—Cu2—Cl2B17.5 (4)
C10—C11—H11B108.5Cl1—Cu2—Cl2Ai126.3 (3)
H11A—C11—H11B107.5Cl2A—Cu2—Cl2Ai101.8 (3)
C11—C12—C13A94 (3)Cl2B—Cu2—Cl2Ai100.7 (5)
C11—C12—H12A112.9Cl1—Cu2—Cl2Bi122.7 (3)
C13A—C12—H12A112.9Cl2A—Cu2—Cl2Bi102.0 (5)
C11—C12—H12B112.9Cl2B—Cu2—Cl2Bi106.0 (3)
C13A—C12—H12B112.9Cl2Ai—Cu2—Cl2Bi16.6 (4)
H12A—C12—H12B110.3Cl1—Cu2—Cu2i173.74 (8)
C15—C14—C10120.0 (7)Cl2A—Cu2—Cu2i53.5 (3)
C15—C14—H14A107.3Cl2B—Cu2—Cu2i54.9 (3)
C10—C14—H14A107.3Cl2Ai—Cu2—Cu2i48.3 (3)
C15—C14—H14B107.3Cl2Bi—Cu2—Cu2i51.1 (3)
C10—C14—H14B107.3C1—N1—C2105.9 (4)
H14A—C14—H14B106.9C1—N1—Cu1126.7 (4)
C14—C15—C16118.0 (7)C2—N1—Cu1126.6 (3)
C14—C15—H15A107.8C1—N2—C3106.5 (4)
C16—C15—H15A107.8C1—N2—C4125.9 (4)
C14—C15—H15B107.8C3—N2—C4127.5 (4)
C16—C15—H15B107.8C23—N3—C24106.0 (4)
H15A—C15—H15B107.2C23—N3—C21126.9 (4)
C15—C16—H16A109.5C24—N3—C21127.1 (4)
C15—C16—H16B109.5C23—N4—C25104.2 (4)
H16A—C16—H16B109.5C23—N4—Cu1iii125.3 (4)
C15—C16—H16C109.5C25—N4—Cu1iii129.8 (3)
H16A—C16—H16C109.5
N1—C2—C3—N20.2 (6)C10—C17—C22—C21176.5 (5)
C9—C4—C5—C60.8 (7)C20—C21—C22—C170.4 (7)
N2—C4—C5—C6177.4 (4)N3—C21—C22—C17178.3 (4)
C4—C5—C6—C71.3 (7)N3—C24—C25—N40.3 (7)
C5—C6—C7—C82.9 (7)Cu2—Cl1—Cu1—N4ii85.09 (15)
C5—C6—C7—C18176.7 (5)Cu2—Cl1—Cu1—N199.16 (14)
C6—C7—C8—C92.5 (7)Cu1—Cl1—Cu2—Cl2A117.9 (3)
C18—C7—C8—C9177.1 (4)Cu1—Cl1—Cu2—Cl2B94.5 (3)
C6—C7—C8—C10179.5 (4)Cu1—Cl1—Cu2—Cl2Ai67.6 (3)
C18—C7—C8—C100.9 (5)Cu1—Cl1—Cu2—Cl2Bi87.3 (3)
C7—C8—C9—C40.5 (7)Cu1—Cl1—Cu2—Cu2i97.7 (6)
C10—C8—C9—C4178.1 (5)Cu2i—Cl2A—Cu2—Cl1175.47 (11)
C5—C4—C9—C81.2 (7)Cu2i—Cl2A—Cu2—Cl2B88.1 (19)
N2—C4—C9—C8177.0 (4)Cu2i—Cl2A—Cu2—Cl2Ai0.0
C9—C8—C10—C1458.1 (8)Cu2i—Cl2A—Cu2—Cl2Bi17.0 (4)
C7—C8—C10—C14124.0 (5)Cu2i—Cl2B—Cu2—Cl1178.38 (10)
C9—C8—C10—C17177.8 (5)Cu2i—Cl2B—Cu2—Cl2A79.2 (18)
C7—C8—C10—C170.0 (5)Cu2i—Cl2B—Cu2—Cl2Ai16.2 (4)
C9—C8—C10—C1160.8 (6)Cu2i—Cl2B—Cu2—Cl2Bi0.0
C7—C8—C10—C11117.1 (5)N2—C1—N1—C20.3 (6)
C14—C10—C11—C12176.6 (4)N2—C1—N1—Cu1170.0 (3)
C17—C10—C11—C1257.7 (6)C3—C2—N1—C10.3 (6)
C8—C10—C11—C1252.8 (6)C3—C2—N1—Cu1170.0 (4)
C10—C11—C12—C13A177.9 (14)N4ii—Cu1—N1—C124.0 (8)
C17—C10—C14—C1563.5 (8)Cl1—Cu1—N1—C1167.7 (4)
C11—C10—C14—C15173.8 (7)N4ii—Cu1—N1—C2143.7 (5)
C8—C10—C14—C1551.9 (9)Cl1—Cu1—N1—C224.7 (4)
C10—C14—C15—C16179.4 (6)N1—C1—N2—C30.2 (6)
C14—C10—C17—C2258.7 (7)N1—C1—N2—C4177.3 (4)
C11—C10—C17—C2261.2 (7)C2—C3—N2—C10.0 (6)
C8—C10—C17—C22178.4 (5)C2—C3—N2—C4177.0 (4)
C14—C10—C17—C18123.8 (5)C5—C4—N2—C125.1 (7)
C11—C10—C17—C18116.3 (4)C9—C4—N2—C1156.7 (5)
C8—C10—C17—C180.9 (5)C5—C4—N2—C3151.3 (5)
C22—C17—C18—C190.0 (7)C9—C4—N2—C326.9 (7)
C10—C17—C18—C19177.8 (4)N4—C23—N3—C241.5 (6)
C22—C17—C18—C7179.3 (4)N4—C23—N3—C21179.2 (4)
C10—C17—C18—C71.5 (5)C25—C24—N3—C231.0 (7)
C6—C7—C18—C191.9 (9)C25—C24—N3—C21178.7 (5)
C8—C7—C18—C19177.7 (5)C20—C21—N3—C23171.9 (5)
C6—C7—C18—C17178.9 (5)C22—C21—N3—C239.4 (7)
C8—C7—C18—C171.4 (5)C20—C21—N3—C2410.9 (7)
C17—C18—C19—C201.3 (7)C22—C21—N3—C24167.9 (5)
C7—C18—C19—C20177.8 (5)N3—C23—N4—C251.2 (6)
C18—C19—C20—C211.7 (7)N3—C23—N4—Cu1iii172.9 (3)
C19—C20—C21—C220.9 (7)C24—C25—N4—C230.5 (7)
C19—C20—C21—N3179.6 (4)C24—C25—N4—Cu1iii171.6 (4)
C18—C17—C22—C210.9 (7)
Symmetry codes: (i) x+3, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13C···Cl2Biv0.962.753.53 (6)139
C9—H9···Cl1v0.932.793.715 (5)176
C23—H23···Cl1iii0.932.833.392 (5)120
Symmetry codes: (iii) x1, y1, z; (iv) x1, y, z; (v) x+2, y+2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC21H18N4[Cu2Cl2(C21H18N4)][Cu2Cl2(C25H26N4)]
Mr326.39524.37580.48
Crystal system, space groupMonoclinic, P21Monoclinic, P21/cTriclinic, P1
Temperature (K)298298298
a, b, c (Å)6.616 (3), 15.683 (6), 8.545 (4)12.749 (9), 17.215 (11), 9.489 (6)11.205 (4), 11.347 (4), 11.652 (4)
α, β, γ (°)90, 108.037 (5), 9090, 100.402 (9), 9066.157 (5), 66.036 (4), 81.515 (5)
V3)843.1 (6)2048 (2)1238.0 (7)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.082.351.95
Crystal size (mm)0.29 × 0.15 × 0.120.48 × 0.23 × 0.160.42 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.398, 0.7050.494, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
4430, 1631, 1427 10566, 3831, 2755 6627, 4577, 2525
Rint0.0420.0690.030
(sin θ/λ)max1)0.6080.6080.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.112, 1.12 0.060, 0.172, 1.07 0.057, 0.143, 1.00
No. of reflections163138314577
No. of parameters228264320
No. of restraints101
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.230.91, 0.870.70, 0.55

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.932.633.371 (6)137.2
C5—H5···N4ii0.932.643.460 (5)147.4
C1—H1···N4iii0.932.653.494 (5)152.0
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x1, y, z+1; (iii) x+2, y1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
Cl1—Cu22.097 (2)Cu1—N11.873 (4)
Cl2—Cu22.100 (2)Cu1—Cu22.9285 (17)
Cu1—N4i1.871 (4)N4—Cu1ii1.871 (4)
N4i—Cu1—N1170.84 (17)Cl1—Cu2—Cl2176.28 (7)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cl2iii0.932.633.519 (5)159.0
Symmetry code: (iii) x1, y, z1.
Selected geometric parameters (Å, º) for (III) top
Cl1—Cu22.171 (2)Cu1—N4i1.901 (4)
Cl1—Cu12.5700 (17)Cu1—N11.910 (3)
Cl2A—Cu22.209 (13)Cu2—Cl2Aii2.376 (9)
Cl2B—Cu22.342 (13)Cu2—Cl2Bii2.460 (11)
N4i—Cu1—N1158.65 (17)Cl1—Cu2—Cl2A131.7 (3)
N4i—Cu1—Cl198.40 (13)Cl1—Cu2—Cl2Bii122.7 (3)
N1—Cu1—Cl1102.52 (13)Cl2B—Cu2—Cl2Bii106.0 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C13A—H13C···Cl2Biii0.962.753.53 (6)138.8
C9—H9···Cl1iv0.932.793.715 (5)176.2
C23—H23···Cl1v0.932.833.392 (5)119.7
Symmetry codes: (iii) x1, y, z; (iv) x+2, y+2, z+1; (v) x1, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds