Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mixed-amide phosphinates, rac-phenyl (N-methyl­cyclo­hexyl­amido)(p-tolyl­amido)­phosphinate, C20H27N2O2P, (I), and rac-phenyl (allyl­amido)(p-tolyl­amido)­phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)-(Cl)P(O)(OC6H5)(NHC6H4-p-CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH-cyclo-C6H11) was synthesized for the first time and used for the synthesis of rac-phenyl (benzyl­amido)(cyclo­hexyl­amido)­phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed-amide phosphinates are discussed. The P atom in each compound is in a distorted tetra­hedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p-tolyl­amido substituent makes a longer P—N bond than those involving the N-methyl­cyclo­hexyl­amido and allyl­amido substituents. In (III), the differences between the P—N bond lengths involving the cyclo­hexyl­amido and benzyl­amido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen-bonding inter­actions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011302341X/lg3117sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011302341X/lg3117Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011302341X/lg3117IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011302341X/lg3117IIIsup4.hkl
Contains datablock III

CCDC references: 969469; 969470; 969471

Introduction top

Recently, the syntheses and diffraction experiments were described for some racemic mixed-amide phosphinates having an (N1)P(O)(O)(N2) skeleton, where two different amide groups are bonded to the P atom (Pourayoubi, Karimi Ahmadabad et al., 2011; Pourayoubi, Rheingold et al., 2011; Sabbaghi et al., 2011). The systematic study of such molecules may be useful for: (i) gaining insight into the reason why a particular amide group makes a stronger or weaker P—N bond; (ii) the preparation of racemic compounds (Pourayoubi et al., 2007); (iii) finding new synthesis and purification procedures (Pourayoubi, Rheingold et al., 2011); and (iv) comparison between the hydrogen-bond patterns for finding empirical rules to predict hydrogen-bond patterns based on molecular structure (Toghraee et al., 2011; Pourayoubi et al., 2012).

The strategy for the synthesis of racemic compounds with an (N1)P( O)(O)(N2) molecular skeleton and containing a heterocyclic segment including an X—P—N (X = NR' and O) fragment can be based on the reaction of a Cl2P(O)(OR) initial compound with a di­amine of the type NHRY–NHR' (Gholivand et al., 2007), or the reaction of [R1R2N]P(O)Cl2 with an amino alcohol of the type NHRZ–OH (Holmes et al., 1984) [Y and Z are the hydro­carbon fragments between two functional groups in NHRY–NHR' and NHRZ–OH compounds, respectively].

In the case of acyclic compounds, Ghadimi et al. (2009) used a step-by-step nucleophilic substitution, using Cl2P(O)(OR) as a starting compound and its reaction with an NHR1R2 amine in the presence of an HCl scavenger (such as C5H5N, or an excess of an NHR1R2 amine as two moles of amine per one mole of P—Cl bond) in a suitable solvent to yield ClP(O)(OR)(NR1R2) compounds. For such a reaction, usually, a suitable solvent has low solubility of the C5H5NHCl (or [R1R2NH2]Cl alkyl/aryl ammonium chloride) by-product, while the solubility of ClP(O)(OR)(NR1R2) is good in this solvent. In such a case, the by-product is simply removed by filtering.

The well-known purification method in the preparation of (R1R2N)2P(O)(OR) amido­phosphinates is the dissolution of the above-mentioned by-product(s) in H2O (Sabbaghi et al., 2010). This strategy is not suitable for the purification of a ClP(O)(OR)(NR1R2) compound, as the P—Cl bond is sensitive to moisture.

After purification, ClP(O)(OR)(NR1R2) reacts with an NHR3R4 amine (1:2 molar ratio) to yield the racemic (R3R4N)P(O)(OR)(NR1R2) mixed-amido phosphinate; the by-product of this step, [R3R4NH2]Cl, is removed by dissolving in H2O.

As examples where this or similar procedures have been used, we can mention [(CH3)2N][p-CH3—C6H4O]P(O)X, where X = NHC(CH3)3, p-CH3—C6H4NH (Ghadimi et al., 2009) and NHCH(CH3)2 (Pourayoubi et al., 2007). Another example is the compound [(ClC2H4)2N][C6H5O]P(O)[NHC6H5], which was studied by X-ray crystallography (Orji et al., 1994). When using [(CH3)2N][p-CH3—C6H4—O]P(O)Cl as a starting material, some new compounds were obtained, for example with the (N)P(O)(O)(C) skeleton, such as [(CH3)2N][p-CH3—C6H4O]P(O)CN (Ghadimi et al., 2007), also characterized by X-ray crystallography.

As was noted in the literature (Pourayoubi, Karimi Ahmadabad et al., 2011; Pourayoubi, Rheingold et al., 2011; Sabbaghi et al., 2011), the p-toluidine hydro­chloride salt is relatively insoluble in CH3CN and also in CHCl3 (although the degree of solubility can be affected by the other starting materials used in the preparation method). The reaction of C6H5OP(O)Cl2 and p-CH3—C6H4NH2 (1:2 molar ratio) was performed in CH3CN (at ice-bath temperature), the [p-CH3—C6H4NH3]Cl by-product was simply filtered off and the racemic ClP(O)[OC6H5][NHC6H4-p-CH3] product was obtained from the solution.

Up to now, this starting racemate compound has been used for the preparation of rac-LP(O)(OC6H5)(NHC6H4-p-CH3) [L = NHC6H11 (Sabbaghi et al., 2011), NHC(CH3)3 (Pourayoubi, Rheingold et al., 2011) and NHCH2C6H5 (Pourayoubi, Karimi Ahmadabad et al., 2011). Here, we used the above-mentioned starting racemic compound to study the syntheses and crystal structures of rac-phenyl (N-methyl­cyclo­hexyl­amido)(p-tolyl­amido)­phosphinate, (I) (Fig. 1), and rac-phenyl (allyl­amido)(p-tolyl­amido)­phosphinate, (II) (Fig. 2).

Moreover, as the cyclo­hexyl­amine hydro­chloride salt is also relatively insoluble in CH3CN (and in CHCl3), we used cyclo­hexyl­amine to obtain the starting phospho­rus–chlorine compound ClP(O)(OC6H5)(NH-cyclo-C6H11) for the first time. This starting compound was used for the synthesis of rac-phenyl (benzyl­amido)(cyclo­hexyl­amido)­phosphinate, (III) (Fig. 3). All three compounds crystallize in centrosymmetric space groups and the racemic character is reflected by the symmetry.

Experimental top

Synthesis and crystallization top

For the synthesis of (Cl)P(O)(OC6H5)(NHC6H4-p-CH3). a solution of 4-CH3–C6H4NH2 (20.0 mmol) in dry chloro­form (Volume?) was added to a solution of (C6H5O)P(O)Cl2 (10.0 mmol) in the same solvent (Volume?) at 273 K. After stirring for 5 h, the solid which formed was filtered off. The product was obtained from the filtrate after removing the solvent in vacuo.

For the synthesis of (I), a solution of N-methyl-cyclo­hexyl­amine (4.6 mmol) in dry chloro­form (Volume?) was added to a solution of (Cl)P(O)(OC6H5)(NHC6H4-p-CH3) (2.3 mmol) in the same solvent (Volume?) at 273 K. After stirring for 5 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water. Single crystals of (I) were obtained from a solution of the product in CHCl3–CH3OH (Solvent ratio?) after slow evaporation at room temperature. [In the CIF, the crystal shape for this compound is missing (_exptl_crystal_description ''). Please supply details]

For the synthesis of (II), a solution of allyl­amine (6.0 mmol) in dry chloro­form (Volume?) was added to a solution of (Cl)P(O)(OC6H5)(NHC6H4-p-CH3) (3.0 mmol) in the same solvent (Volume?) at 273 K. After stirring for 5 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water. Single crystals of (II) were obtained from a solution of the product in CH3CN–CHCl3 (Solvent ratio?) after slow evaporation at room temperature.

For the synthesis of (Cl)P(O)(OC6H5)(NHC6H11), a solution of C6H11NH2 (20.0 mmol) in dry chloro­form (Volume?) was added to a solution of (C6H5O)P(O)Cl2 (10.0 mmol) in same solvent (Volume?) at 273 K. After stirring for 5 h, the solid was filtered off. The product was obtained from the filtrate after removing the solvent in vacuo.

For the synthesis of (III), a solution of benzyl­amine (4.6 mmol) in dry chloro­form (Volume?) was added to a solution of (Cl)P(O)(OC6H5)(NHC6H11) (2.3 mmol) in the same solvent (Volume?) at 273 K. After stirring for 5 h, the solvent was removed in vacuo and the solid obtained was washed with distilled water. Single crystals of (III) were obtained from a solution of the product in CH3CN–CHCl3 (Solvent ratio?) after slow evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were discernible in difference Fourier maps and could be refined to a reasonable geometry. H atoms bonded to C atoms were kept in ideal positions, with C—H = 0.96 Å, while the positions of H atoms bonded to N atoms were refined freely. In both cases, Uiso(H) = 1.2Ueq(C,N) and, for (I) and (II), 1.5Ueq(C) for methyl H atoms. All non-H atoms were refined using harmonic refinement. In (II), the H-atom positions of the disordered methyl group were found in a difference Fourier map, their geometry was fixed to tetra­hedral and the occupancy was refined with a final ratio of 0.58 (2):0.42 (2).

Results and discussion top

In compounds (I), (II) and (III), the P atom exhibits a distorted tetra­hedral environment, as has been noted for the other amido­phospho­esters (Pourayoubi, Karimi Ahmadabad et al., 2011; Pourayoubi, Rheingold et al., 2011). In (I), the bond angles at the P atom are in the range 94.80 (7)–116.36 (7)°.

As can be seen in Table 2, the p-tolyl­amide part in (I) and (II) makes a longer P1—N1 bond relative to the P1—N17 bonds received from the N-methyl­cyclo­hexyl­amide and allyl­amide parts. This may be attributed to the electron-withdrawing effect of the phenyl group of the p-tolyl­amide substituent, which causes P—N bond weakening. Moreover, the hybridization of the C atom attached to the N atom in the p-tolyl­amide group is different from those of the N-methyl­cyclo­hexyl­amide and allyl­amide groups (sp2 and sp3). This is in accordance with the previously reported compounds rac-LP(O)(OC6H5)(NHC6H4-p-CH3) [L = NHC6H11 (Sabbaghi et al., 2011), NHC(CH3)3 (Pourayoubi, Rheingold et al., 2011) and NHCH2C6H5 (Pourayoubi, Karimi Ahmadabad et al., 2011)]. The P—N (p-tolyl­amido) bond is also longer than the related P—N (L) bond. In (III), though, the difference between the P—N bond lengths related to the cyclo­hexyl­amide and benzyl­amide fragments is not significant (see Table 2). Such a comparison may be useful for a study of the strengths of different P—N bonds in a given molecule in order to obtain an insight into the electronic effect produced by different amide fragments. For example, a comparison between the P—N bond lengths related to the di­methyl­amide fragment and the other amide fragments indicates that, in compounds of the general formula [(CH3)2N][p-CH3—C6H4O]P(O)X, the P—N(di­methyl­amide) bond is longer than the P—N(X) bond [(X) = NHC(CH3)3 (Ghadimi et al., 2009) and NHCH(CH3)2 (Pourayoubi et al., 2007)] and shorter than the P—N(NHC6H4-p-CH3) bond (Ghadimi et al., 2009).

In all three structures, the phospho­ryl O atom takes part with the N—H unit in hydrogen-bonding inter­actions, viz. an N—H···OP hydrogen bond for (I) (Table 3) and (N—H)(N—H)···OP hydrogen bonds for (II) (Table 4) and (III) (Table 5), building linear arrangements along [001] for (I) and [010] for (III), and a ladder arrangement (Fig. 4) along [100] for (II). The phen­oxy O atom and the N atoms bonded to the P atom do not take part in hydrogen bonding as acceptors in (I), (II) and (III).

Related literature top

For related literature, see: Ghadimi et al. (2007, 2009); Gholivand et al. (2007); Holmes et al. (1984); Orji et al. (1994); Pourayoubi et al. (2007, 2012); Pourayoubi, Karimi Ahmadabad & Nečas (2011); Pourayoubi, Rheingold, Chen, Karimi Ahmadabad & Tarahhomi (2011); Sabbaghi et al. (2010, 2011); Toghraee et al. (2011).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) for (I), (II); SUPERFLIP (Palatinus & Chapuis, 2007) for (III). For all compounds, program(s) used to refine structure: JANA2006 (Petříček et al., 2006). Molecular graphics: DIAMOND (Brandenburg & Putz, 2005) for (I), (III); DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008) for (II). For all compounds, software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) and atom-numbering scheme for (I).
[Figure 2] Fig. 2. Displacement ellipsoid plot (50% probability level) and atom-numbering scheme for (II). There is disorder of the methyl group C8 and only the major part is shown, for clarity.
[Figure 3] Fig. 3. Displacement ellipsoid plot (50% probability level) and atom-numbering scheme for (III).
[Figure 4] Fig. 4. Part of the crystal packing of (II), viewed along the b axis, showing the ladder arrangement along [100] built via (N—H)(N—H)···OP hydrogen bonds (dashed lines). Only H atoms involved in hydrogen bonds are shown.
(I) rac-Phenyl (N-methylcyclohexylamido)(p-tolylamido)phosphinate top
Crystal data top
C20H27N2O2PF(000) = 768
Mr = 358.4Dx = 1.238 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ycbCell parameters from 6300 reflections
a = 12.9137 (6) Åθ = 4.6–66.8°
b = 14.6324 (4) ŵ = 1.39 mm1
c = 10.3114 (4) ÅT = 120 K
β = 99.484 (4)°Prism, colourless
V = 1921.79 (13) Å30.44 × 0.22 × 0.12 mm
Z = 4
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
3420 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2928 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.3784 pixels mm-1θmax = 67°, θmin = 3.5°
ω scansh = 1415
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 1716
Tmin = 0.706, Tmax = 0.877l = 1211
11561 measured reflections
Refinement top
Refinement on F2105 constraints
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.75(Δ/σ)max = 0.013
3420 reflectionsΔρmax = 0.55 e Å3
229 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C20H27N2O2PV = 1921.79 (13) Å3
Mr = 358.4Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.9137 (6) ŵ = 1.39 mm1
b = 14.6324 (4) ÅT = 120 K
c = 10.3114 (4) Å0.44 × 0.22 × 0.12 mm
β = 99.484 (4)°
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
3420 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
2928 reflections with I > 3σ(I)
Tmin = 0.706, Tmax = 0.877Rint = 0.031
11561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.75Δρmax = 0.55 e Å3
3420 reflectionsΔρmin = 0.37 e Å3
229 parameters
Special details top

Experimental. CrysAlis PRO (Agilent Technologies, 2013) Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.92505 (3)0.22177 (3)0.12180 (4)0.02155 (14)
N11.01936 (11)0.22570 (10)0.03315 (15)0.0251 (4)
C21.12027 (13)0.19066 (11)0.06727 (16)0.0233 (5)
C31.18909 (13)0.19806 (11)0.02420 (17)0.0258 (5)
C41.29106 (13)0.16683 (12)0.00592 (18)0.0294 (5)
C51.32966 (14)0.12681 (13)0.1265 (2)0.0323 (5)
C61.26075 (14)0.11880 (13)0.21662 (18)0.0319 (6)
C71.15761 (13)0.14976 (12)0.18874 (17)0.0281 (5)
C81.44047 (16)0.09078 (16)0.1563 (2)0.0454 (7)
O90.84656 (9)0.28686 (8)0.02516 (12)0.0288 (4)
C100.74259 (13)0.29973 (12)0.03959 (17)0.0279 (5)
C110.66557 (16)0.26084 (13)0.0524 (2)0.0364 (6)
C120.56139 (17)0.27827 (15)0.0460 (3)0.0486 (8)
C130.53456 (18)0.33402 (18)0.0503 (3)0.0544 (8)
C140.6125 (2)0.37254 (18)0.1414 (2)0.0540 (8)
C150.71737 (17)0.35658 (15)0.1363 (2)0.0402 (6)
O160.95110 (10)0.25560 (8)0.25732 (12)0.0283 (4)
N170.87575 (11)0.11905 (9)0.11646 (14)0.0253 (4)
C180.83979 (12)0.07626 (11)0.23119 (16)0.0234 (5)
C190.91248 (13)0.00213 (12)0.28778 (18)0.0290 (5)
C200.87503 (14)0.04334 (13)0.40807 (19)0.0321 (5)
C210.76305 (14)0.07870 (12)0.37201 (18)0.0301 (5)
C220.68872 (13)0.00268 (12)0.31399 (19)0.0302 (5)
C230.72622 (13)0.04343 (12)0.19689 (18)0.0275 (5)
C240.86069 (16)0.06812 (13)0.00773 (18)0.0331 (6)
H1C31.1650230.2251260.1085930.031*
H1C41.3366820.1729250.0582710.0353*
H1C61.2851820.09110.3004710.0383*
H1C71.1120050.1430720.2528380.0337*
H1C81.4582080.0781110.2486840.0681*
H2C81.4457490.0356520.107380.0681*
H3C81.4879920.1356570.131980.0681*
H1C110.684130.2220920.1200920.0437*
H1C120.5073250.2511670.1093530.0583*
H1C130.4620610.3461080.054140.0653*
H1C140.5937010.4109610.2093440.0648*
H1C150.7714180.3845220.1988160.0483*
H1C180.8425860.1223560.2979290.028*
H1C190.9128020.048520.2220150.0348*
H2C190.9826920.0206130.3124450.0348*
H1C200.9205980.0927230.4417230.0385*
H2C200.8777590.0023410.4753790.0385*
H1C210.7401110.1028930.4490460.0361*
H2C210.7612510.1274090.3093160.0361*
H1C220.6832210.0421150.3805350.0363*
H2C220.6197490.0274620.2865910.0363*
H1C230.7202090.0012970.1246660.033*
H2C230.681460.0943930.168150.033*
H1C240.9018430.0955990.0667820.0496*
H2C240.8825160.0059050.0088760.0496*
H3C240.787840.0695130.0465720.0496*
H1N11.0030 (17)0.2382 (15)0.050 (3)0.0301*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0277 (2)0.0199 (2)0.0169 (2)0.00163 (14)0.00304 (16)0.00052 (15)
N10.0290 (7)0.0292 (8)0.0172 (7)0.0022 (5)0.0043 (6)0.0014 (6)
C20.0295 (8)0.0187 (8)0.0213 (8)0.0053 (6)0.0034 (6)0.0037 (7)
C30.0301 (8)0.0217 (8)0.0257 (8)0.0036 (6)0.0043 (6)0.0009 (7)
C40.0300 (8)0.0249 (8)0.0332 (9)0.0046 (6)0.0052 (7)0.0038 (7)
C50.0278 (8)0.0279 (9)0.0390 (10)0.0001 (7)0.0011 (7)0.0063 (8)
C60.0357 (9)0.0301 (10)0.0273 (9)0.0017 (7)0.0024 (7)0.0014 (8)
C70.0327 (9)0.0271 (9)0.0243 (8)0.0028 (7)0.0040 (7)0.0040 (7)
C80.0333 (10)0.0488 (12)0.0529 (13)0.0081 (9)0.0035 (9)0.0033 (11)
O90.0332 (6)0.0290 (6)0.0250 (6)0.0053 (5)0.0075 (5)0.0062 (5)
C100.0331 (9)0.0254 (8)0.0262 (9)0.0064 (7)0.0083 (7)0.0082 (7)
C110.0443 (10)0.0258 (9)0.0378 (11)0.0005 (7)0.0032 (8)0.0012 (8)
C120.0363 (10)0.0438 (12)0.0633 (15)0.0010 (8)0.0011 (10)0.0136 (11)
C130.0422 (12)0.0622 (15)0.0616 (15)0.0167 (10)0.0167 (11)0.0245 (13)
C140.0635 (15)0.0612 (15)0.0428 (12)0.0317 (12)0.0253 (11)0.0101 (11)
C150.0543 (12)0.0389 (11)0.0276 (10)0.0125 (9)0.0071 (9)0.0007 (8)
O160.0400 (7)0.0257 (6)0.0194 (6)0.0066 (5)0.0052 (5)0.0023 (5)
N170.0354 (7)0.0216 (7)0.0188 (7)0.0048 (5)0.0040 (5)0.0025 (6)
C180.0304 (8)0.0189 (8)0.0205 (8)0.0018 (6)0.0034 (6)0.0011 (7)
C190.0278 (8)0.0279 (9)0.0300 (9)0.0003 (6)0.0011 (7)0.0045 (7)
C200.0364 (9)0.0280 (9)0.0298 (9)0.0004 (7)0.0004 (7)0.0067 (8)
C210.0387 (9)0.0223 (8)0.0298 (9)0.0019 (7)0.0071 (7)0.0043 (7)
C220.0305 (9)0.0259 (9)0.0348 (10)0.0011 (7)0.0071 (7)0.0006 (8)
C230.0289 (8)0.0235 (8)0.0287 (9)0.0023 (6)0.0004 (7)0.0024 (7)
C240.0501 (11)0.0268 (9)0.0226 (9)0.0066 (7)0.0070 (7)0.0068 (7)
Geometric parameters (Å, º) top
P1—N11.6398 (16)C13—C141.379 (3)
P1—O91.6106 (13)C13—H1C130.96
P1—O161.4683 (12)C14—C151.384 (3)
P1—N171.6297 (14)C14—H1C140.96
N1—C21.391 (2)C15—H1C150.96
N1—H1N10.87 (3)N17—C181.479 (2)
C2—C31.403 (3)N17—C241.467 (2)
C2—C71.400 (2)C18—C191.535 (2)
C3—C41.380 (2)C18—C231.528 (2)
C3—H1C30.96C18—H1C180.96
C4—C51.390 (3)C19—C201.528 (3)
C4—H1C40.96C19—H1C190.96
C5—C61.394 (3)C19—H2C190.96
C5—C81.508 (3)C20—C211.523 (2)
C6—C71.391 (2)C20—H1C200.96
C6—H1C60.96C20—H2C200.96
C7—H1C70.96C21—C221.526 (2)
C8—H1C80.96C21—H1C210.96
C8—H2C80.96C21—H2C210.96
C8—H3C80.96C22—C231.530 (3)
O9—C101.388 (2)C22—H1C220.96
C10—C111.379 (3)C22—H2C220.96
C10—C151.378 (3)C23—H1C230.96
C11—C121.381 (3)C23—H2C230.96
C11—H1C110.96C24—H1C240.96
C12—C131.373 (4)C24—H2C240.96
C12—H1C120.96C24—H3C240.96
N1—P1—O994.80 (7)C10—C15—C14118.61 (19)
N1—P1—O16116.36 (7)C10—C15—H1C15120.7
N1—P1—N17109.59 (8)C14—C15—H1C15120.7
O9—P1—O16114.31 (7)P1—N17—C18122.39 (11)
O9—P1—N17108.78 (7)P1—N17—C24119.54 (12)
O16—P1—N17111.71 (7)C18—N17—C24117.99 (13)
P1—N1—C2126.67 (12)N17—C18—C19111.55 (14)
P1—N1—H1N1118.5 (15)N17—C18—C23111.32 (13)
C2—N1—H1N1113.1 (15)N17—C18—H1C18107.23
N1—C2—C3118.21 (14)C19—C18—C23110.88 (13)
N1—C2—C7123.65 (16)C19—C18—H1C18107.7
C3—C2—C7118.13 (15)C23—C18—H1C18107.95
C2—C3—C4120.66 (16)C18—C19—C20110.36 (15)
C2—C3—H1C3119.67C18—C19—H1C19109.47
C4—C3—H1C3119.67C18—C19—H2C19109.47
C3—C4—C5121.94 (18)C20—C19—H1C19109.47
C3—C4—H1C4119.03C20—C19—H2C19109.47
C5—C4—H1C4119.03H1C19—C19—H2C19108.57
C4—C5—C6117.23 (16)C19—C20—C21110.53 (14)
C4—C5—C8121.21 (19)C19—C20—H1C20109.47
C6—C5—C8121.53 (18)C19—C20—H2C20109.47
C5—C6—C7121.97 (17)C21—C20—H1C20109.47
C5—C6—H1C6119.01C21—C20—H2C20109.47
C7—C6—H1C6119.01H1C20—C20—H2C20108.39
C2—C7—C6120.06 (17)C20—C21—C22111.03 (15)
C2—C7—H1C7119.97C20—C21—H1C21109.47
C6—C7—H1C7119.97C20—C21—H2C21109.47
C5—C8—H1C8109.47C22—C21—H1C21109.47
C5—C8—H2C8109.47C22—C21—H2C21109.47
C5—C8—H3C8109.47H1C21—C21—H2C21107.87
H1C8—C8—H2C8109.47C21—C22—C23111.75 (15)
H1C8—C8—H3C8109.47C21—C22—H1C22109.47
H2C8—C8—H3C8109.47C21—C22—H2C22109.47
O9—C10—C11118.11 (17)C23—C22—H1C22109.47
O9—C10—C15120.51 (16)C23—C22—H2C22109.47
C11—C10—C15121.13 (18)H1C22—C22—H2C22107.1
C10—C11—C12119.2 (2)C18—C23—C22111.87 (14)
C10—C11—H1C11120.38C18—C23—H1C23109.47
C12—C11—H1C11120.38C18—C23—H2C23109.47
C11—C12—C13120.5 (2)C22—C23—H1C23109.47
C11—C12—H1C12119.73C22—C23—H2C23109.47
C13—C12—H1C12119.73H1C23—C23—H2C23106.96
C12—C13—C14119.5 (2)N17—C24—H1C24109.47
C12—C13—H1C13120.24N17—C24—H2C24109.47
C14—C13—H1C13120.24N17—C24—H3C24109.47
C13—C14—C15120.9 (2)H1C24—C24—H2C24109.47
C13—C14—H1C14119.53H1C24—C24—H3C24109.47
C15—C14—H1C14119.54H2C24—C24—H3C24109.47
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.87 (3)1.99 (3)2.8487 (19)169 (2)
Symmetry code: (i) x, y+1/2, z1/2.
(II) rac-Phenyl (allylamido)(p-tolylamido)phosphinate top
Crystal data top
C16H19N2O2PF(000) = 640
Mr = 302.3Dx = 1.291 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ycbCell parameters from 5797 reflections
a = 5.4168 (2) Åθ = 3.1–67.0°
b = 20.3357 (9) ŵ = 1.62 mm1
c = 14.2398 (6) ÅT = 120 K
β = 97.489 (3)°Prism, colourless
V = 1555.20 (11) Å30.65 × 0.10 × 0.07 mm
Z = 4
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
2745 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2333 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 3.8°
ω scansh = 66
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 2424
Tmin = 0.613, Tmax = 0.904l = 1616
10454 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.070(Δ/σ)max = 0.019
S = 1.81Δρmax = 0.16 e Å3
2745 reflectionsΔρmin = 0.26 e Å3
198 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1070 (170)
87 constraints
Crystal data top
C16H19N2O2PV = 1555.20 (11) Å3
Mr = 302.3Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.4168 (2) ŵ = 1.62 mm1
b = 20.3357 (9) ÅT = 120 K
c = 14.2398 (6) Å0.65 × 0.10 × 0.07 mm
β = 97.489 (3)°
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
2745 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
2333 reflections with I > 3σ(I)
Tmin = 0.613, Tmax = 0.904Rint = 0.026
10454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.81Δρmax = 0.16 e Å3
2745 reflectionsΔρmin = 0.26 e Å3
198 parameters
Special details top

Experimental. CrysAlis PRO (Agilent Technologies, 2013) Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.18488 (6)0.050592 (16)0.12760 (2)0.01772 (11)
N10.4263 (2)0.00759 (6)0.17371 (9)0.0211 (3)
C20.4578 (2)0.02454 (6)0.26308 (10)0.0209 (4)
C30.2879 (3)0.01881 (7)0.32763 (11)0.0267 (4)
C40.3286 (3)0.05143 (8)0.41368 (11)0.0302 (5)
C50.5360 (3)0.09073 (7)0.43834 (11)0.0301 (5)
C60.7029 (3)0.09599 (7)0.37260 (12)0.0324 (5)
C70.6668 (3)0.06367 (7)0.28651 (11)0.0276 (4)
C80.5764 (4)0.12675 (9)0.53139 (13)0.0445 (6)
O90.19758 (16)0.11180 (4)0.19856 (7)0.0205 (3)
C100.0084 (2)0.15911 (6)0.19621 (10)0.0203 (4)
C110.1630 (2)0.15344 (7)0.25954 (10)0.0234 (4)
C120.3391 (3)0.20295 (7)0.26244 (11)0.0271 (4)
C130.3425 (3)0.25665 (7)0.20307 (11)0.0293 (5)
C140.1713 (3)0.26086 (7)0.13908 (12)0.0287 (5)
C150.0069 (3)0.21214 (7)0.13540 (11)0.0248 (4)
O160.05512 (17)0.01539 (4)0.12077 (7)0.0212 (3)
N170.2421 (2)0.07885 (6)0.02639 (9)0.0213 (3)
C180.4585 (3)0.11949 (7)0.01298 (10)0.0231 (4)
C190.4016 (2)0.17120 (7)0.06164 (10)0.0276 (4)
C200.1826 (2)0.18363 (8)0.10972 (12)0.0349 (5)
H1C30.1418120.0078320.3126210.0321*
H1C40.2094550.0466760.4575650.0362*
H1C60.8482340.1229560.3874110.0389*
H1C70.7865370.0682850.2428150.0331*
H1C80.489460.1044520.5766430.0667*0.58 (2)
H2C80.5143350.1708490.522730.0667*0.58 (2)
H3C80.7511190.1279270.5541590.0667*0.58 (2)
H1C8'0.4201190.1433860.5461660.0667*0.42 (2)
H2C8'0.6892230.1626810.5269540.0667*0.42 (2)
H3C8'0.6455720.0971610.5804130.0667*0.42 (2)
H1C110.1607250.1160330.3007730.0281*
H1C120.4593330.1997260.3061590.0325*
H1C130.4630150.290940.2060890.0352*
H1C140.1757580.2977860.0968920.0345*
H1C150.1267010.2152370.0914920.0297*
H1N170.181 (3)0.0547 (8)0.0218 (13)0.0255*
H1C180.5904750.0918430.0030390.0277*
H2C180.5223750.1399520.0719230.0277*
H1C190.5383750.1978450.0757190.0332*
H1C200.1655550.2177690.1566890.0419*
H2C200.039630.1585740.0978680.0419*
H1N10.555 (3)0.0116 (8)0.1526 (12)0.0253*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01564 (18)0.01839 (18)0.01964 (19)0.00093 (13)0.00424 (13)0.00026 (13)
N10.0157 (6)0.0238 (6)0.0252 (6)0.0002 (5)0.0077 (5)0.0025 (5)
C20.0205 (7)0.0179 (6)0.0239 (7)0.0025 (5)0.0014 (5)0.0002 (5)
C30.0236 (7)0.0291 (7)0.0279 (8)0.0026 (6)0.0052 (6)0.0023 (6)
C40.0332 (8)0.0332 (8)0.0246 (8)0.0038 (7)0.0060 (6)0.0011 (6)
C50.0380 (8)0.0225 (7)0.0277 (8)0.0068 (7)0.0042 (6)0.0025 (6)
C60.0297 (8)0.0244 (7)0.0409 (9)0.0043 (6)0.0040 (7)0.0040 (7)
C70.0240 (7)0.0243 (7)0.0349 (8)0.0020 (6)0.0057 (6)0.0013 (6)
C80.0609 (12)0.0354 (9)0.0334 (10)0.0058 (8)0.0076 (8)0.0087 (8)
O90.0168 (5)0.0212 (5)0.0235 (5)0.0017 (4)0.0024 (4)0.0024 (4)
C100.0169 (6)0.0199 (6)0.0233 (7)0.0001 (5)0.0003 (5)0.0046 (5)
C110.0226 (7)0.0248 (7)0.0231 (7)0.0004 (6)0.0035 (6)0.0006 (6)
C120.0223 (7)0.0310 (7)0.0284 (8)0.0020 (6)0.0055 (6)0.0057 (6)
C130.0216 (7)0.0250 (7)0.0402 (9)0.0028 (6)0.0002 (6)0.0070 (6)
C140.0247 (7)0.0219 (7)0.0386 (9)0.0022 (6)0.0005 (6)0.0040 (6)
C150.0204 (7)0.0245 (7)0.0295 (8)0.0034 (6)0.0035 (6)0.0011 (6)
O160.0182 (5)0.0227 (5)0.0232 (5)0.0025 (4)0.0055 (4)0.0006 (4)
N170.0213 (6)0.0231 (6)0.0196 (6)0.0065 (5)0.0039 (5)0.0012 (5)
C180.0186 (7)0.0251 (7)0.0261 (8)0.0043 (6)0.0054 (6)0.0011 (6)
C190.0294 (8)0.0269 (7)0.0278 (8)0.0056 (6)0.0081 (6)0.0034 (6)
C200.0366 (9)0.0359 (8)0.0320 (9)0.0007 (7)0.0037 (7)0.0105 (7)
Geometric parameters (Å, º) top
P1—N11.6375 (12)C10—C151.382 (2)
P1—O91.5991 (10)C11—C121.391 (2)
P1—O161.4762 (10)C11—H1C110.96
P1—N171.6184 (13)C12—C131.380 (2)
N1—C21.4208 (18)C12—H1C120.96
N1—H1N10.798 (19)C13—C141.385 (2)
C2—C31.388 (2)C13—H1C130.96
C2—C71.3886 (19)C14—C151.389 (2)
C3—C41.386 (2)C14—H1C140.96
C3—H1C30.96C15—H1C150.96
C4—C51.386 (2)N17—C181.4672 (18)
C4—H1C40.96N17—H1N170.873 (17)
C5—C61.388 (2)C18—C191.498 (2)
C5—C81.505 (2)C18—H1C180.96
C6—C71.382 (2)C18—H2C180.96
C6—H1C60.96C19—C201.3148 (18)
C7—H1C70.96C19—H1C190.96
C8—H1C80.96C20—H1C200.96
C8—H2C80.96C20—H2C200.96
C8—H3C80.96H1C8—H1C8'0.9559
C8—H1C8'0.96H1C8—H3C8'0.8533
C8—H2C8'0.96H2C8—H1C8'0.8533
C8—H3C8'0.96H2C8—H2C8'0.9559
O9—C101.4027 (16)H3C8—H2C8'0.8533
C10—C111.381 (2)H3C8—H3C8'0.9559
N1—P1—O9101.30 (5)H2C8—C8—H3C8109.47
N1—P1—O16114.69 (6)H1C8'—C8—H2C8'109.47
N1—P1—N17108.13 (6)H1C8'—C8—H3C8'109.47
O9—P1—O16112.59 (5)H2C8'—C8—H3C8'109.47
O9—P1—N17106.79 (6)P1—O9—C10123.21 (8)
O16—P1—N17112.50 (6)O9—C10—C11118.57 (12)
P1—N1—C2126.96 (10)O9—C10—C15119.65 (12)
P1—N1—H1N1119.1 (12)C11—C10—C15121.65 (13)
C2—N1—H1N1112.0 (12)C10—C11—C12118.74 (13)
N1—C2—C3122.82 (12)C10—C11—H1C11120.63
N1—C2—C7118.54 (13)C12—C11—H1C11120.63
C3—C2—C7118.64 (13)C11—C12—C13120.60 (14)
C2—C3—C4120.19 (13)C11—C12—H1C12119.7
C2—C3—H1C3119.9C13—C12—H1C12119.7
C4—C3—H1C3119.9C12—C13—C14119.70 (14)
C3—C4—C5122.03 (15)C12—C13—H1C13120.15
C3—C4—H1C4118.99C14—C13—H1C13120.15
C5—C4—H1C4118.99C13—C14—C15120.60 (14)
C4—C5—C6116.83 (14)C13—C14—H1C14119.7
C4—C5—C8121.59 (15)C15—C14—H1C14119.7
C6—C5—C8121.57 (14)C10—C15—C14118.70 (14)
C5—C6—C7122.16 (14)C10—C15—H1C15120.65
C5—C6—H1C6118.92C14—C15—H1C15120.65
C7—C6—H1C6118.92P1—N17—C18124.40 (9)
C2—C7—C6120.14 (15)P1—N17—H1N17113.8 (12)
C2—C7—H1C7119.93C18—N17—H1N17116.2 (12)
C6—C7—H1C7119.93N17—C18—C19113.18 (11)
C5—C8—H1C8109.47N17—C18—H1C18109.47
C5—C8—H2C8109.47N17—C18—H2C18109.47
C5—C8—H3C8109.47C19—C18—H1C18109.47
C5—C8—H1C8'109.47C19—C18—H2C18109.47
C5—C8—H2C8'109.47H1C18—C18—H2C18105.48
C5—C8—H3C8'109.47C18—C19—C20126.35 (13)
H1C8—C8—H2C8109.47C18—C19—H1C19116.82
H1C8—C8—H3C8109.47C20—C19—H1C19116.83
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.798 (19)2.219 (19)3.0063 (16)169.0 (16)
N17—H1N17···O16ii0.873 (17)2.057 (17)2.9216 (15)170.3 (16)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
(III) rac-Phenyl (benzylamido)(cyclohexylamido)phosphinate top
Crystal data top
C19H25N2O2PF(000) = 736
Mr = 344.4Dx = 1.291 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yabcCell parameters from 8367 reflections
a = 13.3675 (5) Åθ = 3.5–67.1°
b = 8.0189 (2) ŵ = 1.48 mm1
c = 17.4416 (6) ÅT = 120 K
β = 108.707 (3)°Prism, colourless
V = 1770.84 (11) Å30.17 × 0.12 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
3146 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2774 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.7°
ω scansh = 1515
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); analytical numerical absorption correction based on crystal shape]
k = 99
Tmin = 0.88, Tmax = 0.917l = 2020
12735 measured reflections
Refinement top
Refinement on F294 constraints
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.53(Δ/σ)max = 0.002
3146 reflectionsΔρmax = 0.16 e Å3
223 parametersΔρmin = 0.23 e Å3
0 restraints
Crystal data top
C19H25N2O2PV = 1770.84 (11) Å3
Mr = 344.4Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.3675 (5) ŵ = 1.48 mm1
b = 8.0189 (2) ÅT = 120 K
c = 17.4416 (6) Å0.17 × 0.12 × 0.10 mm
β = 108.707 (3)°
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
3146 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013); analytical numerical absorption correction based on crystal shape]
2774 reflections with I > 3σ(I)
Tmin = 0.88, Tmax = 0.917Rint = 0.024
12735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.53Δρmax = 0.16 e Å3
3146 reflectionsΔρmin = 0.23 e Å3
223 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.71355 (2)0.11093 (4)0.189090 (18)0.01674 (12)
N10.66090 (8)0.28539 (13)0.14825 (6)0.0194 (3)
C20.58563 (10)0.29715 (16)0.06605 (7)0.0218 (4)
C30.47414 (10)0.34243 (16)0.06186 (7)0.0202 (4)
C40.38903 (11)0.27421 (16)0.00134 (8)0.0255 (4)
C50.28614 (11)0.31666 (17)0.00480 (9)0.0309 (5)
C60.26684 (11)0.42688 (17)0.05023 (9)0.0291 (5)
C70.35120 (11)0.49612 (16)0.11023 (8)0.0250 (4)
C80.45453 (10)0.45565 (16)0.11581 (8)0.0220 (4)
O90.75651 (7)0.01290 (10)0.12532 (5)0.0209 (3)
C100.84955 (10)0.05993 (16)0.11136 (8)0.0197 (4)
C110.84434 (11)0.16886 (17)0.04868 (8)0.0255 (4)
C120.93691 (12)0.20763 (18)0.03224 (9)0.0313 (5)
C131.03197 (12)0.13873 (18)0.07779 (9)0.0321 (5)
C141.03541 (11)0.03000 (18)0.14028 (9)0.0312 (5)
C150.94397 (11)0.01049 (17)0.15729 (8)0.0252 (4)
O160.79798 (7)0.13961 (11)0.26706 (5)0.0220 (3)
N170.61720 (8)0.01643 (13)0.18485 (7)0.0204 (4)
C180.52451 (10)0.03001 (15)0.20812 (8)0.0201 (4)
C190.42742 (10)0.05824 (18)0.15236 (8)0.0252 (4)
C200.32791 (11)0.01393 (19)0.17285 (9)0.0319 (5)
C210.34172 (11)0.0506 (2)0.26121 (9)0.0341 (5)
C220.43866 (12)0.03763 (19)0.31688 (9)0.0320 (5)
C230.53794 (11)0.00843 (17)0.29628 (9)0.0266 (5)
H1C20.5849020.1938370.0380690.0261*
H2C20.6110170.3763240.0353480.0261*
H1C40.4016690.1969110.0365640.0306*
H1C50.2281540.2697230.0471990.0371*
H1C60.1956790.4548340.046720.0349*
H1C70.3382780.5727050.1483030.0301*
H1C80.512450.5059760.1569930.0263*
H1C110.7781310.2168070.0171230.0306*
H1C120.934590.2828670.011110.0376*
H1C131.0955580.1660890.0662060.0386*
H1C141.1016130.0176580.1720330.0375*
H1C150.9462580.0864060.2003790.0303*
H1C180.5160710.1487260.2024150.0241*
H1C190.4180910.0282010.0972160.0302*
H2C190.4382630.1766710.1566450.0302*
H1C200.2693030.0768510.1388850.0382*
H2C200.3121490.1022140.1620880.0382*
H1C210.2800870.0144150.2734670.0409*
H2C210.3488510.1686860.2704070.0409*
H1C220.4479090.0078380.3720410.0384*
H2C220.4281150.1560880.3121020.0384*
H1C230.552510.1250670.3063320.0319*
H2C230.5970850.0528640.3306110.0319*
H1N10.6846 (13)0.376 (2)0.1713 (10)0.0233*
H1N170.6347 (13)0.121 (2)0.1925 (9)0.0244*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01671 (18)0.01421 (18)0.01837 (19)0.00020 (11)0.00431 (13)0.00039 (11)
N10.0202 (5)0.0145 (5)0.0205 (5)0.0008 (4)0.0024 (4)0.0003 (4)
C20.0231 (6)0.0223 (6)0.0187 (6)0.0038 (5)0.0051 (5)0.0026 (5)
C30.0224 (6)0.0166 (6)0.0201 (6)0.0019 (5)0.0049 (5)0.0046 (5)
C40.0279 (7)0.0195 (6)0.0252 (7)0.0017 (5)0.0031 (5)0.0027 (5)
C50.0239 (7)0.0240 (7)0.0375 (8)0.0019 (6)0.0002 (6)0.0020 (6)
C60.0215 (7)0.0220 (7)0.0440 (9)0.0011 (5)0.0106 (6)0.0048 (6)
C70.0295 (7)0.0187 (6)0.0304 (7)0.0010 (5)0.0145 (6)0.0019 (5)
C80.0246 (7)0.0183 (6)0.0218 (6)0.0009 (5)0.0059 (5)0.0016 (5)
O90.0195 (5)0.0186 (4)0.0260 (5)0.0017 (3)0.0092 (4)0.0033 (3)
C100.0200 (6)0.0175 (6)0.0228 (6)0.0015 (5)0.0085 (5)0.0049 (5)
C110.0285 (7)0.0237 (7)0.0255 (7)0.0031 (6)0.0102 (5)0.0014 (5)
C120.0398 (8)0.0275 (7)0.0330 (8)0.0022 (6)0.0206 (6)0.0009 (6)
C130.0295 (7)0.0297 (7)0.0438 (9)0.0057 (6)0.0210 (6)0.0085 (6)
C140.0212 (7)0.0314 (8)0.0402 (8)0.0021 (6)0.0086 (6)0.0056 (6)
C150.0252 (7)0.0233 (7)0.0266 (7)0.0010 (5)0.0075 (5)0.0005 (5)
O160.0223 (5)0.0193 (4)0.0219 (5)0.0007 (3)0.0036 (4)0.0004 (3)
N170.0204 (5)0.0141 (5)0.0280 (6)0.0011 (4)0.0098 (4)0.0010 (4)
C180.0205 (6)0.0154 (6)0.0256 (7)0.0007 (5)0.0092 (5)0.0000 (5)
C190.0224 (7)0.0272 (7)0.0264 (7)0.0019 (5)0.0083 (5)0.0006 (5)
C200.0202 (7)0.0391 (8)0.0360 (8)0.0011 (6)0.0086 (6)0.0019 (6)
C210.0273 (7)0.0384 (8)0.0429 (9)0.0026 (6)0.0199 (6)0.0049 (7)
C220.0387 (8)0.0324 (8)0.0297 (8)0.0037 (6)0.0177 (6)0.0005 (6)
C230.0270 (7)0.0272 (7)0.0257 (7)0.0010 (5)0.0087 (5)0.0002 (5)
Geometric parameters (Å, º) top
P1—N11.6243 (11)C12—H1C120.96
P1—O91.6108 (9)C13—C141.385 (2)
P1—O161.4804 (8)C13—H1C130.96
P1—N171.6267 (12)C14—C151.386 (2)
N1—C21.4667 (14)C14—H1C140.96
N1—H1N10.839 (17)C15—H1C150.96
C2—C31.5128 (19)N17—C181.4702 (19)
C2—H1C20.96N17—H1N170.871 (17)
C2—H2C20.96C18—C191.5236 (16)
C3—C41.3919 (16)C18—C231.521 (2)
C3—C81.3917 (19)C18—H1C180.96
C4—C51.387 (2)C19—C201.526 (2)
C4—H1C40.96C19—H1C190.96
C5—C61.388 (2)C19—H2C190.96
C5—H1C50.96C20—C211.521 (2)
C6—C71.3849 (18)C20—H1C200.96
C6—H1C60.96C20—H2C200.96
C7—C81.392 (2)C21—C221.5218 (19)
C7—H1C70.96C21—H1C210.96
C8—H1C80.96C21—H2C210.96
O9—C101.3937 (17)C22—C231.527 (2)
C10—C111.3835 (19)C22—H1C220.96
C10—C151.3803 (17)C22—H2C220.96
C11—C121.392 (2)C23—H1C230.96
C11—H1C110.96C23—H2C230.96
C12—C131.380 (2)
N1—P1—O9108.53 (5)C13—C14—C15120.47 (13)
N1—P1—O16111.38 (5)C13—C14—H1C14119.76
N1—P1—N17107.19 (5)C15—C14—H1C14119.76
O9—P1—O16112.00 (5)C10—C15—C14119.02 (13)
O9—P1—N1796.58 (5)C10—C15—H1C15120.49
O16—P1—N17119.90 (6)C14—C15—H1C15120.49
P1—N1—C2123.30 (9)P1—N17—C18123.61 (9)
P1—N1—H1N1119.3 (10)P1—N17—H1N17115.4 (11)
C2—N1—H1N1116.6 (11)C18—N17—H1N17114.3 (13)
N1—C2—C3114.78 (11)N17—C18—C19109.08 (11)
N1—C2—H1C2109.47N17—C18—C23113.02 (10)
N1—C2—H2C2109.47N17—C18—H1C18107.7
C3—C2—H1C2109.47C19—C18—C23110.57 (12)
C3—C2—H2C2109.47C19—C18—H1C18110.29
H1C2—C2—H2C2103.58C23—C18—H1C18106.12
C2—C3—C4119.69 (12)C18—C19—C20111.74 (12)
C2—C3—C8121.34 (10)C18—C19—H1C19109.47
C4—C3—C8118.93 (12)C18—C19—H2C19109.47
C3—C4—C5120.74 (13)C20—C19—H1C19109.47
C3—C4—H1C4119.63C20—C19—H2C19109.47
C5—C4—H1C4119.63H1C19—C19—H2C19107.1
C4—C5—C6120.14 (12)C19—C20—C21111.15 (11)
C4—C5—H1C5119.93C19—C20—H1C20109.47
C6—C5—H1C5119.93C19—C20—H2C20109.47
C5—C6—C7119.39 (14)C21—C20—H1C20109.47
C5—C6—H1C6120.3C21—C20—H2C20109.47
C7—C6—H1C6120.3H1C20—C20—H2C20107.74
C6—C7—C8120.58 (14)C20—C21—C22111.00 (14)
C6—C7—H1C7119.71C20—C21—H1C21109.47
C8—C7—H1C7119.71C20—C21—H2C21109.47
C3—C8—C7120.19 (11)C22—C21—H1C21109.47
C3—C8—H1C8119.9C22—C21—H2C21109.47
C7—C8—H1C8119.91H1C21—C21—H2C21107.9
O9—C10—C11119.16 (11)C21—C22—C23111.33 (13)
O9—C10—C15119.28 (12)C21—C22—H1C22109.47
C11—C10—C15121.45 (14)C21—C22—H2C22109.47
C10—C11—C12118.75 (12)C23—C22—H1C22109.47
C10—C11—H1C11120.62C23—C22—H2C22109.47
C12—C11—H1C11120.63H1C22—C22—H2C22107.54
C11—C12—C13120.49 (14)C18—C23—C22111.04 (11)
C11—C12—H1C12119.76C18—C23—H1C23109.47
C13—C12—H1C12119.76C18—C23—H2C23109.47
C12—C13—C14119.82 (16)C22—C23—H1C23109.47
C12—C13—H1C13120.09C22—C23—H2C23109.47
C14—C13—H1C13120.09H1C23—C23—H2C23107.85
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.839 (17)2.351 (17)3.1673 (14)164.2 (16)
N17—H1N17···O16ii0.871 (17)2.140 (17)2.9977 (14)168.2 (13)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H27N2O2PC16H19N2O2PC19H25N2O2P
Mr358.4302.3344.4
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)12.9137 (6), 14.6324 (4), 10.3114 (4)5.4168 (2), 20.3357 (9), 14.2398 (6)13.3675 (5), 8.0189 (2), 17.4416 (6)
β (°) 99.484 (4) 97.489 (3) 108.707 (3)
V3)1921.79 (13)1555.20 (11)1770.84 (11)
Z444
Radiation typeCu KαCu KαCu Kα
µ (mm1)1.391.621.48
Crystal size (mm)0.44 × 0.22 × 0.120.65 × 0.10 × 0.070.17 × 0.12 × 0.10
Data collection
DiffractometerAgilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
Agilent Xcalibur Gemini Ultra
diffractometer with Atlas detector
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Agilent, 2013); using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Analytical
[CrysAlis PRO (Agilent, 2013); analytical numerical absorption correction based on crystal shape]
Tmin, Tmax0.706, 0.8770.613, 0.9040.88, 0.917
No. of measured, independent and
observed [I > 3σ(I)] reflections
11561, 3420, 2928 10454, 2745, 2333 12735, 3146, 2774
Rint0.0310.0260.024
(sin θ/λ)max1)0.5970.5980.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.75 0.028, 0.070, 1.81 0.029, 0.087, 1.53
No. of reflections342027453146
No. of parameters229198223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.370.16, 0.260.16, 0.23

Computer programs: CrysAlis PRO (Agilent, 2013), Superflip (Palatinus & Chapuis, 2007), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.87 (3)1.99 (3)2.8487 (19)169 (2)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.798 (19)2.219 (19)3.0063 (16)169.0 (16)
N17—H1N17···O16ii0.873 (17)2.057 (17)2.9216 (15)170.3 (16)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O16i0.839 (17)2.351 (17)3.1673 (14)164.2 (16)
N17—H1N17···O16ii0.871 (17)2.140 (17)2.9977 (14)168.2 (13)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
Selected geometric parameters (Å, °) for (I), (II) and (III) top
Parameter(I)(II)(III)
P1—N11.6398 (16)1.6375 (12)1.6243 (11)
P1—O91.6106 (13)1.5991 (10)1.6108 (9)
P1—O161.4683 (12)1.4762 (10)1.4804 (8)
P1—N171.6297 (14)1.6184 (13)1.6267 (12)
N1—C21.391 (2)1.4208 (18)1.4667 (14)
O9—C101.388 (2)1.4027 (16)1.3937 (17)
N17—C181.479 (2)1.4672 (18)1.4702 (19)
N1—P1—O994.80 (7)101.30 (5)108.53 (5)
N1—P1—O16116.36 (7)114.69 (6)111.38 (5)
N1—P1—N17109.59 (8)108.13 (6)107.19 (5)
O9—P1—O16114.31 (7)112.59 (5)112.00 (5)
O9—P1—N17108.78 (7)106.79 (6)96.58 (5)
O16—P1—N17111.71 (7)112.50 (6)119.90 (6)
P1—N1—C2126.67 (12)126.96 (10)123.30 (9)
O9—C10—C11118.11 (17)118.57 (12)119.16 (11)
P1—N17—C18122.39 (11)124.40 (9)123.61 (9)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds