Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Different solutions have been proposed over the years to optimize control of the temperature and atmosphere over a catalyst in order to reach an ideal reactor behavior. Here, a new innovative solution which aims to minimize temperature gradients along the catalyst bed is demonstrated. This was attained by focusing the infrared radiation generated from the heating elements onto the catalyst bed with the aid of an aluminium shield. This method yields a ∼0.13 K mm−1 axial temperature gradient ranging from 960 to 1173 K. With the selection of appropriate capillaries, pressures of 20 bar (2 MPa) can be attained.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889813018839/rg5025sup1.pdf
Supplementary material (describes the measurement of the catalytic performance for the X-ray microreactor and gives detalied pictures of the X-ray microreactor)


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds