Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A comprehensive study of the BaF2–Ba3(BO3)2 phase diagram has revealed a significant difference between the two intermediate phases Ba5(BO3)3F and Ba7(BO3)4−yF2+3y. The latter exhibited (BO3)3− ↔ 3F anionic substitution which, unusually, strongly influences the solidus temperature. A comparison of the Ba5(BO3)3F and Ba7(BO3)4−yF2+3y crystal structures, along with consideration of other compounds demonstrating (BO3)3− ↔ 3F isomorphism, allows for the disclosure of the mechanism of (BO3)3− ↔ 3F heterovalent anionic substitution in fluoride borates via [(BO3)F]4− tetrahedral groups being replaced by four fluoride anions. No exception to this mechanism has been discovered among all known phases with (BO3)3− ↔ 3F substitution.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889813015756/nb5067sup1.cif
Contains datablocks global, shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889813015756/nb5067sup2.hkl
Contains datablock shelxl

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0021889813015756/nb5067sup3.cml
Supplementary material

Computing details top

Data collection: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40); cell refinement: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40); data reduction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) in WinGX v1.80.05 (Farrugia, 1999).

Barium Fluoride Borate top
Crystal data top
B3Ba5FO9Dx = 5.049 Mg m3
Mr = 882.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 12561 reflections
a = 7.60788 (12) Åθ = 2.0–31.8°
b = 14.8299 (2) ŵ = 16.76 mm1
c = 10.28650 (16) ÅT = 293 K
V = 1160.57 (3) Å3Tabular, colourless
Z = 40.26 × 0.13 × 0.05 mm
F(000) = 1504
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
2020 independent reflections
Radiation source: Enhance (Mo) X-ray Source1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.3457 pixels mm-1θmax = 31.9°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2121
Tmin = 0.254, Tmax = 1.000l = 1514
22057 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.4282P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.002
S = 1.11Δρmax = 1.82 e Å3
2020 reflectionsΔρmin = 1.76 e Å3
92 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0347 (5)
Crystal data top
B3Ba5FO9V = 1160.57 (3) Å3
Mr = 882.13Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.60788 (12) ŵ = 16.76 mm1
b = 14.8299 (2) ÅT = 293 K
c = 10.28650 (16) Å0.26 × 0.13 × 0.05 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
2020 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
1875 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 1.000Rint = 0.051
22057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02192 parameters
wR(F2) = 0.0560 restraints
S = 1.11Δρmax = 1.82 e Å3
2020 reflectionsΔρmin = 1.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.21232 (4)0.75000.02070 (3)0.00983 (9)
Ba20.02618 (3)0.610112 (13)0.251686 (16)0.00897 (8)
Ba30.25591 (3)0.619490 (14)0.12631 (2)0.01346 (8)
B10.1996 (5)0.5407 (2)0.0597 (3)0.0110 (6)
O10.0919 (3)0.58837 (17)0.1428 (2)0.0166 (5)
O20.2193 (3)0.53729 (18)0.3948 (3)0.0158 (5)
O30.2265 (3)0.56854 (17)0.0664 (2)0.0138 (5)
B20.2194 (7)0.75000.3853 (5)0.0089 (9)
O40.2187 (4)0.75000.2506 (3)0.0093 (6)
O50.5654 (5)0.75000.0461 (3)0.0155 (7)
O60.1206 (4)0.75000.0507 (3)0.0136 (6)
F0.3984 (5)0.75000.2351 (3)0.0249 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00910 (14)0.01085 (14)0.00955 (14)0.0000.00146 (8)0.000
Ba20.00593 (12)0.01069 (12)0.01028 (12)0.00003 (6)0.00025 (6)0.00038 (5)
Ba30.01634 (13)0.01413 (12)0.00993 (12)0.00146 (7)0.00123 (6)0.00058 (6)
B10.0106 (15)0.0120 (16)0.0105 (15)0.0013 (12)0.0031 (12)0.0018 (12)
O10.0150 (12)0.0203 (12)0.0145 (11)0.0019 (10)0.0011 (9)0.0029 (9)
O20.0152 (12)0.0154 (12)0.0169 (12)0.0034 (9)0.0008 (9)0.0058 (10)
O30.0170 (12)0.0144 (12)0.0100 (11)0.0004 (9)0.0006 (8)0.0030 (9)
B20.008 (2)0.009 (2)0.009 (2)0.0000.0005 (15)0.000
O40.0101 (16)0.0096 (15)0.0083 (15)0.0000.0012 (10)0.000
O50.0095 (15)0.0222 (17)0.0148 (15)0.0000.0040 (12)0.000
O60.0067 (15)0.0199 (17)0.0143 (15)0.0000.0031 (12)0.000
F0.0316 (19)0.0260 (17)0.0169 (14)0.0000.0036 (13)0.000
Geometric parameters (Å, º) top
Ba1—F2.621 (3)Ba3—Ba2vi3.9897 (3)
Ba1—O62.637 (3)B1—O31.376 (4)
Ba1—O52.772 (3)B1—O11.380 (4)
Ba1—O42.791 (3)B1—O2vii1.392 (4)
Ba1—O32.838 (2)B1—Ba3iii3.080 (4)
Ba1—O3i2.838 (2)B1—Ba2iii3.263 (4)
Ba1—O12.857 (3)B1—Ba3viii3.452 (4)
Ba1—O1i2.857 (3)O1—Ba3viii2.682 (2)
Ba1—B1i3.131 (4)O1—Ba2iii3.189 (3)
Ba1—B13.131 (4)O2—B1ix1.392 (4)
Ba1—Ba23.9302 (3)O2—Ba2x2.681 (3)
Ba1—Ba2i3.9302 (3)O2—Ba3x2.682 (3)
Ba2—O22.612 (2)O3—Ba2x2.725 (2)
Ba2—O2ii2.681 (3)O3—Ba3iii2.865 (3)
Ba2—O3ii2.725 (2)B2—O5ii1.368 (6)
Ba2—O32.777 (2)B2—O6x1.384 (6)
Ba2—O42.788 (2)B2—O41.386 (6)
Ba2—O4ii2.841 (2)B2—Ba2i3.112 (4)
Ba2—O63.015 (2)B2—Ba3x3.151 (4)
Ba2—O5ii3.019 (3)B2—Ba3xi3.151 (4)
Ba2—B23.112 (4)B2—Ba2xi3.168 (4)
Ba2—B2ii3.168 (4)B2—Ba2x3.168 (4)
Ba2—O1iii3.189 (3)O4—Ba2i2.788 (2)
Ba2—B1iii3.263 (4)O4—Ba2xi2.841 (2)
Ba3—Fiv2.675 (2)O4—Ba2x2.841 (2)
Ba3—O2ii2.682 (3)O5—B2x1.368 (6)
Ba3—O1iv2.682 (2)O5—Ba3xii2.956 (3)
Ba3—O12.691 (3)O5—Ba3xiii2.956 (3)
Ba3—O62.850 (2)O5—Ba2x3.019 (3)
Ba3—O3iii2.865 (3)O5—Ba2xi3.019 (3)
Ba3—O5v2.956 (3)O6—B2ii1.384 (6)
Ba3—B1iii3.080 (4)O6—Ba3i2.850 (2)
Ba3—B2ii3.151 (4)O6—Ba2i3.015 (2)
Ba3—B1iv3.452 (4)F—Ba3xiv2.675 (2)
Ba3—Ba3i3.8709 (4)F—Ba3viii2.675 (2)
F—Ba1—O6138.87 (11)O3iii—Ba3—B2ii115.67 (8)
F—Ba1—O571.65 (11)O5v—Ba3—B2ii25.64 (11)
O6—Ba1—O5149.48 (11)B1iii—Ba3—B2ii89.62 (9)
F—Ba1—O4146.32 (10)Fiv—Ba3—B1iv77.83 (8)
O6—Ba1—O474.81 (10)O2ii—Ba3—B1iv132.09 (8)
O5—Ba1—O474.66 (10)O1iv—Ba3—B1iv21.69 (8)
F—Ba1—O3104.18 (5)O1—Ba3—B1iv88.81 (8)
O6—Ba1—O387.05 (5)O6—Ba3—B1iv149.68 (8)
O5—Ba1—O383.40 (5)O3iii—Ba3—B1iv83.09 (8)
O4—Ba1—O371.57 (5)O5v—Ba3—B1iv137.55 (9)
F—Ba1—O3i104.18 (5)B1iii—Ba3—B1iv109.50 (4)
O6—Ba1—O3i87.05 (5)B2ii—Ba3—B1iv159.79 (9)
O5—Ba1—O3i83.40 (5)Fiv—Ba3—Ba3i43.65 (5)
O4—Ba1—O3i71.57 (5)O2ii—Ba3—Ba3i117.04 (6)
O3—Ba1—O3i142.94 (10)O1iv—Ba3—Ba3i99.91 (6)
F—Ba1—O178.65 (6)O1—Ba3—Ba3i99.87 (6)
O6—Ba1—O179.31 (6)O6—Ba3—Ba3i47.23 (5)
O5—Ba1—O1114.81 (6)O3iii—Ba3—Ba3i166.76 (5)
O4—Ba1—O1116.44 (5)O5v—Ba3—Ba3i49.10 (5)
O3—Ba1—O149.88 (7)B1iii—Ba3—Ba3i140.48 (7)
O3i—Ba1—O1161.15 (7)B2ii—Ba3—Ba3i52.10 (6)
F—Ba1—O1i78.65 (6)B1iv—Ba3—Ba3i109.78 (6)
O6—Ba1—O1i79.31 (6)Fiv—Ba3—Ba2vi129.21 (5)
O5—Ba1—O1i114.81 (6)O2ii—Ba3—Ba2vi82.08 (6)
O4—Ba1—O1i116.44 (5)O1iv—Ba3—Ba2vi52.79 (6)
O3—Ba1—O1i161.15 (7)O1—Ba3—Ba2vi104.02 (5)
O3i—Ba1—O1i49.88 (7)O6—Ba3—Ba2vi158.54 (5)
O1—Ba1—O1i114.05 (10)O3iii—Ba3—Ba2vi43.06 (5)
F—Ba1—B1i84.78 (6)O5v—Ba3—Ba2vi123.80 (6)
O6—Ba1—B1i90.34 (7)B1iii—Ba3—Ba2vi66.10 (7)
O5—Ba1—B1i93.53 (7)B2ii—Ba3—Ba2vi138.33 (7)
O4—Ba1—B1i97.38 (7)B1iv—Ba3—Ba2vi51.40 (6)
O3—Ba1—B1i168.95 (8)Ba3i—Ba3—Ba2vi148.589 (4)
O3i—Ba1—B1i26.06 (8)O3—B1—O1121.3 (3)
O1—Ba1—B1i139.94 (9)O3—B1—O2vii120.0 (3)
O1i—Ba1—B1i26.13 (8)O1—B1—O2vii118.7 (3)
F—Ba1—B184.78 (6)O3—B1—Ba3iii68.00 (18)
O6—Ba1—B190.34 (7)O1—B1—Ba3iii149.6 (2)
O5—Ba1—B193.53 (7)O2vii—B1—Ba3iii60.41 (17)
O4—Ba1—B197.38 (7)O3—B1—Ba165.01 (18)
O3—Ba1—B126.06 (8)O1—B1—Ba165.80 (17)
O3i—Ba1—B1168.95 (8)O2vii—B1—Ba1148.6 (2)
O1—Ba1—B126.13 (8)Ba3iii—B1—Ba1132.91 (12)
O1i—Ba1—B1139.94 (9)O3—B1—Ba2iii146.7 (2)
B1i—Ba1—B1164.87 (13)O1—B1—Ba2iii74.66 (18)
F—Ba1—Ba2148.139 (3)O2vii—B1—Ba2iii53.54 (16)
O6—Ba1—Ba250.06 (5)Ba3iii—B1—Ba2iii84.45 (9)
O5—Ba1—Ba2105.70 (6)Ba1—B1—Ba2iii140.32 (12)
O4—Ba1—Ba245.19 (4)O3—B1—Ba3viii140.0 (2)
O3—Ba1—Ba244.94 (5)O1—B1—Ba3viii45.93 (15)
O3i—Ba1—Ba2107.04 (5)O2vii—B1—Ba3viii85.59 (19)
O1—Ba1—Ba273.90 (5)Ba3iii—B1—Ba3viii145.95 (12)
O1i—Ba1—Ba2127.46 (5)Ba1—B1—Ba3viii77.37 (8)
B1i—Ba1—Ba2126.89 (6)Ba2iii—B1—Ba3viii72.85 (7)
B1—Ba1—Ba263.50 (6)B1—O1—Ba3viii112.4 (2)
F—Ba1—Ba2i148.140 (3)B1—O1—Ba3129.3 (2)
O6—Ba1—Ba2i50.06 (5)Ba3viii—O1—Ba3116.81 (9)
O5—Ba1—Ba2i105.70 (6)B1—O1—Ba188.07 (19)
O4—Ba1—Ba2i45.19 (4)Ba3viii—O1—Ba196.11 (8)
O3—Ba1—Ba2i107.04 (5)Ba3—O1—Ba198.26 (8)
O3i—Ba1—Ba2i44.94 (5)B1—O1—Ba2iii80.69 (19)
O1—Ba1—Ba2i127.46 (5)Ba3viii—O1—Ba2iii85.16 (6)
O1i—Ba1—Ba2i73.90 (5)Ba3—O1—Ba2iii91.51 (7)
B1i—Ba1—Ba2i63.50 (6)Ba1—O1—Ba2iii168.26 (10)
B1—Ba1—Ba2i126.89 (6)B1ix—O2—Ba2148.2 (2)
Ba2—Ba1—Ba2i63.719 (7)B1ix—O2—Ba2x101.77 (19)
O2—Ba2—O2ii131.82 (11)Ba2—O2—Ba2x91.89 (8)
O2—Ba2—O3ii90.75 (8)B1ix—O2—Ba3x92.76 (19)
O2ii—Ba2—O3ii78.24 (8)Ba2—O2—Ba3x111.27 (9)
O2—Ba2—O378.47 (8)Ba2x—O2—Ba3x105.39 (9)
O2ii—Ba2—O391.41 (7)B1—O3—Ba2x144.9 (2)
O3ii—Ba2—O3154.09 (10)B1—O3—Ba2127.6 (2)
O2—Ba2—O480.34 (8)Ba2x—O3—Ba287.49 (7)
O2ii—Ba2—O4141.25 (9)B1—O3—Ba188.92 (19)
O3ii—Ba2—O4129.24 (8)Ba2x—O3—Ba191.63 (7)
O3—Ba2—O472.53 (8)Ba2—O3—Ba188.84 (7)
O2—Ba2—O4ii142.66 (9)B1—O3—Ba3iii85.56 (19)
O2ii—Ba2—O4ii78.24 (8)Ba2x—O3—Ba3iii91.06 (7)
O3ii—Ba2—O4ii72.48 (8)Ba2—O3—Ba3iii97.03 (7)
O3—Ba2—O4ii129.02 (8)Ba1—O3—Ba3iii173.64 (10)
O4—Ba2—O4ii85.018 (6)O5ii—B2—O6x120.5 (4)
O2—Ba2—O6147.26 (8)O5ii—B2—O4120.8 (4)
O2ii—Ba2—O673.72 (8)O6x—B2—O4118.6 (4)
O3ii—Ba2—O6117.52 (8)O5ii—B2—Ba273.36 (19)
O3—Ba2—O681.20 (8)O6x—B2—Ba2137.58 (8)
O4—Ba2—O669.17 (8)O4—B2—Ba263.64 (16)
O4ii—Ba2—O647.88 (8)O5ii—B2—Ba2i73.36 (19)
O2—Ba2—O5ii74.38 (8)O6x—B2—Ba2i137.58 (8)
O2ii—Ba2—O5ii146.18 (8)O4—B2—Ba2i63.64 (16)
O3ii—Ba2—O5ii80.88 (8)Ba2—B2—Ba2i83.62 (12)
O3—Ba2—O5ii117.77 (8)O5ii—B2—Ba3x69.20 (19)
O4—Ba2—O5ii48.51 (9)O6x—B2—Ba3x64.75 (18)
O4ii—Ba2—O5ii70.22 (8)O4—B2—Ba3x141.92 (6)
O6—Ba2—O5ii93.13 (7)Ba2—B2—Ba3x88.50 (6)
O2—Ba2—B266.26 (9)Ba2i—B2—Ba3x142.45 (17)
O2ii—Ba2—B2161.90 (9)O5ii—B2—Ba3xi69.20 (19)
O3ii—Ba2—B2105.20 (11)O6x—B2—Ba3xi64.75 (18)
O3—Ba2—B292.04 (10)O4—B2—Ba3xi141.92 (6)
O4—Ba2—B226.45 (11)Ba2—B2—Ba3xi142.45 (17)
O4ii—Ba2—B285.82 (8)Ba2i—B2—Ba3xi88.50 (6)
O6—Ba2—B289.26 (8)Ba3x—B2—Ba3xi75.79 (11)
O5ii—Ba2—B225.73 (11)O5ii—B2—Ba2xi138.84 (7)
O2—Ba2—B2ii163.41 (9)O6x—B2—Ba2xi70.98 (19)
O2ii—Ba2—B2ii64.69 (8)O4—B2—Ba2xi63.75 (17)
O3ii—Ba2—B2ii91.82 (10)Ba2—B2—Ba2xi127.38 (17)
O3—Ba2—B2ii105.25 (10)Ba2i—B2—Ba2xi74.57 (6)
O4—Ba2—B2ii85.36 (8)Ba3x—B2—Ba2xi135.71 (17)
O4ii—Ba2—B2ii25.94 (10)Ba3xi—B2—Ba2xi84.91 (6)
O6—Ba2—B2ii25.71 (10)O5ii—B2—Ba2x138.84 (7)
O5ii—Ba2—B2ii89.85 (8)O6x—B2—Ba2x70.98 (19)
B2—Ba2—B2ii97.28 (7)O4—B2—Ba2x63.75 (17)
O2—Ba2—O1iii85.89 (7)Ba2—B2—Ba2x74.57 (6)
O2ii—Ba2—O1iii46.96 (7)Ba2i—B2—Ba2x127.38 (17)
O3ii—Ba2—O1iii85.65 (7)Ba3x—B2—Ba2x84.91 (6)
O3—Ba2—O1iii70.27 (7)Ba3xi—B2—Ba2x135.71 (17)
O4—Ba2—O1iii142.19 (7)Ba2xi—B2—Ba2x81.82 (12)
O4ii—Ba2—O1iii124.34 (7)B2—O4—Ba289.92 (18)
O6—Ba2—O1iii110.92 (6)B2—O4—Ba2i89.92 (18)
O5ii—Ba2—O1iii155.83 (6)Ba2—O4—Ba2i96.16 (10)
B2—Ba2—O1iii149.84 (8)B2—O4—Ba1179.2 (3)
B2ii—Ba2—O1iii110.65 (8)Ba2—O4—Ba189.58 (8)
O2—Ba2—B1iii110.30 (9)Ba2i—O4—Ba189.58 (8)
O2ii—Ba2—B1iii24.69 (8)B2—O4—Ba2xi90.31 (18)
O3ii—Ba2—B1iii88.94 (8)Ba2—O4—Ba2xi178.80 (10)
O3—Ba2—B1iii73.27 (8)Ba2i—O4—Ba2xi85.022 (6)
O4—Ba2—B1iii141.05 (9)Ba1—O4—Ba2xi90.21 (8)
O4ii—Ba2—B1iii102.67 (9)B2—O4—Ba2x90.31 (18)
O6—Ba2—B1iii87.73 (8)Ba2—O4—Ba2x85.022 (6)
O5ii—Ba2—B1iii168.94 (9)Ba2i—O4—Ba2x178.80 (10)
B2—Ba2—B1iii165.28 (11)Ba1—O4—Ba2x90.21 (8)
B2ii—Ba2—B1iii86.14 (9)Ba2xi—O4—Ba2x93.80 (9)
O1iii—Ba2—B1iii24.66 (8)B2x—O5—Ba1163.3 (3)
Fiv—Ba3—O2ii146.40 (9)B2x—O5—Ba3xii85.2 (2)
Fiv—Ba3—O1iv80.92 (8)Ba1—O5—Ba3xii107.28 (9)
O2ii—Ba3—O1iv132.66 (8)B2x—O5—Ba3xiii85.2 (2)
Fiv—Ba3—O170.06 (9)Ba1—O5—Ba3xiii107.28 (9)
O2ii—Ba3—O192.71 (7)Ba3xii—O5—Ba3xiii81.80 (9)
O1iv—Ba3—O1109.82 (6)B2x—O5—Ba2x80.91 (19)
Fiv—Ba3—O671.98 (8)Ba1—O5—Ba2x86.97 (8)
O2ii—Ba3—O676.51 (7)Ba3xii—O5—Ba2x165.75 (13)
O1iv—Ba3—O6146.99 (7)Ba3xiii—O5—Ba2x93.988 (18)
O1—Ba3—O678.56 (8)B2x—O5—Ba2xi80.91 (19)
Fiv—Ba3—O3iii141.70 (8)Ba1—O5—Ba2xi86.97 (8)
O2ii—Ba3—O3iii51.09 (8)Ba3xii—O5—Ba2xi93.988 (18)
O1iv—Ba3—O3iii93.26 (7)Ba3xiii—O5—Ba2xi165.75 (13)
O1—Ba3—O3iii76.70 (7)Ba2x—O5—Ba2xi86.80 (9)
O6—Ba3—O3iii119.69 (7)B2ii—O6—Ba1167.8 (3)
Fiv—Ba3—O5v92.74 (7)B2ii—O6—Ba3i89.2 (2)
O2ii—Ba3—O5v74.50 (7)Ba1—O6—Ba3i99.72 (9)
O1iv—Ba3—O5v116.43 (9)B2ii—O6—Ba389.2 (2)
O1—Ba3—O5v127.04 (8)Ba1—O6—Ba399.72 (9)
O6—Ba3—O5v48.57 (9)Ba3i—O6—Ba385.54 (9)
O3iii—Ba3—O5v122.97 (7)B2ii—O6—Ba283.31 (19)
Fiv—Ba3—B1iii145.90 (10)Ba1—O6—Ba287.84 (8)
O2ii—Ba3—B1iii26.84 (8)Ba3i—O6—Ba2172.44 (12)
O1iv—Ba3—B1iii118.50 (9)Ba3—O6—Ba293.261 (10)
O1—Ba3—B1iii76.72 (8)B2ii—O6—Ba2i83.31 (19)
O6—Ba3—B1iii94.40 (8)Ba1—O6—Ba2i87.84 (8)
O3iii—Ba3—B1iii26.44 (8)Ba3i—O6—Ba2i93.261 (10)
O5v—Ba3—B1iii101.33 (8)Ba3—O6—Ba2i172.44 (12)
Fiv—Ba3—B2ii90.06 (8)Ba2—O6—Ba2i86.94 (9)
O2ii—Ba3—B2ii64.93 (8)Ba1—F—Ba3xiv102.21 (10)
O1iv—Ba3—B2ii140.95 (10)Ba1—F—Ba3viii102.21 (10)
O1—Ba3—B2ii102.33 (10)Ba3xiv—F—Ba3viii92.70 (10)
O6—Ba3—B2ii26.05 (11)
Symmetry codes: (i) x, y+3/2, z; (ii) x1/2, y, z1/2; (iii) x, y+1, z; (iv) x1/2, y, z+1/2; (v) x1, y, z; (vi) x1/2, y+1, z+1/2; (vii) x+1/2, y+1, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1, z1/2; (x) x+1/2, y, z1/2; (xi) x+1/2, y+3/2, z1/2; (xii) x+1, y+3/2, z; (xiii) x+1, y, z; (xiv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaB3Ba5FO9
Mr882.13
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)7.60788 (12), 14.8299 (2), 10.28650 (16)
V3)1160.57 (3)
Z4
Radiation typeMo Kα
µ (mm1)16.76
Crystal size (mm)0.26 × 0.13 × 0.05
Data collection
DiffractometerXcalibur, Ruby, Gemini ultra
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.254, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22057, 2020, 1875
Rint0.051
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.11
No. of reflections2020
No. of parameters92
Δρmax, Δρmin (e Å3)1.82, 1.76

Computer programs: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) in WinGX v1.80.05 (Farrugia, 1999).

 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds