Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecular structures of tri­chlorido­(2,2':6',2''-terpyridine-[kappa]3N,N',N'')gallium(III), [GaCl3(C15H11N3)], and tri­bromido­(2,2':6',2''-terpyridine-[kappa]3N,N',N'')gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octa­hedral geometry. It is shown that the Ga-N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2':6',2''-terpyridine donor as well.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614003349/ov3045sup1.cif
Contains datablocks global, GaBr3_Terpy, GaCl3_Terpy

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003349/ov3045GaCl3_Terpysup2.hkl
Contains datablock GaCl3_Terpy

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003349/ov3045GaBr3_Terpysup3.hkl
Contains datablock GaBr3_Terpy

CCDC references: 972180; 972181

Introduction top

The Ga—L distances in molecular complexes of the form [GaX3(L)] are expected to lengthen with a decrease of the Lewis acidity of the gallium trihalide. However, recently, on the example of molecular complexes of group 13 metal trihalides with monodentate donor ligands, it has been shown that the solid state masks the Lewis acidity trends (Timoshkin et al., 2012). It is of inter­est to explore if the same situation is observed for molecular complexes of group 13 metals with polydentate ligands. Therefore, the molecular structures of gallium trichloride and tribromide complexes with the tridentate ligand 2,2':6',2''-terpyridine (terpy) have been established by X-ray structure analysis. [GaCl3(terpy)], (I), has already been reported by Beran et al. (1970) [atomic coordinates not readily available; Cambridge Structural Database (CSD; Allen, 2002; Groom & Allen, 2014) refcode TPYGAC], followed by its Al, In, and Tl analogs by Beran et al. (1972), but no structural information is available for [GaBr3(terpy)], (II). Ionic [GaI2(Phterpy)]I (Phterpy is 4'-phenyl-2,2':6',2''-terpyridine) was produced by Baker et al. (2004) by reaction of gallium moniiodide (GaI) with Phterpy in toluene.

Experimental top

Synthesis and crystallization top

GaCl3 and GaBr3 were obtained by direct reaction between the elements. Purification of the metal halides and terpy (Alfa Aesar, 97%) was carried out by multiple resublimations in sealed whole-glass systems under vacuum. The synthesss of complexes (I) and (II) were performed in aceto­nitrile (MeCN) solutions in a dry box under nitro­gen. MeCN was dried over CaH2 and distilled before use. For the preparation of (I), GaCl3 (0.0120 g, 0.068 mmol) was dissolved in MeCN (1 ml) and a terpy solution (0.72 ml) in MeCN (0.022 g ml-1) was added. For the preparation of (II), GaBr3 (0.0252 g, 0.081 mmol) was dissolved in MeCN (1 ml) and a terpy solution (0.86 ml) in MeCN (0.022 g ml-1) was added. In both cases, a white crystalline powder was observed after a few minutes. Solutions in sealed vessels were heated to 303–313 K and stored for three weeks for crystal growth.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were constrained to ride on the pivot atom, with C—H distances set at 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

The molecular structures of [GaCl3(terpy)], (I), and [GaBr3(terpy)], (II), are shown in Figs. 1 and 2, respectively. The complexes are isostructural and the GaIII atom has an o­cta­hedral geometry (mer isomer). The structural data for (I) are in good agreement with the previous structural study by Beran et al. (1970). Complex (II) is only the second example of an o­cta­hedral gallium tribromide compex; the first example is fac-[GaBr3(Me3[9]aneN3)] (Willey et al., 2011).

Determined at 123 K in the present work, the Ga—N bond lengths of (II) are slightly shorter or equal within experimental error to those of (I) (Table 2). This small Ga—N bond shortening on going from GaCl3 to GaBr3 is in contrast to the trend expected based on the gas-phase Lewis acidity of galluim halides (GaCl3 > GaBr3) (Timoshkin et al., 2012). It is of inter­est if a similar situation is observed for complexes of gallium halides with other ligands. A search of the CSD revealed ten other [GaX3(L)] pairs of isostructural molecular complexes, for which data for X = Cl and X = Br are available. Table 2 lists the Ga—L and Ga—X distances in such complexes, and the difference (Δ) in Ga—L distances in bromide and chloride complexes. For complexes with a coordination number (CN) of 4 (tetra­hedral geometry at the Ga atom), the values of Δ are positive, but for four out of seven [GaX3(L)] pairs, Δ is less than 3σ, suggesting that GaBr3 and GaCl3 have essentially equal acceptor ability. In contrast, for all three structurally characterized [GaX3(L)] pairs with CN = 5 (trigonal bipyramidal geometry at Ga), the values of Δ are positive and significantly larger than 3σ, indicating weaker acceptor strength of GaBr3 compared to GaCl3. Inter­estingly, for [GaX3(terpy)] (CN = 6, o­cta­hedral geometry), the value of Δ is negative, but small (for two out of three Ga—N bonds it is less than 3σ). Thus, despite the lower Lewis acidity of gaseous GaBr3 compared to GaCl3, the Ga—N bond lengths in the solid [GaX3(terpy)] complexes are equal within experimental error.

Note, that for complexes with CN = 4, the Ga—X distances in [GaX3(L)] agree within 0.065 Å [minimal and maximal values are 2.125 (1)–2.190 (3) Å for X = Cl and 2.280 (1)–2.342 (3) Å for X = Br]. An increase of the CN of gallium to 6 leads to significant Ga—X bond lengthening [up to 2.4118 (6) and 2.6053 (3) Å for X = Cl, Br, respectively]. Ga—N distances also increase (Table 2). This may be related to larger structural reorganization of GaX3 upon formation of o­cta­hedral complexes.

We conclude, that observed earlier masking of Lewis acidity trends of group 13 metal halide complexes with monodentate ligands in the solid state (Timoshkin et al., 2012) also holds for complexes with the polydentate donor terpy as well. Thus, the Ga—N bond length in the solid state can not serve as reliable indicator of the Lewis acidity.

Related literature top

For related literature, see: Allen (2002); Baker et al. (2004); Beran et al. (1970, 1972); Groom & Allen (2014); Timoshkin et al. (2012); Willey et al. (2011).

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for GaCl3_Terpy; SHELXS97 (Sheldrick, 2008) for GaBr3_Terpy. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellispoids are drawn at the ??% probability level and H atpms are shown as small spheres of arbitrary radii. [added caption OK?]
[Figure 2] Fig. 2. The molecular structure of (II). Displacement ellispoids are drawn at the ??% probability level and H atpms are shown as small spheres of arbitrary radii. [added caption OK?]
(GaCl3_Terpy) Trichlorido(2,2':6',2''-terpyridine-κ3N,N',N'')gallium(III) top
Crystal data top
[GaCl3(C15H11N3)]F(000) = 816
Mr = 409.34Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 8.2492 (2) ÅCell parameters from 5153 reflections
b = 14.1770 (3) Åθ = 3.4–32.0°
c = 13.7119 (3) ŵ = 2.28 mm1
β = 104.217 (3)°T = 123 K
V = 1554.47 (7) Å3Block, colourless
Z = 40.08 × 0.05 × 0.02 mm
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
5130 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3289 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 15.9702 pixels mm-1θmax = 32.3°, θmin = 2.9°
ω scansh = 1212
Absorption correction: gaussian
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
k = 2020
Tmin = 0.887, Tmax = 0.971l = 1920
16866 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.014P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.001
5130 reflectionsΔρmax = 0.49 e Å3
199 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
[GaCl3(C15H11N3)]V = 1554.47 (7) Å3
Mr = 409.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2492 (2) ŵ = 2.28 mm1
b = 14.1770 (3) ÅT = 123 K
c = 13.7119 (3) Å0.08 × 0.05 × 0.02 mm
β = 104.217 (3)°
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
5130 independent reflections
Absorption correction: gaussian
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
3289 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.971Rint = 0.051
16866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 0.82Δρmax = 0.49 e Å3
5130 reflectionsΔρmin = 0.38 e Å3
199 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.12a (release 12-09-2013 CrysAlis171 .NET) (compiled Sep 12 2013,13:51:24) Numerical absorption correction based on gaussian integration over a multifaceted crystal model

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga40.46977 (3)0.37280 (2)0.27962 (2)0.01282 (6)
Cl60.21670 (6)0.39451 (3)0.14921 (3)0.01560 (11)
Cl70.31811 (7)0.34913 (4)0.39335 (4)0.02083 (12)
Cl100.72624 (7)0.35088 (4)0.39657 (4)0.02105 (12)
N20.5867 (2)0.39907 (11)0.16742 (11)0.0116 (4)
N70.5009 (2)0.51969 (11)0.28737 (12)0.0134 (4)
C20.7053 (3)0.34255 (14)0.03839 (14)0.0173 (5)
H20.73290.29170.00030.021*
N60.4937 (2)0.23730 (11)0.22244 (12)0.0133 (4)
C110.7053 (3)0.50916 (14)0.07511 (15)0.0167 (5)
H110.73200.57230.06190.020*
C130.7480 (3)0.43441 (15)0.02065 (15)0.0196 (5)
H130.80730.44650.02930.024*
C160.6224 (2)0.48881 (13)0.14929 (14)0.0125 (4)
C240.4591 (3)0.67375 (14)0.34695 (15)0.0188 (5)
H240.42500.71260.39470.023*
C310.6212 (3)0.32659 (14)0.11308 (14)0.0141 (4)
C330.5343 (3)0.06642 (14)0.13379 (16)0.0188 (5)
H330.54650.00780.10280.023*
C370.4527 (3)0.57620 (14)0.35363 (15)0.0165 (5)
H370.41320.54860.40660.020*
C390.5844 (3)0.14945 (14)0.09638 (14)0.0165 (4)
H390.63140.14840.03970.020*
C410.5722 (3)0.65554 (14)0.20319 (15)0.0169 (5)
H410.61460.68200.15080.020*
C430.5654 (2)0.55866 (13)0.21480 (14)0.0135 (4)
C510.5158 (3)0.71315 (14)0.26983 (16)0.0195 (5)
H510.51640.77970.26220.023*
C530.5648 (3)0.23415 (14)0.14312 (14)0.0133 (4)
C560.4471 (3)0.15650 (14)0.25857 (14)0.0163 (5)
H560.39920.15890.31480.020*
C630.4665 (3)0.06947 (14)0.21647 (16)0.0193 (5)
H630.43390.01310.24390.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga40.01588 (13)0.01138 (11)0.01229 (10)0.00043 (10)0.00554 (9)0.00044 (9)
Cl60.0156 (3)0.0155 (3)0.0159 (2)0.0005 (2)0.0042 (2)0.00170 (19)
Cl70.0263 (3)0.0232 (3)0.0164 (2)0.0028 (2)0.0116 (2)0.0015 (2)
Cl100.0203 (3)0.0203 (3)0.0194 (3)0.0012 (2)0.0012 (2)0.0006 (2)
N20.0106 (9)0.0138 (9)0.0104 (8)0.0014 (7)0.0025 (7)0.0024 (6)
N70.0139 (10)0.0115 (9)0.0149 (8)0.0003 (7)0.0040 (7)0.0014 (7)
C20.0204 (12)0.0183 (11)0.0142 (10)0.0039 (9)0.0064 (9)0.0003 (8)
N60.0143 (10)0.0120 (9)0.0132 (8)0.0015 (7)0.0027 (7)0.0012 (7)
C110.0175 (12)0.0130 (11)0.0196 (11)0.0049 (9)0.0047 (9)0.0036 (8)
C130.0187 (13)0.0257 (12)0.0171 (11)0.0004 (10)0.0096 (9)0.0053 (9)
C160.0128 (11)0.0116 (10)0.0125 (10)0.0004 (8)0.0020 (8)0.0015 (7)
C240.0173 (12)0.0179 (11)0.0189 (11)0.0032 (9)0.0000 (9)0.0053 (8)
C310.0147 (11)0.0135 (10)0.0128 (10)0.0001 (9)0.0010 (8)0.0004 (7)
C330.0176 (12)0.0126 (11)0.0244 (12)0.0032 (9)0.0018 (9)0.0044 (8)
C370.0169 (12)0.0165 (11)0.0160 (10)0.0009 (9)0.0038 (9)0.0009 (8)
C390.0159 (11)0.0172 (11)0.0165 (10)0.0009 (9)0.0042 (8)0.0018 (8)
C410.0161 (12)0.0149 (11)0.0175 (10)0.0041 (9)0.0001 (9)0.0023 (8)
C430.0123 (12)0.0132 (10)0.0141 (10)0.0000 (8)0.0013 (9)0.0004 (8)
C510.0172 (12)0.0104 (11)0.0260 (12)0.0006 (9)0.0040 (10)0.0003 (8)
C530.0128 (11)0.0144 (10)0.0120 (10)0.0007 (9)0.0016 (8)0.0008 (8)
C560.0145 (12)0.0173 (11)0.0183 (11)0.0006 (9)0.0061 (9)0.0043 (8)
C630.0184 (12)0.0126 (11)0.0256 (12)0.0029 (9)0.0030 (10)0.0037 (8)
Geometric parameters (Å, º) top
Ga4—Cl62.4118 (6)C16—C431.489 (3)
Ga4—Cl72.2511 (5)C24—H240.9500
Ga4—Cl102.3405 (6)C24—C371.388 (3)
Ga4—N22.0412 (15)C24—C511.375 (3)
Ga4—N72.0976 (15)C31—C531.482 (3)
Ga4—N62.1024 (15)C33—H330.9500
N2—C161.343 (2)C33—C391.387 (3)
N2—C311.340 (2)C33—C631.383 (3)
N7—C371.342 (2)C37—H370.9500
N7—C431.356 (2)C39—H390.9500
C2—H20.9500C39—C531.389 (3)
C2—C131.386 (3)C41—H410.9500
C2—C311.389 (3)C41—C431.385 (3)
N6—C531.357 (2)C41—C511.388 (3)
N6—C561.341 (2)C51—H510.9500
C11—H110.9500C56—H560.9500
C11—C131.391 (3)C56—C631.388 (3)
C11—C161.388 (3)C63—H630.9500
C13—H130.9500
Cl7—Ga4—Cl690.32 (2)C11—C16—C43126.11 (17)
Cl7—Ga4—Cl1093.91 (2)C37—C24—H24120.6
Cl10—Ga4—Cl6175.66 (2)C51—C24—H24120.6
N2—Ga4—Cl684.33 (5)C51—C24—C37118.8 (2)
N2—Ga4—Cl7174.49 (5)N2—C31—C2119.83 (18)
N2—Ga4—Cl1091.46 (5)N2—C31—C53113.55 (17)
N2—Ga4—N777.44 (6)C2—C31—C53126.60 (18)
N2—Ga4—N677.32 (6)C39—C33—H33120.2
N7—Ga4—Cl689.06 (5)C63—C33—H33120.2
N7—Ga4—Cl7101.23 (5)C63—C33—C39119.60 (19)
N7—Ga4—Cl1091.06 (5)N7—C37—C24121.8 (2)
N7—Ga4—N6154.75 (6)N7—C37—H37119.1
N6—Ga4—Cl689.06 (5)C24—C37—H37119.1
N6—Ga4—Cl7103.96 (5)C33—C39—H39120.5
N6—Ga4—Cl1088.99 (5)C33—C39—C53118.95 (19)
C16—N2—Ga4118.55 (13)C53—C39—H39120.5
C31—N2—Ga4118.90 (13)C43—C41—H41120.7
C31—N2—C16122.52 (17)C43—C41—C51118.54 (19)
C37—N7—Ga4125.03 (14)C51—C41—H41120.7
C37—N7—C43119.22 (17)N7—C43—C16114.26 (17)
C43—N7—Ga4115.62 (12)N7—C43—C41121.52 (18)
C13—C2—H2120.8C41—C43—C16124.21 (18)
C13—C2—C31118.48 (18)C24—C51—C41119.96 (19)
C31—C2—H2120.8C24—C51—H51120.0
C53—N6—Ga4115.31 (12)C41—C51—H51120.0
C56—N6—Ga4125.52 (13)N6—C53—C31114.86 (16)
C56—N6—C53119.16 (16)N6—C53—C39121.35 (18)
C13—C11—H11121.0C39—C53—C31123.79 (18)
C16—C11—H11121.0N6—C56—H56118.9
C16—C11—C13118.07 (18)N6—C56—C63122.19 (18)
C2—C13—C11120.84 (19)C63—C56—H56118.9
C2—C13—H13119.6C33—C63—C56118.69 (19)
C11—C13—H13119.6C33—C63—H63120.7
N2—C16—C11120.15 (17)C56—C63—H63120.7
N2—C16—C43113.74 (17)
Ga4—N2—C16—C11178.53 (15)C13—C11—C16—C43179.55 (19)
Ga4—N2—C16—C431.4 (2)C16—N2—C31—C23.7 (3)
Ga4—N2—C31—C2178.05 (15)C16—N2—C31—C53177.53 (17)
Ga4—N2—C31—C530.7 (2)C16—C11—C13—C21.6 (3)
Ga4—N7—C37—C24172.22 (16)C31—N2—C16—C113.2 (3)
Ga4—N7—C43—C167.1 (2)C31—N2—C16—C43176.86 (18)
Ga4—N7—C43—C41171.51 (15)C31—C2—C13—C111.1 (3)
Ga4—N6—C53—C312.8 (2)C33—C39—C53—N61.9 (3)
Ga4—N6—C53—C39178.36 (15)C33—C39—C53—C31176.89 (19)
Ga4—N6—C56—C63179.81 (16)C37—N7—C43—C16176.94 (18)
N2—C16—C43—N75.6 (3)C37—N7—C43—C414.5 (3)
N2—C16—C43—C41172.96 (19)C37—C24—C51—C412.8 (3)
N2—C31—C53—N62.3 (3)C39—C33—C63—C561.4 (3)
N2—C31—C53—C39178.85 (19)C43—N7—C37—C243.3 (3)
C2—C31—C53—N6176.38 (19)C43—C41—C51—C241.8 (3)
C2—C31—C53—C392.5 (3)C51—C24—C37—N70.3 (3)
N6—C56—C63—C330.8 (3)C51—C41—C43—N71.9 (3)
C11—C16—C43—N7174.34 (19)C51—C41—C43—C16179.63 (19)
C11—C16—C43—C417.1 (3)C53—N6—C56—C631.1 (3)
C13—C2—C31—N21.5 (3)C56—N6—C53—C31176.39 (17)
C13—C2—C31—C53179.90 (19)C56—N6—C53—C392.5 (3)
C13—C11—C16—N20.5 (3)C63—C33—C39—C530.1 (3)
(GaBr3_Terpy) Tribromido(2,2':6',2''-terpyridine-κ3N,N',N'')gallium(III) top
Crystal data top
[GaBr3(C15H11N3)]F(000) = 1032
Mr = 542.72Dx = 2.199 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 8.3602 (1) ÅCell parameters from 16135 reflections
b = 14.5133 (1) Åθ = 3.0–73.5°
c = 13.9874 (1) ŵ = 10.85 mm1
β = 104.967 (1)°T = 123 K
V = 1639.57 (3) Å3Block, colourless
Z = 40.12 × 0.1 × 0.08 mm
Data collection top
Oxford Diffraction (Gemini Ultra, Ruby CCD)
diffractometer
3288 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3116 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3546 pixels mm-1θmax = 73.7°, θmin = 4.5°
ω scansh = 1010
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
k = 1717
Tmin = 0.676, Tmax = 1.000l = 1617
26629 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0251P)2 + 1.7521P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3288 reflectionsΔρmax = 0.40 e Å3
200 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00013 (2)
Crystal data top
[GaBr3(C15H11N3)]V = 1639.57 (3) Å3
Mr = 542.72Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.3602 (1) ŵ = 10.85 mm1
b = 14.5133 (1) ÅT = 123 K
c = 13.9874 (1) Å0.12 × 0.1 × 0.08 mm
β = 104.967 (1)°
Data collection top
Oxford Diffraction (Gemini Ultra, Ruby CCD)
diffractometer
3288 independent reflections
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
3116 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 1.000Rint = 0.025
26629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
3288 reflectionsΔρmin = 0.46 e Å3
200 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.80495 (3)0.354146 (17)0.395354 (17)0.02511 (7)
Br10.69999 (3)0.394094 (15)0.136959 (16)0.01881 (7)
Br31.23890 (3)0.353584 (17)0.404362 (18)0.02517 (7)
Ga10.96843 (3)0.374351 (18)0.279622 (19)0.01611 (7)
N21.0824 (2)0.39713 (12)0.17033 (13)0.0159 (3)
N10.9980 (2)0.51773 (13)0.28395 (13)0.0177 (4)
C10.9517 (3)0.57427 (16)0.34759 (17)0.0215 (5)
H10.91200.54920.39820.026*
C31.0198 (3)0.70639 (16)0.26437 (18)0.0245 (5)
H31.02330.76990.25650.029*
N30.9913 (2)0.24078 (12)0.22764 (13)0.0175 (4)
C81.2414 (3)0.42717 (18)0.02660 (18)0.0248 (5)
H81.29870.43720.02120.030*
C101.1167 (3)0.32507 (16)0.11965 (15)0.0178 (4)
C91.1985 (3)0.33815 (17)0.04597 (17)0.0227 (5)
H91.22390.28840.01050.027*
C150.9456 (3)0.16323 (16)0.26449 (18)0.0222 (5)
H150.89910.16700.31800.027*
C131.0322 (3)0.07185 (16)0.14554 (19)0.0251 (5)
H131.04380.01510.11730.030*
C111.0616 (3)0.23553 (15)0.15049 (15)0.0172 (4)
C20.9612 (3)0.66899 (17)0.34001 (18)0.0253 (5)
H20.92880.70710.38510.030*
C61.1185 (3)0.48393 (15)0.15066 (16)0.0181 (4)
C121.0820 (3)0.15206 (16)0.10751 (17)0.0217 (5)
H121.12840.14970.05390.026*
C51.0630 (3)0.55331 (15)0.21266 (16)0.0183 (4)
C71.1997 (3)0.50141 (17)0.07780 (17)0.0222 (5)
H71.22550.56130.06360.027*
C41.0735 (3)0.64761 (16)0.20040 (18)0.0218 (5)
H41.11580.67130.15020.026*
C140.9650 (3)0.07734 (16)0.22586 (19)0.0253 (5)
H140.93340.02430.25350.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.03170 (14)0.02706 (14)0.02054 (12)0.00303 (10)0.01394 (10)0.00185 (9)
Br10.01962 (11)0.01690 (12)0.01982 (12)0.00044 (8)0.00495 (8)0.00211 (8)
Br30.02458 (13)0.02321 (14)0.02376 (13)0.00013 (9)0.00088 (10)0.00125 (9)
Ga10.02027 (14)0.01329 (13)0.01629 (13)0.00066 (10)0.00748 (11)0.00071 (10)
N20.0148 (8)0.0160 (9)0.0159 (8)0.0010 (7)0.0024 (7)0.0009 (7)
N10.0189 (8)0.0156 (9)0.0176 (9)0.0012 (7)0.0030 (7)0.0003 (7)
C10.0210 (10)0.0194 (11)0.0229 (11)0.0019 (9)0.0036 (9)0.0030 (9)
C30.0232 (11)0.0134 (11)0.0310 (12)0.0016 (9)0.0036 (9)0.0001 (9)
N30.0184 (8)0.0150 (9)0.0186 (9)0.0002 (7)0.0037 (7)0.0001 (7)
C80.0250 (11)0.0289 (13)0.0232 (11)0.0007 (9)0.0108 (9)0.0051 (10)
C100.0170 (9)0.0197 (11)0.0156 (10)0.0008 (8)0.0026 (8)0.0001 (8)
C90.0269 (11)0.0226 (12)0.0201 (11)0.0039 (9)0.0090 (9)0.0002 (9)
C150.0206 (10)0.0195 (11)0.0267 (12)0.0004 (9)0.0063 (9)0.0038 (9)
C130.0228 (11)0.0159 (11)0.0336 (13)0.0010 (9)0.0015 (10)0.0060 (9)
C110.0161 (9)0.0173 (11)0.0165 (10)0.0007 (8)0.0010 (8)0.0010 (8)
C20.0216 (11)0.0216 (12)0.0290 (12)0.0032 (9)0.0003 (9)0.0061 (10)
C60.0182 (10)0.0167 (11)0.0170 (10)0.0009 (8)0.0005 (8)0.0033 (8)
C120.0203 (10)0.0216 (12)0.0222 (11)0.0027 (9)0.0034 (9)0.0028 (9)
C50.0172 (9)0.0174 (11)0.0178 (10)0.0022 (8)0.0000 (8)0.0008 (8)
C70.0218 (10)0.0215 (12)0.0229 (11)0.0033 (9)0.0051 (9)0.0064 (9)
C40.0189 (10)0.0183 (11)0.0246 (11)0.0024 (8)0.0006 (9)0.0027 (9)
C140.0206 (11)0.0171 (11)0.0361 (13)0.0015 (9)0.0034 (10)0.0053 (10)
Geometric parameters (Å, º) top
Br2—Ga12.3911 (3)C8—C71.387 (3)
Br1—Ga12.6053 (3)C10—C91.389 (3)
Br3—Ga12.4920 (3)C10—C111.480 (3)
Ga1—N22.0265 (18)C9—H90.9300
Ga1—N12.0946 (18)C15—H150.9300
Ga1—N32.0965 (18)C15—C141.385 (3)
N2—C101.336 (3)C13—H130.9300
N2—C61.340 (3)C13—C121.388 (3)
N1—C11.339 (3)C13—C141.382 (4)
N1—C51.355 (3)C11—C121.382 (3)
C1—H10.9300C2—H20.9300
C1—C21.383 (3)C6—C51.480 (3)
C3—H30.9300C6—C71.386 (3)
C3—C21.386 (4)C12—H120.9300
C3—C41.392 (3)C5—C41.385 (3)
N3—C151.334 (3)C7—H70.9300
N3—C111.358 (3)C4—H40.9300
C8—H80.9300C14—H140.9300
C8—C91.386 (3)
Br2—Ga1—Br190.120 (11)C9—C10—C11125.9 (2)
Br2—Ga1—Br394.881 (12)C8—C9—C10118.3 (2)
Br3—Ga1—Br1174.836 (13)C8—C9—H9120.9
N2—Ga1—Br2173.25 (5)C10—C9—H9120.9
N2—Ga1—Br183.35 (5)N3—C15—H15118.8
N2—Ga1—Br391.69 (5)N3—C15—C14122.3 (2)
N2—Ga1—N177.56 (7)C14—C15—H15118.8
N2—Ga1—N377.66 (7)C12—C13—H13120.4
N1—Ga1—Br2100.73 (5)C14—C13—H13120.4
N1—Ga1—Br189.13 (5)C14—C13—C12119.2 (2)
N1—Ga1—Br391.20 (5)N3—C11—C10114.44 (19)
N1—Ga1—N3155.22 (7)N3—C11—C12121.5 (2)
N3—Ga1—Br2103.93 (5)C12—C11—C10124.1 (2)
N3—Ga1—Br188.50 (5)C1—C2—C3119.1 (2)
N3—Ga1—Br389.05 (5)C1—C2—H2120.4
C10—N2—Ga1118.69 (15)C3—C2—H2120.4
C10—N2—C6122.44 (19)N2—C6—C5113.46 (19)
C6—N2—Ga1118.86 (15)N2—C6—C7120.1 (2)
C1—N1—Ga1125.13 (15)C7—C6—C5126.4 (2)
C1—N1—C5119.69 (19)C13—C12—H12120.5
C5—N1—Ga1115.11 (14)C11—C12—C13119.0 (2)
N1—C1—H1119.1C11—C12—H12120.5
N1—C1—C2121.7 (2)N1—C5—C6114.70 (19)
C2—C1—H1119.1N1—C5—C4121.2 (2)
C2—C3—H3120.4C4—C5—C6124.1 (2)
C2—C3—C4119.1 (2)C8—C7—H7120.9
C4—C3—H3120.4C6—C7—C8118.3 (2)
C15—N3—Ga1125.81 (15)C6—C7—H7120.9
C15—N3—C11119.06 (19)C3—C4—H4120.5
C11—N3—Ga1115.13 (14)C5—C4—C3119.0 (2)
C9—C8—H8119.6C5—C4—H4120.5
C9—C8—C7120.7 (2)C15—C14—H14120.6
C7—C8—H8119.6C13—C14—C15118.8 (2)
N2—C10—C9120.1 (2)C13—C14—H14120.6
N2—C10—C11114.02 (18)
Br2—Ga1—N1—C17.81 (18)N1—Ga1—N2—C10179.70 (16)
Br2—Ga1—N1—C5169.17 (14)N1—Ga1—N2—C61.22 (15)
Br2—Ga1—N3—C159.34 (19)N1—Ga1—N3—C15176.25 (17)
Br2—Ga1—N3—C11171.66 (13)N1—Ga1—N3—C112.8 (3)
Br1—Ga1—N2—C1089.72 (15)N1—C1—C2—C30.2 (3)
Br1—Ga1—N2—C689.36 (15)N1—C5—C4—C31.6 (3)
Br1—Ga1—N1—C197.77 (17)C1—N1—C5—C6176.59 (18)
Br1—Ga1—N1—C579.21 (15)C1—N1—C5—C43.9 (3)
Br1—Ga1—N3—C1599.09 (18)N3—Ga1—N2—C100.19 (15)
Br1—Ga1—N3—C1181.90 (14)N3—Ga1—N2—C6179.27 (17)
Br3—Ga1—N2—C1088.85 (15)N3—Ga1—N1—C1177.71 (17)
Br3—Ga1—N2—C692.07 (15)N3—Ga1—N1—C55.3 (3)
Br3—Ga1—N1—C187.39 (17)N3—C15—C14—C130.8 (3)
Br3—Ga1—N1—C595.63 (15)N3—C11—C12—C131.2 (3)
Br3—Ga1—N3—C1585.45 (18)C10—N2—C6—C5177.39 (18)
Br3—Ga1—N3—C1193.55 (14)C10—N2—C6—C72.4 (3)
Ga1—N2—C10—C9178.38 (16)C10—C11—C12—C13177.1 (2)
Ga1—N2—C10—C111.1 (2)C9—C8—C7—C61.9 (3)
Ga1—N2—C6—C51.7 (2)C9—C10—C11—N3177.0 (2)
Ga1—N2—C6—C7178.59 (15)C9—C10—C11—C121.4 (3)
Ga1—N1—C1—C2173.87 (16)C15—N3—C11—C10176.42 (19)
Ga1—N1—C5—C66.3 (2)C15—N3—C11—C122.0 (3)
Ga1—N1—C5—C4173.27 (16)C11—N3—C15—C141.0 (3)
Ga1—N3—C15—C14179.96 (16)C11—C10—C9—C8180.0 (2)
Ga1—N3—C11—C102.7 (2)C2—C3—C4—C51.6 (3)
Ga1—N3—C11—C12178.88 (16)C6—N2—C10—C92.6 (3)
N2—Ga1—N1—C1178.85 (19)C6—N2—C10—C11177.91 (19)
N2—Ga1—N1—C54.17 (15)C6—C5—C4—C3178.9 (2)
N2—Ga1—N3—C15177.39 (19)C12—C13—C14—C151.6 (3)
N2—Ga1—N3—C111.61 (14)C5—N1—C1—C23.0 (3)
N2—C10—C9—C80.5 (3)C5—C6—C7—C8179.6 (2)
N2—C10—C11—N32.5 (3)C7—C8—C9—C101.7 (3)
N2—C10—C11—C12179.1 (2)C7—C6—C5—N1175.0 (2)
N2—C6—C5—N15.2 (3)C7—C6—C5—C45.4 (3)
N2—C6—C5—C4174.3 (2)C4—C3—C2—C12.5 (3)
N2—C6—C7—C80.1 (3)C14—C13—C12—C110.6 (3)

Experimental details

(GaCl3_Terpy)(GaBr3_Terpy)
Crystal data
Chemical formula[GaCl3(C15H11N3)][GaBr3(C15H11N3)]
Mr409.34542.72
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)123123
a, b, c (Å)8.2492 (2), 14.1770 (3), 13.7119 (3)8.3602 (1), 14.5133 (1), 13.9874 (1)
β (°) 104.217 (3) 104.967 (1)
V3)1554.47 (7)1639.57 (3)
Z44
Radiation typeMo KαCu Kα
µ (mm1)2.2810.85
Crystal size (mm)0.08 × 0.05 × 0.020.12 × 0.1 × 0.08
Data collection
DiffractometerAgilent SuperNova (single source at offset, Eos)
diffractometer
Oxford Diffraction (Gemini Ultra, Ruby CCD)
diffractometer
Absorption correctionGaussian
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
Multi-scan
[CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)]
Tmin, Tmax0.887, 0.9710.676, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16866, 5130, 3289 26629, 3288, 3116
Rint0.0510.025
(sin θ/λ)max1)0.7520.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.052, 0.82 0.020, 0.050, 1.07
No. of reflections51303288
No. of parameters199200
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.380.40, 0.46

Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Ga—L and Ga—X bond lengths (Å) in [GaX3(L)] (X = Cl, Br) complexes. top
ComplexCoordination number (CN)Ga—L (X = Cl), (I) (Å)Ga—L (X = Br), (II) (Å)Δ (Å)Ga—Cl (Å)Ga—Br (Å)Reference
[GaX3(terpy)]62.0412 (15)2.0265 (18)-0.015 (2)2.2511 (5)2.3911 (3)This work
2.0976 (15)2.0946 (18)-0.003 (2)2.3405 (6)2.4920 (3)
2.1024 (15)2.0965 (18)-0.006 (2)2.4118 (6)2.6053 (3)
[GaX3(pyz)]52.2112 (15)2.262 (6)0.051 (6)2.1758 (8)2.3205 (15)Samanamu et al. (2007)
2.1822 (6)2.3301 (9)
[GaX3(btaH)2]52.169 (2)2.212 (3)0.043 (4)2.1774 (18)2.3204 (17)Zanias et al. (1999, 2010)
2.2039 (16)2.3436 (11)
[GaX3(thf)2]52.1108 (13)2.141 (2)0.030 (3)2.1731 (5)2.3174 (4)Nieger & Thomas (2002);
2.1840 (8)2.3303 (6)Nogai & Schmidbaur (2003)
[GaX3(py)]41.966 (2)1.979 (2)0.013 (3)2.1503 (7)2.2948 (5)Timoshkin et al. (2012)
2.1587 (7)2.3037 (5)
2.1598 (7)2.3060 (5)
[GaX3(N3SiMe3)]41.994 (7)2.022 (15)0.028 (16)2.140 (3)2.287 (6)Kouvetakis et al. (1997);
2.144 (2)2.300 (19)McMurran et al. (1998)
2.273 (15)
[GaX3{N(Me3Sn)3}]41.950 (7)1.954 (1)0.004 (7)2.179 (3)2.342 (3)Cheng et al. (2002)
2.183 (3)
2.190 (3)
[GaX3(fluoren-9-one)]41.915 (2)1.936 (4)0.021 (4)2.125 (1)2.280 (1)Branch et al. (2003)
2.134 (1)2.283 (1)
2.143 (1)2.288 (1)
[GaX3(PPh3)]42.3717 (16)2.3848 (13)0.013 (2)2.1677 (15)2.3048 (7)Cheng et al. (2007b)
2.1679 (16)2.3134 (7)
2.1696 (15)2.3225 (7)
[GaX3{P(SiMe3)3}]42.379 (5)2.362 (4)0.017 (6)2.168 (5)2.314 (3)Janik et al. (1996)
2.172 (5)2.315 (2)
2.183 (4)2.317 (3)
[GaX3(AsMe3)]42.4332 (13)2.437 (3)0.004 (3)2.1708 (17)2.315 (2)Cheng et al. (2007a)
2.1768 (11)2.3227 (14)
Δ = d(Br3Ga—L) - d(Cl3Ga—L). Terpy is 2,2':6',2''-terpyridine, pyz is pyrazine, btaH is 1,2,3-benzotriazole, thf is tetrahydrofuran and py is pyridine.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds