Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A theory is presented to describe the anomalous peak shift encountered in neutron diffraction residual stress measurements as the specimen is translated into and out of the sampling volume, which is defined by a pair of masking slits inserted before and after the specimen. Analytical formulae for the anomalous peak shift were obtained for both position-sensitive-detector-based diffractometers and conventional scanning diffractometers. The results indicate that the observed peak shift is a complex function of many variables, including the in-pile collimation, slit widths, slit-to-axis distances, mosaic spread of the monochromating crystal, and mismatch in lattice spacing between the sample and the monochromator. Calculations based on the derived analytical formulae are in good agreement with experimental observations. It is shown that by the choice of appropriate experimental conditions, this peak shift anomaly can be suppressed or, in some cases, eliminated altogether.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds